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ABSTRACT

Recently, the maximum likelihood estimator (MLE) and

Cramer-Rao Lower Bound (CRLB) were proposed with the

goal of maximizing and assessing the synchronization ac-

curacy in wireless sensor networks (WSNs). Because the

network delays may assume any distribution and the per-

formance of MLE is quite sensitive to the distribution of

network delays, designing clock synchronization algorithms

that are robust to unknown network delay distributions ap-

pears as an important problem. By adopting a Bayesian

framework, this paper proposes a novel clock synchroniza-

tion algorithm, called Iterative Gaussian Mixture Kalman

Particle Filter (IGMKPF), which is shown to achieve good

and robust performance in the presence of unknown net-

work delay distributions. The Posterior Cramer-Rao Bound

(PCRB) and the Mean-Square Error (MSE) of IGMKPF are

evaluated and shown to exhibit improved performance and

robustness relative to MLE.

Index Terms— Maximum Likelihood Estimation, State Es-

timation, Adaptive Filters, Particle Filter

1. INTRODUCTION

Clock synchronization between two network nodes is gener-

ally accomplished via message exchanges. Due to the pres-

ence of non-deterministic and possibly unbounded message

delays, messages can get delayed arbitrarily, which makes the

clock synchronization very difficult [1]. The most commonly

proposed distributions to model the network delays are the

Gaussian and exponential probability density functions (pdfs)

[2]. The maximum likelihood estimators (MLEs) for clock

offset estimation in the presence of symmetric Gaussian and

exponential network delays will be referred to as MLEg and

MLEe, respectively. In [2], it is shown that MLEg and MLEe

are quite sensitive to the network delay distributions. Also,

the Cramer-Rao Lower Bound (CRLB) is shown to be inverse

proportional to the number of observations [2]. It appears

also that to improve the performance, MLEg and MLEe re-

quire a larger number of observations. However, since WSNs

are power-limited systems, such a solution is not appropriate.

Because of the uncertainties in modeling the network de-

lay distributions, herein we will adopt a particle filtering (PF)-

based Bayesian approach for estimating the clock offset. The

signaling mechanism between the two nodes is the standard

two-way message exchange mechanism encountered in pro-

tocols such as NTP, TPSN [3]. The PF-method provides an

approximate Bayesian solution to the discrete-time recursive

optimization problem. Notice that general particle filtering

techniques have no optimal proposal distribution and the ob-

servation noise density is in general modeled by its first two

moments. Therefore, there exists a bias in both the general

PF estimator and MLE, and this is due to the finite number of

observations. Therefore, MLE and CRLB can not serve as an

efficient estimator and tight lower bound, respectively, in the

presence of a reduced number of observations. In addition,

the PF and its Posterior Cramer-Rao Bound (PCRB) may not

be an optimal estimator or serve as a tight lower bound due to

the finite number of samples and unknown observation noise

density.

To cope with the limitations of MLE and PF, herein we

propose the Iterative Gaussian Mixture Kalman Particle Filter

(IGMKPF) to estimate the clock offset between two nodes,

and analyze the PCRB as a lower bound for its Mean Square

Error (MSE) performance. IGMKPF presents a series of

features. First of all, IGMKPF is capable of tracking the pos-

terior and observation noise densities in order to reduce the

bias which might stem from the observation noise estimation

step in the presence of reduced number of observations. If

the observation noise density is fully captured and not par-

tially modeled through the information provided by its mean

and variance, then the estimator tends to reduce its bias and

leads to improved MSE-performance. Second, the IGMKPF

estimator deals with non-Gaussian noise efficiently (e.g., by

adopting Gaussian Mixture Models (GMMs) to capture var-

ious densities). Lastly, as computer simulations illustrate,

the optimal estimation settings can be inferred from the an-

alytical lower bound (e.g., PCRB). Computer simulations

are conducted to compare the MSE performance of various

competitive estimation schemes MLEg, MLEe, IGMKPF,

and IGMKPF with perfect network delay noise estimation,

with theoretical bounds such as CRLB and PCRB. As a re-

sult, when the accuracy of noise distribution estimation is
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improved, the performance of IGMKPF is significantly better

than CRLB (and/or ML) in the presence of reduced number

of observations. Therefore, the proposed IGMKPF method

represents a reliable clock offset estimation scheme fit to

overcome the uncertainties caused by the unknown network

delay distributions.

The rest of this paper is organized as follows. Section 2

formulates the problem and introduces the state-space clock

phase offset estimation model. Due to space limitations, Sec-

tion 3 presents only the PCRB for the Gaussian model. Sec-

tion 4 provides a description of the IGMKPF approach for

estimating the clock offset in WSNs. The results of computer

simulations are given in Section 5. Finally, concluding re-

marks are presented in Section 6.

2. PROBLEM FORMULATION AND OBJECTIVES

The two-way timing message exchange mechanism is a re-

cently proposed clock synchronization scheme for wireless

sensor networks [2]. In this mechanism, the synchronization

of two nodes A and B is achieved through a number of N
cycles. Each cycle assumes two message transmissions: one

from node A to node B, followed by a reverse transmission

from node B to node A. At the beginning of the kth cycle, the

node A sends its time reading T1,k to node B, which records

the arrival time of the message as T2,k, according to its own

time scale. Similarly, a time message exchange is performed

from node B to node A. At time T3,k, node B transmits the

time information T2,k and T3,k back to node A. Denoting by

T4,k the arrival time at node A of the message sent by node B,

node A would then have access to the time information Tj,k,

j = 1, . . . , 4 at the end of the kth cycle, which provide suffi-

cient information for estimating the clock phase offset θA of

node A relative to node B clock.

Similarly to [2], the differences between the kth up and

down-link delay observations corresponding to the kth tim-

ing message exchange are defined by Uk := T2,k − T1,k =
d + θA + Lk and Vk := T4,k − T3,k = d − θA + Mk, re-

spectively. The fixed value d denotes the fixed (deterministic)

propagation delay component (which in general is neglected

(d ≈ 0) in small range networks that assume RF transmis-

sions). Parameters Lk and Mk stand for the variable portions

of the network delays, and may assume any distribution such

as Gaussian, exponential etc..

Given the observation samples zk = [Uk, Vk]
T , our goal

is to find the minimum mean-square error estimate of the un-

known clock offset θA. For convenience, the notation xk :=
θA will be used henceforth. Thus, it turns out that we need to

determine the estimator x̂k = E{xk|zl}. Where zl denotes

the set of observed samples up to time l, zl = {z0, z1, ..., zl}.

Since the clock offset value is assumed to be a constant, the

clock offset can be modeled as following the Gauss-Markov

model:

xk = Fxk−1 + vk−1 , (1)

where F stands for the state transition matrix of the clock off-

set. The additive process noise component vk can be modeled

as Gaussian with zero mean and covariance E[vkv
T
k ] = Q =

σ2
v . The vector observation model is given by [5]:

zk = [Uk, Vk]
T
= Ad+Bxk + nk , (2)

where A = [1 1]T , B = [1 − 1]T , and the observation noise

vector nk = [Lk,Mk]
T has zero mean and covariance R =

diag{σ2
n, σ

2
n}, and it accounts for the random network delays.

3. POSTERIOR CRAMER-RAO BOUND FOR
SEQUENTIAL BAYESIAN ESTIMATION

We need a lower bound on the covariance of the estimator, x̂k

for the true state xk, defined by (1) and (2). Assuming that

regularity condition holds for the probability density func-

tions, the posterior Cramer-Rao bound [4] provides a lower

bound on the mean-square error matrix for random parame-

ters. Letting x̂(z) denote an estimate of x which is a function

of the observations z, the PCRB provides a lower bound on

the MSE matrix M, and it is expressed as the inverse of the

Bayesian Fischer Information Matrix (BFIM) J :

M = Ez,x{[x̂(z)− x][x̂(z)− x]T} ≥ J−1 . (3)

The BFIM for x is defined as J = Ez,x{−�x
x lnp(z,x)} ,

where �θ
φ is the m×n matrix of second-order partial deriva-

tives with respect to the m× 1 parameter vector φ and n× 1
parameter vector θ. In [4], the BFIM is shown to follow the

recursion:

Jk+1 = D22
k − (D21

k )T(Jk +D11
k )−1D12

k , (4)

where the matrices Dij
k are expressed in terms of expec-

tation integrals. Once we have a sample representation

of the posterior density, these expectation integrals can be

calculated through sample mean approximations. We can

obtain the sample-based representation of the posterior pdf

p(xk+1|zk+1) by exploiting the work done in particle filter-

ing [6]. Therefore, we can generate weighted samples on a

stochastic grid to represent the posterior density and estimate

the Fisher component matrices with the empirical averages:

D11
k � 1/N

N∑

n=1

Λ11(X
(n)
k , X

(n)
k+1) (5)

D12
k � 1/N

N∑

n=1

Λ12(X
(n)
k , X

(n)
k+1) (6)

D22
k � 1/N

N∑

n=1

(Λ22,a(X
(n)
k , X

(n)
k+1)

+ Λ22,b(X
(n)
k , X

(n)
k+1)) (7)
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where X
(n)
k+1, n = 1, ..., N , are the a posteriori samples repre-

senting the density p(xk+1|zk+1) and N stands for the num-

ber of samples. The recursion is initialized with

J0 = Ex{−�x0
x0

lnp(x0)} . (8)

3.1. PCRB for the Gaussian Network Delay Model

Equation (1) determines the conditional pdf p(xk+1|xk)

p(xk+1|xk) =
1√
2πσ2

v

e−1/2σ2
v[(xk+1−xk)

2] , (9)

and (2) decides the conditional pdf p(xk+1|zk+1)

p(zk+1|xk+1) =
1√
2πσ2

n

e−1/2σ2
n[(zk+1−Ad−Bxk+1)

2]. (10)

Therefore, we can estimate the Fisher component matrices

with the empirical averages :

D11
k � 1/σ2

v , D12
k � −1/σ2

v , D22
k � 1/σ2

v +
2

σ2
n

. (11)

From (4), the BFIM for the Gaussian case takes the form:

Jk+1 =
1

σ2
v

+
2

σ2
n

− (−1/σ2
v)

T(Jk + 1/σ2
v)

−1(−1/σ2
v).

(12)

Therefore, from (3), PCRB is the inverse of BFIM J . From

the above equations, we note that PCRB is a function of

σ2
v and σ2

n. But in [2], the CRLB for ML is expressed as

var(x̂) ≥ σ2
n/2N . Figs. 1 (a)-(b) shows CRLB and PCRB

when the random delay model is Gaussian with zero mean and

variance σ2
n = 1 for various initializations of the Fisher infor-

mation matrix J0 and different power levels for the process

noise (σ2
v). The performance depending on the initialization

J0, PCRB might achieve similar or better performance levels

than CRLB [2] depending on how J0 is selected. The simu-

lation results illustrated an interesting fact. When the process

noise variance is sufficiently small (less than 10−4) and the

initial value of Fisher information matrix is J0 = 1/(σ2
v),

PCRLB is significantly lower than CRLB.
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Fig. 1. PCRB and CRLB for symmetric Gaussian delays.

4. AN ITERATIVE GAUSSIAN MIXTURE KALMAN
PARTICLE FILTERING (IGMKPF) APPROACH

The proposed Iterative Gaussian Mixture Kalman Particle

Filtering (IGMKPF) estimator combines the Gaussian mix-

ture Kalman particle filter (GMKPF) [5] with the observation

noise density estimator. The observation noise density esti-

mator consists of the state model and a cost function in the

form of an innovation equation expressed as the difference

between the observation and estimated state posterior pdfs:

p(z)− p(ẑ). The innovation equation is produced by consid-

ering the estimate yielded by a standard Kalman filter as well

as a GMKPF estimator using the prior, process, observation,

state posterior, and noise density, which are propagated over

time. Fig. 2 provides a perspective on the proposed IGMKPF

estimator. In IGMKPF, the first processing stage is repre-

sented by the GMKPF which is used to estimate the state

posterior density using the observation, prior, and process

density. The second processing stage consists in estimating

the observation noise density using the innovation, by con-

sidering the estimate provided by the standard Kalman filter.

The estimated observation noise density, which is used as

an input to the first processing stage, is approximated by a

GMM fitting function. The iterative process between the two

processing stages is repeated up to the end of observations.

The pseudo-code of IGMKPF algorithm is next described.

Fig. 2. Block diagram representation of IGMKPF estimator

IGMKPF algorithm

1. At time k, initialize the densities and set the initial state

x̂k−1 = xML.

2. GMKPF step (estimate the state posterior density)

• Calculate the state posterior density pg(xk|zk) us-

ing GMKPF.

• If k reaches the end of observations, go to ”Infer

the conditional mean and covariance step”.

3. OND step (estimate the observation noise density)

• Calculate the observation noise density p(n̂)
given zk and pg(xk|zk), and state model (eqs.

(1) and (2))

3514



• The observation noise density using GMM is ap-

proximated by:

pg(nk) =
∑J

j=1 γ
(J)
k N(nk;μnk

(j),R
(j)
k )

4. k = k + 1, go to the GMKPF step.

5. Infer the conditional mean and covariance:

• x̄k =
∑N

l=1 w
(l)
k χ

(l)
k and P̄k =

∑N
l=1 w

(l)
k (χ

(l)
k −

x̄k)(χ
(l)
k − x̄k)

T

5. SIMULATION RESULTS

In this section, computer simulations will be conducted to as-

sess the performance of IGMKPF, PCRB-IGMKPF, MLEg

[2], MLEe [2], and CRLB for estimating the clock offset in

WSNs that are subject to two types of network delays: sym-

metric Gaussian and exponential. The process noise assumes

the power σ2
v = 10−6. The number of particles and GMMs

are 500 and 3, respectively. The ML estimators proposed in

[2] for symmetric Gaussian and exponential random delays

are good examples of initializations. The initial values (x̂0 =
x̂MLEg , (x̂0 = x̂MLEe) are near the true values in Gaussian

and exponential delay, respectively. Since GMKPF does not

initialize the observation noise density and does not track it,

its performance is limited. However, IGMKPF tracks the ob-

servation noise density using the observation and estimated

posterior pdfs. Therefore, the performance of IGMKPF is ex-

pected to be better than CRLB.

Figs. 3 (a)-(b) show the MSE of the estimators under

the assumption that the random delay models are symmetric

Gaussian and exponential, respectively. The notations KN

and EN denote the set-ups with known observation noise

density and estimated observation noise density, respectively.

The MSEs are plotted against the number of observations

ranging from 15 to 30. Note that IGMKPF (G = 3) performs

much better (over 100% reduction in MSE) than CRLB and

MLEg in the presence of a Gaussian delay model. It is re-

markable that the performance of MLEg is proportional to

the number of observations, whereas that of IGMKPF is pro-

portional to the number of particles, the number of GMMs,

and the accuracy of noise density estimation, but it does not

depend on the number of observations [7]. This is a desir-

able feature for WSNs in order to keep the number of timing

exchanges low so that energy is conserved.

6. CONCLUSIONS

This paper provided a novel method for estimating the clock

offset in wireless sensor networks. The benefits of the pro-

posed synchronization method (IGMKPF) are improved per-

formance compared to CRLB and MLE, and applicability to

arbitrary random delay models such as symmetric Gaussian

and exponential models. In general, in case of (unknown)
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Fig. 3. MSEs of clock offset estimators.

non-Gaussian distributions, analytical closed-form expres-

sions for MSE-performance do not necessarily exist and it

is hard to derive lower bounds. However, this paper derived

the posterior Cramer-Rao bound (PCRB) and IGMKPF. An

important element in improving the performance of clock

estimator is the prediction of unknown observation noise

density which led to an improved estimator.
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