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ABSTRACT

We consider the problem of maximizing the average
spectral efficiency of a secondary link in underlay cogni-
tive networks. In particular, we consider the network setting
whereby the secondary transmitter employs discrete rate and
variable power adaptation under the constraints of maximum
average transmit power and maximum average interference
power allowed at the primary receiver due to the existence of
an interference link between the secondary transmitter and
the primary receiver. We first find the optimal discrete rates
assuming a predetermined partitioning of the signal-to-noise
ratio (SNR) of both the secondary and interference links. We
then present an iterative algorithm for finding a suboptimal
partitioning of the SNR of the interference link assuming a
fixed partitioning of the SNR of secondary link selected for
the case where no interference link exists. Our numerical
results show that the average spectral efficiency attained by
using the iterative algorithm is close to that achieved by the
computationally extensive exhaustive search method for the
case of Rayleigh fading channels. In addition, our simula-
tions show that selecting the optimal partitioning of the SNR
of the secondary link assuming no interference link exists
still achieves the maximum average spectral efficiency for
the case where the average interference constraint is consid-
ered.

1. INTRODUCTION

The concept of cognitive networks was first introduced by
Mitola [1] as an efficient means for utilizing the scarce spec-
trum by allowing spectrum sharing between a licensed pri-
mary network and a secondary network. Cognitive networks
can be divided into three different types; namely, interweave,
underlay, and overlay. For the interweave type the secondary
users are only allowed to use the spectrum of the primary net-
work whenever it is idle, which requires continuous sensing
of the primary spectrum by the secondary network. For the
underlay network simultaneous transmissions are allowed by
letting the secondary network share the spectrum with the
primary network under the condition of maximum interfer-
ence power level allowed at the primary receiver. Finally, for
the overlay type, the secondary network is aware of the signal
characteristics of the primary network which is exploited to
achieve an enhanced performance for the secondary network
by minimizing the interference incurred by the primary trans-
missions. In this paper, we focus on the underlay cognitive
network model whereby a secondary user is communicating
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over a secondary link to a certain destination under the con-
straints of maximum average transmit power and maximum
average interference level at the primary receiver.

Adaptive transmission has been introduced as a power-
efficient technique for improving the performance of wire-
less networks [2, 3]. In particular, the problem of discrete
rate adaptation has been addressed in [4, 5, 6] for the case
of a single slowly fading wireless link where it was shown
that by carefully selecting the optimal discrete rates, the
achievable spectral efficiency is close to the Shannon capac-
ity [6]. Recently, adaptive transmission has been applied
to cognitive networks. For instance, from an information-
theoretic view, the problem of finding the optimal power al-
location schemes for fading channels in underlay cognitive
networks assuming continuous rate adaptation have been ad-
dressed in [7, 8, 9, 10] under different constraints such as
peak/average transmit power and peak/average interference
power. From a practical view, an adaptive QAM modula-
tion has been proposed in [11] where it was assumed that
the cognitive user first estimates its channel, during a train-
ing phase, and this estimate is then utilized to find the opti-
mal QAM modulation. In this paper, we deal with the prob-
lem of adaptive transmission in underlay cognitive network
using an information-theoretic approach. In particular, we
employ discrete-rate variable power adaptive system to max-
imize the average spectral efficiency under average transmit
power constraint and average interference power constraint.
We first consider the problem of finding the optimal discrete
rates assuming fixed partitioning of the secondary and inter-
ference link SNRs. Then we develop techniques to determine
the partitioning of the secondary and interference link SNRs
that provide almost close-to-optimal performance in terms of
maximizing the average spectral efficiency for Rayleigh fad-
ing channels.

The paper is organized as follows; in Sec. 2 and Sec. 3,
we present the system model as well as the problem formu-
lation. In Sec. 4, we present methods for finding the opti-
mal discrete rates. In Sec. 5, we present computationally-
efficient suboptimal techniques for selecting the partitioning
both the secondary and interference link SNRs. In Sec. 6,
we present numerical results to assess the performance of the
developed techniques for finding the optimal discrete rates as
well as the partitioning of the SNR of the secondary and in-
terference links for Rayleigh fading channels. Finally, we
conclude the paper in Sec. 7.

2. SYSTEM MODEL

We consider an underlay cognitive system model whereby
a secondary cognitive user is allowed to share the spectrum
with a primary link under the constraint of the maximum av-
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erage interference power set under a predetermined thresh-
old. We assume that the secondary link between the sec-
ondary transmitter and receiver is not affected by the primary
transmissions. Furthermore, we assume that the channels in-
volved in communication are discrete-time fading channels
where the secondary SNR and the interference SNR are de-
noted by γs and γp, respectively, with average values γ̄s and
γ̄p. We also assume that the secondary transmitter has a per-
fect knowledge of the secondary and interference link SNRs.

We partition the SNR ranges of the secondary and the
interference links into (N + 1)× (M + 1) two dimensional
intervals, Ii,j , defined as follows,

Ii,j=([γs,i,γs,i+1),[γp,j ,γp,j+1)) , 0≤ i≤N, 0≤j≤M, (1)

where γs,i and γp,j are the thresholds used for partitioning
the secondary and interference links, respectively. We as-
sume that γs,0 = γp,0 = 0 and γs,N+1 = γp,M+1 = ∞. We
also adopt the scenario of zero information outage where the
secondary user is not allowed to transmit below γs,1 given
any value of γp. In addition we assume, without loss of gen-
erality, no transmission is allowed above γp,M . Such setting
results in having N × M rates for the (N + 1) × (M + 1)
two dimensional intervals.

3. PROBLEM FORMULATION

In this paper, our objective is to find the discrete rate, Ri,j ,
used at the Ii,j th interval and the associated thresholds that
maximize the average spectral efficiency Rs. Assuming em-
ploying continuous power adaptation pi,j(γs) and capacity-
achieving codes, the fixed rate used at each interval is given
by Ri,j = log2(1+ζi,j) where ζi,j = γspi,j(γs). Hence, the
average spectral efficiency is defined as follows,

Rs =

N
∑

i=1

M−1
∑

j=0

Ri,jαs,iαp,j (2)

subject to the following constraints

C1 : Ps =
∑

i

∑

j

ζi,jµs,iαp,j ≤ P, (3)

C2 : PI =
∑

i

∑

j

ζi,jµs,iqp,j ≤ Q, (4)

where αs,i=
∫ γs,i+1

γs,i
fγs

(γs)dγs, αp,j =
∫ γp,j+1

γp,j
fγp

(γp)dγp,

µs,i =
∫ γs,i+1

γs,i

1
γs
fγs

(γs)dγs, qp,j =
∫ γp,j+1

γp,j
γpfγp

(γp)dγp,

and fγs
(γs) and fγp

(γp) are the probability density functions
(pdf) of the secondary SNR and interference SNR, respec-
tively. While Ps, PI , P , and Q denote the average transmit
power, average interference power, maximum average trans-
mit power, and maximum interference level required at the
primary receiver.

The above constrained problem is a multidimensional op-
timization problem that involves several parameters includ-
ing finding the optimal fixed rates and the associated thresh-
olds. In solving such problem, we first find the optimum rates
assuming a specific set of thresholds. Then, we turn our at-
tention to finding the thresholds that maximize the average
spectral efficiency. By fixing the set of thresholds, the prob-
lem of finding the optimal rates turns out to be a convex op-
timization problem that can be solved using the Lagrangian
method where the Lagrangian function is given as follows,

L = Rs − λ1(
∑

i

∑

j

ζi,jµs,iαp,j − P )−

λ2(
∑

i

∑

j

ζi,jµs,iqp,j −Q), (5)

where λ1 and λ2 are positive constants. The optimal rates
can then be obtained by finding the values that maximize the
Lagrangian function. By taking this approach, the optimal
rates can be easily obtained in terms of λ1, λ2 and the other
parameters {αs,i, αp,j , µs,i, qp,j}. However, finding the val-
ues of λ1 and λ2 that satisfy the power constraints can be
only performed using numerical techniques. This approach
of computing λ1 and λ2 is not desirable as it complicates
the problem of finding the optimal thresholds. In the next
section, based on similar approaches proposed in [8, 9], we
find the optimal rates assuming predetermined values of the
thresholds.

4. DISCRETE-RATE DESIGN FOR A FIXED SET OF
THRESHOLDS

In our approach for finding the discrete rates, we consider
decoupling the optimization problem into two separate prob-
lems as follows,

• (Prob1): we find the discrete values, ζ1i,j , that maximize
the average spectral efficiency assuming only the average
transmit power constraint (C1).

• (Prob2): we find the discrete values, ζ2i,j , that maximize
the average spectral efficiency assuming only the inter-
ference power constraint (C2).

We then select the discrete rates that satisfy both constraints.
We first derive the values, ζ1i,j , that maximize the average
spectral efficiency under the average transmit power control.
By formulating the Lagrangian function

L1 = Rs − λ1(

N
∑

i=1

M−1
∑

j=0

ζ1i,jµs,iαp,j − P ) (6)

and applying the KKT optimality conditions, the optimal
rates, ζ1i,j , are given by,

ζ1i,j =
αs,i

µs,i

(

1

λ1
−

µs,i

αs,i

)+

, (7)

where (a)+ = max(0, a). The value of λ1 can be ob-
tained by substituting the values of ζ1i,j in the average trans-
mit power constraint (C1) defined in Eq.(3). By defining the
set of values of the index i, denoted by I, where ζ1i,j is strictly

positive, the value of λ1 is given by

λ1 =

∑

i∈I αs,i
(

∑

i∈I µs,i +
P

1−αp,M

) . (8)

By substituting equation (8) in equation (7), the optimal
value ζ1i,j is given by,

ζ1i,j =
αs,i

µs,i

(∑

i∈I µs,i +
P

1−αp,M
∑

i∈I αs,i

−
µs,i

αs,i

)+

. (9)
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The amount of average interference power observed at the
primary receiver, as a result of using the values of ζ1i,j , is
given by substituting these values in the average interference

constraint and is given by PI =
P (γ̄p−qp,M )

1−αp,M
. If this value

is less than Q then the solution for (5) is given by ζ1i,j . In
the case that PI is greater than Q, then we turn our attention
to solve the problem under the average interference power
constraint which can be obtained, similarly, by using the La-
grangian method and is given by,

ζ2i,j =
αs,i

µs,i

[

(

αp,j

qp,j

)

(

∑

j∈J qp,j
∑

j∈J αp,j

)





∑

i∈I µs,i +
Q∑

j∈J
qp,j

∑

i∈I αs,i



−
µs,i

αs,i





+

, (10)

whereJ denotes the set of values of the index j for which the
values of ζ2i,j is strictly positive. The average transmit power
achieved by these rates is then computed and compared to the
maximum average transmit power P . In case that the aver-
age transmit power is not satisfied then we need to solve the
original Lagrangian problem in (5). However, based on our
observations from the numerical results, the optimal solution
of (5) is either equal to ζ1i,j or ζ2i,j .

We finally consider the question of whether to start find-
ing the rates for (Prob1) or (Prob2). This question can be
answered by considering the case where the interference
thresholds are set to infinity where in this case αp0

= 1,
αp,i = 0, i > 0, qp,0 = γ̄p and qp,i = 0, i > 0. For such

case, the values of ζ1i,j are given by substituting M = 1,
αp,0 = 1 and qp,0 = γ̄p in equation (9) which is consid-
ered optimal if the average interference power satisfies the
following condition

P γ̄p ≤ Q. (11)

We note that the above condition depends solely on the de-
sign parameters of the problem which are known in advance;
namely, P , γ̄p and Q. Therefore, we can use equation (11) to
suggest whether we should start solving (Prob1) or (Prob2)
depending on whether the the relation in (11) is satisfied or
not.

5. SUBOPTIMAL ITERATIVE-BASED
THRESHOLD DESIGN ALGORITHM

In this section, we consider the problem of finding the opti-
mal SNR thresholds for the secondary and interference link
that maximize the average spectral efficiency. Finding the
optimal thresholds can be conducted using exhaustive search
which is computationally extensive problem. We first con-
sider finding the thresholds for the secondary SNR then we
turn our attention to finding the thresholds of the interference
SNR.

To find the secondary SNR thresholds, we consider the
case where we assume that the average maximum interfer-
ence constraint is not considered. This case is equivalent to
setting all the interference SNR thresholds to infinity where
in this case αp0

= 1, αp,i = 0, i > 0, qp,0 = γ̄p and
qp,i = 0, i > 0. In this scenario, the problem reduces to the
discrete-rate adaptation problem considered in [4, 6] where
the optimal rates are given by ζ1i,j where αp,M = 0 and the
secondary SNR thresholds can be obtained using techniques
shown in [4, 6]. As will be shown later by simulations in

Sec. 6, the obtained secondary SNR thresholds can still be
considered optimal for the case where the constraint on the
maximum interference is considered.

Next, we turn our attention to finding the optimal inter-
ference thresholds. We devise a suboptimal iterative-based
threshold selection algorithm where we first find the thresh-
old for M = 1, then we use this threshold to find the thresh-
olds for M = 2 and subsequently for higher values of M .

5.1 Optimal Threshold Design for M = 1

Using equations (7), (8) and (10), the optimal values of ζi,j is

either equal to ζ1i,j if Pqp,0 ≤ Qαp,0 or ζ2i,j otherwise, which
is equivalently can be written as follows,

ζ1i,j=
αs,i

µs,i

(∑

i∈I µs,i +min( 1
αp,0

, Q
qp,0

)
∑

i∈I αs,i

−
µs,i

αs,i

)+

. (12)

Hence, the value of optimal threshold γp,1 can be obtained
by maximizing the following equation

R∗
s = max

γp,1

∑

i∈I

log2

[

αs,i

µs,i

(∑

µs,i +min( 1
αp,0

, Q
qp,0

)
∑

αs,i

)]

αp,0αs,i. (13)

By careful investigation of the above relation, we can ob-
serve the following

• If the value of the term 1
αp,0

is less than the value of the

term Q
qp,0

for all values of γp,1, then the interference con-

straint condition is satisfied for all values of γp,1. Hence,
we can set γp,1 to infinity and the problem reduces to the
well known capped inversion channel capacity problem
[2].

• In case that there exists an intersection point γ0
p,1 between

the relations 1
αp,0

and Q
qp,0

then for γ0
p,1 ≤ γp,1, the value

of γp,1 can be increased while still the maximum inter-
ference constraint is satisfied. Therefore, we can deduce
that the capacity is increasing with γp,1 within the aver-
age transmit power constraint region. For the interference
constraint region where γo

p,1 > γp,1, we note that there
must exists a value for the threshold γp,0 where the ca-
pacity is maximized. Therefore, we deduce that we can
limit the search for the γp,1 in the interference constraint
region and the capacity optimization problem can be re-
duced to the following

R∗
s = max

γp,1≥γ0
p,1

∑

log2

[

αs,i

µs,i

(∑

µs,i +
Q

qp,0
∑

αs,i

)]

αp,0αs,i (14)

5.2 Threshold Design for M > 1

For higher values of M , the problem of finding the optimal
thresholds is computationally intensive and therefore we out-
line an iterative-based algorithm for selecting the thresholds.
In particular, for the case of M = 2, we can initially select
the value of the first threshold as follows. Assume that the
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obtained threshold at M = 1 is γ
∗,1
p,1 , we can select the first

threshold, γ
∗,2
p,1 for the case of M = 2 according to the fol-

lowing relation,

γ
∗,2
p,1 =

1

2
γ
∗,1
p,1 . (15)

By setting the value of the first threshold according to the
above relation, the problem reduces to a one dimensional
problem where the second threshold can be easily obtained.
Then, at the next iteration, we can fix the second threshold to
the one obtained in the first iteration and then search for the
first threshold that maximizes the average spectral efficiency.
This process can be repeated until the values of thresholds
converge to the optimal values. However, as observed by
our simulation, that using the second threshold obtained by
selecting the first threshold according to Eq. (15) attains av-
erage spectral efficiency values close to that achieved by the
exhaustive search technique for the case of Rayleigh fading
channels. The proposed iterative technique can be extended
to find the thresholds for higher values of M . However, we
can show that the achieved spectral efficiency at M = 2 is
almost equal to that achieved assuming perfect knowledge of
the interference SNR (details are omitted due to space limi-
tation).

6. NUMERICAL RESULTS
In this section, we present the simulation results conducted
according to the system model shown in Sec. 2. We as-
sume a slowly varying and frequency-flat Rayleigh fading
channel. We also assume, without loss of generality, that the
maximum average transmit power, P is set to one. For the
secondary channel, we use only four thresholds (N = 4) cor-
responding to four fixed-rate regions. We use the values of
secondary SNR thresholds based on the results shown in [6]
which are given by [1.4, 5.5, 8.9, 12.3] in dB.

First, we consider the case that we only have one thresh-
old used for the interference link (M=1). In Fig.1, we depict
the optimum threshold γp,1 as a function of the average in-
terference SNR (γ̄p) for different levels of maximum inter-
ference power level (Q). It is obvious that γp,1 increases as
γ̄p increases, but for relatively high values of Q (the case of
Q = 1 is shown in Fig.1), the optimum threshold reaches a
minimum below which the threshold starts increasing until it
reaches infinity as the average interference SNR γ̄p reaches
absolute zero. This is due to the fact that the power constraint
is the dominant condition for all values of γp.

In Fig.2, we present the average spectral efficiency of in
case of (M = 1) for different values of average interference
power level Q, and average interference SNR γ̄p. As shown
in Fig.2, at low values of Q, the interference constraint is
relatively dominant and hence results in highly affecting the
optimum spectral efficiency as it increases with Q. On the
other hand, as the values of Q increases, the power constraint
is more dominant and the effect of increasing Q will be of
minimal effect on the spectral efficiency, especially at large
values of γ̄p

In Fig.3, we present the average spectral efficiency as a
function of the average interference SNR for different values
of M which shows as Q increases, the effect of having more
discrete levels for interference SNR results in less improve-
ment of achieved optimal rate. This result shows that it is
sufficient to have (M = 1) or (at most M = 2) especially
at values of Q equivalent to a strong interference constraint
(Q ≤ 1).
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Figure 1: Optimal threshold γp,1 for (M = 1) versus γ̄p (in
dB) for different levels Q.
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Figure 2: Average spectral efficiency (bps/Hz) for (M = 1)
versus Q for different values of γ̄p.

In Fig.4, we present the rates obtained by the optimal
algorithm (exhaustive search) compared to the iterative sub-
optimal one for the values of M = 1 and M = 2. It is
obvious that the average spectral efficiency attained by using
the iterative suboptimal algorithm is close to those achieved
by using the optimal algorithm (exhaustive search).

Finally, we conduct simulations to show that the optimal
secondary SNR thresholds obtained for the case where the
average interference SNR constraint is not considered can be
also used for the case when the average interference SNR
constraint is taken into consideration. In particular, we de-
fine the variable ∆ which denotes the difference between the
secondary thresholds selected for our simulations and the op-
timal secondary SNR thresholds. We assume that all thresh-
olds are either increased or decreased by a factor of ∆ from
the optimal secondary SNR thresholds. For example, when
∆ = 0, this reduces to the values of the SNR secondary
thresholds used in the previous figures. In Fig. 5, we depict
the average spectral efficiency as a function of the drift (∆
in dB) for different values of the average interference link
SNR (γ̄p). it is obvious that the average spectral efficiency is
achieved at ∆ equal to zero.
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Figure 3: Average spectral efficiency (bps/Hz) (for M = 1
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Figure 4: Average spectral efficiency (bps/Hz) (for M = 1
and M = 2) versus average interference SNR(dB) using op-
timal and iterative techniques for Q = 0.5.

7. CONCLUSION
In this paper, we present the problem of maximizing the av-
erage spectral efficiency for a secondary user in an underlay
cognitive network under the constraints of average transmit
power and average interference power. We develop algo-
rithms for finding the optimal average spectral efficiency for
predetermined values of the thresholds. Then, we present a
suboptimal iterative-based algorithm for finding the thresh-
olds for the secondary and interference SNR links. Our sim-
ulation results indicate that the values of the average spec-
tral efficiency achieved using the iterative algorithm is close
to that attained by the computationally extensive exhaustive
search optimal methods.
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