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Abstract—Opportunistic spectrum access feature of cognitive
radio systems is a method to improve frequency underutilization
of wireless spectrum. One of the techniques for detecting the
unused bands is the energy detection for which selection of
the threshold defines detection performance. In this paper, the
adaptive threshold method is proposed as an alternative approach
to estimate the threshold as a function of first and second order
statistics of recorded signals. The proposed method does not
require estimation of noise variance or signal to noise ratio
and aims to minimize the effects of impairments introduced by
wireless channel and non-stationary noise. The simulation results
indicate that adaptive threshold has low false alarm and missed
detection rates that can satisfy the detection requirements of
multi-channel cognitive radios for either narrow or wideband
spectrum sensing, when the standard deviation coefficient is
selected properly.

I. Introduction

Wireless spectrum became a more scarce and valuable

resource due to requirement of more bandwidth for next

generation networks and because of increasing number of

users. Even though the spectrum allocation charts indicate

that there is not much space left in the frequency spectrum,

in practice the spectrum is not efficiently allocated because

the communications systems using the frequency spectrum

dynamically such as cellular technologies, are assumed to be

transmitting in a static fashion such as in the case of television

transmitters. Federal Communications Commission’s (FCC)

Spectrum Policy Task Force report [1] investigates underuti-

lization of the spectrum by precise definition of the spectral

efficiency and makes specific recommendations for fostering

uniform throughput. Moreover, FCC’s Notice of Proposed

Rule Making which is issued after the task force’s report, rec-

ommends employment of flexible and reliable communications

systems, such as cognitive radios for efficient spectrum use [2].

The spectrum sensing feature of cognitive radios (CRs)

introduces techniques for detecting communications opportu-

nities in wireless spectrum by the employment of secondary

users with low-priority access to the spectrum. Three signal

processing methods used for spectrum sensing are matched

filter, cyclostationary feature extraction, and energy detection

[3]. First two are coherent detection techniques with better

detection probability than non-coherent energy detection [4].

However, the coherent detectors require a priori information.

Matched filter provides optimal detection by maximizing sig-

nal to noise ratio (SNR) but requires demodulation parameters.

Cyclostationary feature detection can detect random signals

depending on their cyclic features even if the signal is in

the background of noise but it requires information about the

cyclic characteristics. Energy detection technique is applied

by setting a threshold for detecting the existence of the signal

in the spectrum. Even though it is simpler than the match

filtering and cyclostationary feature detection, it requires at

least O(1/S NR2) samples for detection [5] and it has funda-

mental problems: (i) susceptibility to changing noise levels, (ii)

can not distinguish modulated signals, noise and interference.

Therefore it can not treat primary users, secondary users and

noise in different ways, (iii) can not detect the direct sequence

spread spectrum signals with very low SNR [6].

Despite the aforementioned drawbacks, energy detection

can provide lower sensing period than other methods and it is

applicable to multiple channels for wideband sensing. Hence

energy detection is the most studied technique among all sens-

ing methods. Research to improve performance of the energy

detectors includes cooperative sensing with multiple CRs [7]

and multi-band joint detection which evaluate each frequency

band separately [8]. Various double threshold methods [9],

[10], [11] are also proposed to improve the threshold selection

process. Besides, an adaptive threshold setting algorithm is

introduced for single channel duty cycle estimation [12]. On

the other hand, [13] defined a system level threshold adaptation

algorithm taking the detection performances of the thresholds

selected for previous frequency sweeps into consideration.

Even though the detection performance can be improved by

the methods mentioned above, threshold selection is the most

important process that defines the performance of the energy

detectors. Therefore, in this paper, it is aimed to investigate

how can the threshold selection process be optimized with

the knowledge of the minimum number of parameters that

contribute to the threshold estimation. An adaptive threshold

algorithm depending on the first and second order statistics of

the recorded spectrum is proposed and detection performance

of the adaptive threshold method is investigated. The system

model for the signals that the proposed method will be applied

to is presented in Section II. Performance metrics and the

theoretical analysis of adaptive threshold constitute Section

2010 17th International Conference on Telecommunications

978-1-4244-5247-7/09/$26.00 ©2009 IEEE 425



S1

CR1

y1

S2

CR2

y2

...

...

...

Si

CRi

yi

Spectrum Sensing

and Secondary

User Deployment
h1

h2

hi

Si+1

LU1

yi+1

...

...

...

Sn-1

Luk-1

yn-1

hi+1 hn-1

Sn

LUk

hn
yn

Fig. 1. System Model for Spectrum Sensing

III. Section IV details the numerical results and Section V

provides the conclusion.

II. SystemModel

It is assumed that cognitive radio is sensing multiple

channels or a chunk of the frequency spectrum that may be

occupied by multiple signals. Therefore, transmit signal model

can be given by

x(t) = As(t), (1)

where s(t) = [s1(t), ..., sn(t)]T represents n independent signals

and T denotes transposition. A is n× n coefficient matrix with

ai, j elements where i, j = 1, ...n and x(t) represents n transmit

signals where x j(t) =
∑n

i=1 ai, js j(t). The proposed system

model is illustrated in Fig. 1 and after digital conversion and

modulation, each independent signal passes through a different

channel as indicated in the figure. The channel for x j(t) can

be modeled as a time-variant linear filter

h j(t) =

L j
∑

i=1

hi(t)δ(t − τi), (2)

where L j is the number of taps for the channel h j and τi

is delay for each tap. It is assumed that the taps are sample

spaced and the channel is constant for a symbol but time-

varying across multiple symbols. Each of the emitters in the

spectrum can be a legacy user (primary) or a secondary user.

BPF ADC ( )
2 >

<
λ

y(t)
H1

H0

y(n) Ty

Fig. 2. Block Diagram of Energy Detector

Block diagram of proposed the energy detection scheme is

given in Fig. 2. The transmitted signal is received along with

noise at the receiver. Therefore, baseband model of a single

received signal at the input of the energy detector, after down

conversion can be given as

y j(t) = e2π jξt[x j(t) ⋆ h j(t)] + w(t) (3)

= e2π jξt

∫

x j(τ)h j(t − τ)dτ + w(t), (4)

where ⋆ is the convolution operation and the j at the expo-

nential term is the imaginary unit. When the channel model

given in (2) is considered received signal becomes

y j(t) = e2π jξt

L j
∑

i=1

x j(t − τi)hi(t) + w(t), (5)

where ξ is frequency offset due to inaccurate frequency syn-

chronization and w(t) corresponds to additive white Gaussian

noise (AWGN) sample with zero mean and variance of σ2
w.

The composite received signal then becomes

y(t) =

n
∑

j=1

y j(t). (6)

The received signal is sampled with sampling time of ∆t at the

analog to digital converter (ADC) and discrete-time received

signal can be represented in vector notation by

y(n) = [y(1), y(2), ..., y(N)]. (7)

where n = 1, ...,N. After the received signal is digitized,

discrete samples are squared and averaged to acquire received

signal energy and the estimated energy is compared with the

threshold λ and the decision is made whether the signal is

present or not as follows

Ty =
1

N

N
∑

i=1

(y(i))2
≷ λ (8)

III. Performance Analysis

The decision problem for the energy detection scheme can

be formulated in a binary hypothesis form

H0 : y(n) = w(n) (no signal present)

H1 : y(n) = h(n) × s(n) + w(n) (signal present) (9)

s(n) represents a transmitted signal in the given frequency band

and assumed to be independent and identically distributed (iid)

with zero mean and σ2
s variance. w(n) is the additive white

Gaussian noise (AWGN) and assumed to be iid with variance

of σ2
n. h(n) is the temporary amplitude gain of the channel.

SNR can be defined in terms of the signal and noise variance

as

S NR = σ2
s/σ

2
n. (10)

Energy detection theory [14] indicate that Ty is a random

variable with central and non-central chi-square distributed

probability distribution function (PDF) under H0 and H1

respectively. When the observation interval N is large enough,

the PDF of Ty can be approximated as Gaussian distribution

f (Ty) ∽ N(σ2
n, 2σ

2
n/N) (under H0)

f (Ty) ∽ N(σ2
y , 2σ

2
y/N) (under H1) (11)

where σ2
y = σ

2
s + σ

2
n. When the derivations in [15] are taken

into consideration probability of signal detection can be given

by

Pdet = Q

(

√

N/2

(

λ

σ2
n(1 + S NR)

− 1

)

)

(12)

and the probability of false alarm can be written as

Pfa = Q

(

λ − σ2
n

σ2
n/
√

N/2

)

(13)
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Under H1 hypothesis, for a fixed target of detection probability

the threshold is derived as [15]

λd = σ
2
n(1 + S NR)

(

1 +
Q−1(pd)
√

N/2

)

, (14)

and for a constant false alarm rate (Pfa) the threshold is given

by

λfa = σ
2
n

(

1 +
Q−1(p f a)
√

N/2

)

. (15)

(14) and (15) indicate that the threshold estimation is depen-

dent of noise variance, SNR, number of the samples, and

required detection or false alarm probability. Therefore, in

the literature, noise variance and SNR are either assumed

to be known or methods to estimate these parameters are

proposed. For instance, [16] proposes a combined approach

which estimate the noise floor via histogram first, and then

applies a constant false alarm rate (CFAR) detector. Perfor-

mance of the thresholds are investigated when an estimate of

noise variance from side or empty bands is used instead of

exact values in [15]. Besides, in general it is also assumed

that the noise floor is stationary. However, in practice, this as-

sumption may become invalid due to the wireless channel and

other impairments especially when the multi-band detection is

considered. [10] and [13] introduce the channel impairments

in the hypothesis model but these effects are assumed to be

either deterministic or non-fading. On the other hand, in the

literature, it is aimed to come up with a single threshold value.

However, especially for the multi-band or wide-band detection

single threshold value may reduce the detection performance.

In this study, we adopted the adaptive threshold method

from the literature of image processing to overcome the

limitations mentioned above. The adaptive threshold method

defines the threshold as linear function of recorded signal’s

mean and standard deviation. We will consider and discuss two

types of adaptive thresholds: first, the adaptive threshold which

fluctuate with the signal and second, the computationally

optimal version which is estimated as a single value for the

all spectrum in once.

In the context of the adaptive threshold, we slightly modify

the energy detector proposed in Fig. 2. The initial bandpass

filter stage is removed and after the analog to digital conver-

sion N-point fast Fourier transform (FFT) is applied instead

of taking the square and averaging the received signal. This

approach brings more flexibility to wideband multi-channel

signal processing and provides sensing of multiple signals

simultaneously in a simple way [5]. The frequency domain

representation of the received signal is acquired by applying

FFT over y(n) as

Y(u) =

N
∑

n=1

y(n)e− j2πu n
N (16)

where u = 0, ...,N − 1. When the focus is on the parameters

in hand, it’s known that there are N (FFT size) samples of

sequence for spectral representation of the recording. Also

when the practical cases considered, because of the dynamic

range of recording hardware, energy bearing samples lower

than the minimum value of the hardware’s dynamic range will

be represented at the dynamic range minima. These samples

accumulated at the bottom of the spectrum will carry least

of the information while the samples with highest power

levels will carry most of the information about the wireless

occupant signal. Therefore, it is plausible to divide the signal

samples into two groups: One group starting from the bottom

of the spectra should constitute the noise floor and the other

group of samples should be evaluated as the information

bearing samples for wireless signals. Therefore, selection of

the threshold level for energy detection is extremely important

and has its overlapping counterpart in the field of image

processing: The adaptive or dynamic threshold method is

employed to determine the level of image intensity boundary

for converting the color or the gray scale images to the binary

images, the process which is called image binarization [17].

According to this method, the image pixel with the intensity

level lower than the calculated threshold is marked as being

zero and the pixel with higher and equal level of intensity

to the threshold is marked as being 1 during the binarization

process. Starting from the initial pixel of the image, the level

of the threshold calculated separately for each pixel taking the

information gathered from previous pixels into consideration.

If each pixel of a digital image, under the image field size

defined with the window of W(N,N) is represented by I(u, v),

the threshold to decide the intensity level for each pixel can

adaptively be calculated by

λu,v = µW (u, v) + kσW (u, v) ∀I(u, v), (17)

where

µW (u, v) =
1

u × v

u
∑

p=1

v
∑

r=1

I(p, r) (18)

and

σW (v, v) =

√

√

1

u × v

u
∑

p=1

v
∑

r=1

(I(p, r) − µW (u, v))2 (19)

where k is the standard deviation coefficient which depends on

the a priori information about the application. For instance,

it is generally selected between zero and one in the digital

image processing applications. (17) imply that estimation of

the noise variance and SNR are not essential and the effect of

fluctuations in the noise floor is minimized, however selection

of the standard deviation coefficient, k, defines the detector

performance.

The adaptive threshold finds its validation in the fact that the

standard deviation indicates the dispersion level of the spectral

data around a mean value. If the data is fluctuating much, the

dispersion of the recorded signal will change faster and the

threshold will also vary faster. If the fluctuations is less, then

threshold will also change slowly. From this point of view,

computation of the mean and the standard deviation at each

point and adjusting the threshold accordingly will provide an

advantage against changes in the signal. However, because of

the fact that the mean and standard deviation is calculated

cumulatively, the threshold can not trace sharp changes in the

frequency spectrum fast enough. Hence, the missed detection

performance of the threshold can be deteriorated. This problem

can be minimized by the introduction of optimal version of
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adaptive threshold. But before that, there will be another

critical assumption which will also effect the performance of

the proposed method. In traditional image processing appli-

cations, the binarization is performed by scanning the entire

two dimensional area of interest. However, when the spectrum

of wireless signals are considered, a single power value is

assigned to each frequency point in the spectrum as (16)

implies and there is no need for vertical search. Hence, for the

adaptive threshold, instead of two dimensional digital image of

I(u, v) the wireless signal can be represented with Y(u) under

the boundary of W(N). Formulas can be modified and rewritten

for the specific case of spectral detection as

λu = µW (u) + kσW (u) ∀Y(u) (20)

and

µW (u) =
1

u

u
∑

p=1

Y(p) (21)

σW (u) =

√

√

1

u

u
∑

p=1

(Y(p) − µW (u))2 (22)

The computationally optimal version of adaptive threshold can

be obtained by calculating the mean and variance in once by

λN = µY + kσY (23)

where

µY =
1

(N)2

N
∑

p=1

Y(p) (24)

and

σY =

√

√

√

1

(N)2

N
∑

p=1

(Y(p) − µY )2. (25)

IV. Simulation Results

In this section, performance assessment of the proposed

methods is discussed for simulated signals. A simulation setup

is constructed with generating baseband signals which employ

16 QAM modulation with various symbol rates, each signal

is consisting of 1024 symbols. Combination of root raised

cosine and Gaussian filters are used for pulse shaping. The

impacts of multipath channel is simulated in MATLAB by

considering ITU-R M.1225 outdoor to indoor channel model

which is compatible to the system model proposed in Section

II.

(20) indicates the critical parameter which affects the perfor-

mance of the proposed adaptive threshold: standard deviation

coefficient. Therefore, in order to monitor the effect of selec-

tion of k over detection performance we define the metrics that

change the false alarm and missed detection rates when the

standard deviation coefficient is fixed. One metric will be SNR

because when the SNR of signals in the monitored spectrum

change the distribution will also change. Second metric will be

the ratio of spectral occupancy versus monitored multi-channel

spectrum and it is defined by BWocc/BWtot, where BWocc is

the total occupied bandwidth over monitored spectrum BWtot.

There can be one or more signals in the spectrum however

all the signals are assumed to have same SNR value for the

purpose of investigating the effects of spectral occupancy and

also for the sake of simplicity.
BWocc/BWtot is set to the fixed value of 0.5 and the effect

of changing SNR is monitored. Wireless signals are occupied

on both 20 kHz and 4 MHz spectrum bands. False alarm and

missed detection rates are calculated for each signal according

to the corresponding SNR levels. A representative curve for

decision statistics is obtained by averaging 50 statistics and

results have been plotted in Fig.3 and Fig.4 for k values

varying between −2 and 4.4. Confidence levels for zero SNR

value is also plotted in order to indicate the theoretical limit

of the proposed approach. When practical SNR levels are of

interest (e.g., SNR > 5 dB), simulation results show that false

alarm and missed detection rates have close numerical values

for both 20 kHz and 4 MHz bands. This implies that, for the

fixed rate of spectral occupancy, monitored bandwidth does not

have significant effect on the selection of standard deviation

coefficient.
Fig.5 depicts the general view of the effects of metrics

over standard deviation coefficient. Optimum values of k that

minimize both false alarm and missed detection rates are

marked for both adaptive (Fig.5 (a)) and optimum threshold

(Fig.5 (b)). Note that k should be increased as occupancy

declines. The k value resides in the range of 0 and 1 for

adaptive threshold and varies from −1 to 0.5 for the optimal

threshold. Please also note that optimum k values increase with

increasing SNR for adaptive threshold while they decrease

with increasing SNR in the case of optimum threshold. Fig 6

illustrates the false alarm and missed detection rate comparison

of adaptive and optimal threshold for 0.2 of BWocc/BWtot and

15 dB of SNR. Optimal threshold has better detection rate

because it does not have to trace the changes due to increasing

and falling edges of the signals, however it has a wider search

range for k as indicated in Fig.5.
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V. Conclusion

Estimation of energy threshold is the most important factor

that affects the performance of the energy detection technique.

There are many approaches for threshold selection however,

in general, statistical procedures are dependent of the noise

variance, SNR and the recording interval. In this paper, it is

aimed to develop a threshold selection method based on the
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adaptive threshold which is dependent of minimum number

of parameters. Critical parameters of the adaptive threshold

is introduced and the detection performance is investigated.

Assumption of uniform SNR through the detection band is

the main limitation within the proposed study, which is also

the subject of further research in the area of adaptive threshold

estimation.
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