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Abstract—Assuming that the network delays are normally
distributed and the network nodes are subject to clock phase
offset errors, the maximum likelihood estimator (MLE) and the
Kalman filter (KF) have been recently proposed with the goal of
maximizing the clock synchronization accuracy in wireless sensor
networks (WSNs). However, because the network delays may
assume any distribution and the performance of MLE and KF
is quite sensitive to the distribution of network delays, designing
clock synchronization algorithms that are robust to arbitrary
network delay distributions appears as an important problem.
Adopting a Bayesian framework, this paper proposes a novel clock
synchronization algorithm, called the Iterative Gaussian mixture
Kalman particle filter (IGMKPF), which combines the Gaussian
mixture Kalman particle filter (GMKPF) with an iterative noise
density estimation procedure to achieve robust performance
in the presence of unknown network delay distributions. The
Kullback-Leibler divergence is used as a measure to assess the
departure of estimated observation noise density from its true
expression. The posterior Cramér—Rao bound (PCRB) and the
mean-square error (MSE) of IGMKPF are evaluated via computer
simulations. It is shown that IGMKPF exhibits improved perfor-
mance and robustness relative to MLE. The prior information
plays an important role in IGMKPF. A MLE-based method for
obtaining reliable prior information for clock phase offsets is
presented and shown to ensure the convergence of IGMKPF.

Index Terms—Clock synchronization, Cramér-Rao bound,
filter, Kalman, particle filter, wireless sensor networks (WSNs).

I. INTRODUCTION

LOCK synchronization in wireless sensor networks
(WSNs) has been a topic of extensive research over
the last few years [1]-[4]. WSN applications that implement
time-based collaboration of one or more nodes require its
sensor nodes to be time synchronized. Clock synchronization
is important for many other reasons. When an event occurs
in WSNs, it is often necessary to know where and when it
occurred. Time synchronization is also required for many
system and application tasks such as sleep/wake-up scheduling,
localization, data fusion, tracking and velocity estimation.
The key parameters used for evaluating the clock offset be-
tween two nodes are phase offset, skew and drift. Due to the
unpredictability and imperfect measurability of message delays
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in a networked environment, physical clock synchronization is
always imperfect. Obtaining more accurate and energy-efficient
synchronization protocols for WSNs that achieve the best per-
formance limits represents a fundamental design problem in the
deployment of large-scale sensor networks. This is due in part to
the fact that the energy and bandwidth constraints in WSNs are
very strict. Therefore, using additional overhead (message ex-
changes) for more accurate synchronization is not a reliable so-
lution. To overcome this challenge, one approach is to reduce the
amount of energy spent on RF signal transmissions by transmit-
ting fewer messages and by using high performance statistical
signal processing techniques to improve the accuracy of clock
synchronization [5], [6]. This fact is corroborated by Pottie and
Kaiser’s findings who showed in [8] that the RF energy required
to transmit 1 kbit over 100 m (i.e., 3 Joules) is equivalent to the
energy required to execute 3 millions of instructions. Thus, the
computational power in a sensor node can be traded for reduced
RF transmission energy.

Clock synchronization between any two nodes is generally
accomplished by message exchanges. Due to the presence of
nondeterministic and possible unbounded message delays, mes-
sages can be delayed arbitrarily, which makes the clock syn-
chronization very difficult [9]. The most commonly proposed
network delay distributions are the Gaussian and exponential
probability density functions (pdfs) [10]-[12]. In general, it is
difficult if not impossible to assess which distribution model
may be fit to capture the network delay distributions in a given
WSN. This is due to the fact that various factors might impact
differently the distribution of network delays [18], [19]. There-
fore, one important problem is to design clock offset estimation
schemes which are robust to the distribution of unknown net-
work delays.

The Gaussian [11] and exponential pdfs [10] were recently
proposed to model the network delays in WSNs, and the corre-
sponding maximum likelihood estimators (MLE) were derived
in [12]. The MLE:s for clock offset estimation in the presence
of symmetric Gaussian and exponential network delay distri-
butions will be referred to as MLEg and MLEge, respectively.
Notice that the symmetry condition herein refers to the fact that
the network delays assume the same distribution in the uplink
and downlink. Reference [12] also proposed a lower complexity
estimator although its performance is degraded with respect to
the MLE. On the other hand, [13] proposed an alternative low
complexity estimator that achieves the same performance as the
MLE. In [12], it is shown that MLEg and MLEe are quite sen-
sitive to the network delay distributions. Also, the Cramér—Rao
lower bound (CRLB) is shown to be proportional to the vari-
ance of the network delay noise, and inverse proportional to the
number of observations [12]. Thus, it appears that to improve
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the performance, MLEg and MLEe require a larger number of
observations. However, since WSNs are power-limited systems,
such a solution might not be appropriate. Therefore, there is a
need for alternative methods to improve the accuracy of clock
offset estimation.

Because of the uncertainties in modeling the network delay
distributions and local clock oscillators, as well as the possible
time-variations in the clock values, herein paper we will adopt
a Bayesian approach for estimating the clock phase offset
between two nodes. No skew or drift is assumed between the
clocks. The signaling mechanism between the two nodes is the
standard two-way message exchange mechanism encountered
in standard protocols such as NTP [14], PBS [15], [16], and
TPSN [17]. Because the synchronization framework corre-
sponding to the two way message exchange mechanism can be
mathematically described in terms of a linear Gauss-Markov
state-space model, the problem of clock phase offset esti-
mation is reduced to the estimation of the state of a linear
Gauss-Markov state-space model, where the observation noise
representing the distribution of network delays may assume
an arbitrary distribution. A particle filter (PF) could be ap-
plied for estimating the state. A PF-based method provides
an approximate Bayesian solution to the discrete-time recur-
sive problem by updating an approximate description of the
posterior filtering density. Since the PF cannot calculate the
likelihood function, due to the unknown measurement noise
density, the proposal distribution plays an important role in the
performance of PF. Notice also that there are a lot of particle
filtering techniques that could be applied for increasing the
estimation accuracy. However, in general, particle filtering
techniques assume inefficient proposal distributions and the
observation noise density is in general assumed to be a priori
known and modeled in terms of its first two moments: mean
and variance. Therefore, in general there exists a bias in both
the MLE and general PFs regardless of whether the network
delay model is Gaussian or non-Gaussian, and this is due to
the finite number of observations. Thus, the MLE and CRLB
cannot serve as an efficient estimator and tight lower bound,
respectively. In addition, the PF may not be an efficient esti-
mator due to the finite number of observations and unknown
observation noise density. The recursive posterior Cramér—Rao
bound (PCRB) has been shown to be the information-theoretic
mean-square error (MSE) bound for an unbiased sequential
Bayesian estimator [30]. However, the expectation integrals
for the Fisher information components, which arise out of the
recursive PCRB formulation, are intractable in general and
must be approximated numerically. Therefore, herein paper we
will able to plot simulated values for PCRB.

To cope with the limitations of MLE and PF, in this paper
we propose a novel clock phase offset estimator, called the it-
erative Gaussian mixture Kalman particle filter IGMKPF), and
analyze the PCRB as a lower bound on its MSE-performance.
The general features of IGMKPF are next described. First of
all, IGMKPF is capable of tracking the posterior and observa-
tion noise densities in order to reduce the bias which might stem
from the observation noise estimation and the effects induced by
the finite number of observations. Therefore, IGMKPF presents
robustness to network delays of arbitrary distribution and en-
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hanced MSE-performance. In general, if the estimator is able
to track the original noise density, and not the mean and vari-
ance of noise (moments), then the bias caused by expectation
and finite number of observations might be reduced, which fur-
ther leads to improved MSE-performance. Second, the proposal
distribution is chosen to reduce the error accumulation due to
the iterative mechanism and the adopted initializations are en-
suring the convergence of IGMKPF. Third, the estimator deals
with non-Gaussian noise efficiently by adopting Gaussian mix-
ture models (GMMs) to capture general densities. The proposed
IGMKPEF estimation approach combines the Gaussian mixture
Kalman particle filter (GMKPF) proposed in [22] with a net-
work delay density estimator by means of an iterative scheme.
IGMKPF tracks the real probability density (prior distribution,
posterior distribution, etc.) by using random and deterministic
sampling methods. Therefore, the more accurate the estimation
of network delays distribution is, the better the performance of
IGMKPF is due to the improved proposal distribution.

Thus far, in the synchronization literature for WSNs, Kalman
filtering and general adaptive signal processing techniques
have been proposed (see, e.g., [23]-[27]) to improve the
MSE-performance of protocols such as RBS [11] or TPSN [17]
under the assumption that the network delays are Gaussian.
To deal with non-Gaussian noise, [22] proposed recently
GMKPF, which was shown to perform well in a number of
distributions: asymmetric exponential, asymmetric gamma,
asymmetric Weibull, and mixture of them. However, one crit-
ical condition assumed by GMKPF is the a-priori knowledge
of network delay distribution. As seen in [22], in GMKPF, the
importance sampling (IS) based measurement update step is
combined with the time-update and proposal density genera-
tion steps, which exploit a Kalman filter (KF)-based Gaussian
sum filter. Since GMKPF utilizes new observations and uses
the expectation-maximization (EM) algorithm to estimate the
parameters of the Gaussian mixture models, GMKPF exhibits
better estimation performance relative to MLEg and MLEe in
general asymmetric network delay models whose distributions
are assumed known. However, the performance of GMKPF is
limited in the presence of unknown observation noise density.
In cases when the initial observation noise density is far away
from the real observation noise density, the performance of
GMKPF might be poor due to its slow convergence. Therefore,
this paper could be seen as a extension of our previous results
in [22] to handle the critical situation of unknown observation
noise distribution.

In Bayesian statistics, the prior information could come from
operational or observational data, from previous comparable
experiments or from engineering knowledge. Since the prior
information is important for convergence and performance, a
simple method for generating reliable prior information consists
in using the ML-estimate as an initialization. First of all, one can
consider the clock offset estimate yielded by MLE [12] as an ini-
tialization 29 = Z\r.. Next, the prior density p(xo) = p(Zwmr)
can be built using a set of samples (particles) that approximate
the required density or distribution. Given the observation equa-
tion and prior information (see Fig. 4), one can infer the obser-
vation noise density. Since the estimated clock offset (yr) is
reliable, the prior information will be reliable. To validate the ac-
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curacy of IGMKPF, the PCRB is derived and a sequential Monte
Carlo simulation approach is used for computing the PCRB in
unknown delay models. Computer simulations are conducted to
compare MLEg, MLEe, CRLB, IGMKPF, IGMKPF with per-
fect network delay noise estimation, and PCRB. As a result,
when the accuracy of noise distribution estimation is improved,
the performance of IGMKPF is significantly better than MLE in
the presence of a reduced number of observations and arbitrary
network delay distributions. In order to assess the process of es-
timating the unknown network delay density, we introduce the
Kullback-Leibler divergence (KLD) as a measure between the
estimated noise density and the true density. The simulation re-
sults show that the KLD is roughly proportional to the MSE of
IGMKPF. To derive the PCRB, the second-order derivatives of
posterior pdf must be evaluated. In case of Gaussian network de-
lays, the second-order derivatives of posterior pdf can be calcu-
lated in closed-form expression. However, for exponential net-
work delays and arbitrary delay distributions, the second-order
derivatives of posterior pdf cannot be calculated directly. There-
fore, we derive simulated PCRBs for Gaussian, exponential, and
gamma network delays, and then compare them to CRLB. Com-
puter simulations show that IGMKPF presents improved perfor-
mance relative to MLE.

In this paper, upon designing the IGMKPF, we first carry
out a performance analysis of IGMKPF, MLEg, and MLEe in
the two-way message exchange mechanism between two nodes
under symmetric Gaussian, exponential, and Gamma network
delay distributions. In order to assess the performance of the
proposed estimator, we derive PCRBs for Gaussian, exponen-
tial, and gamma delay models, respectively. The performance of
IGMKPF, IGMKPF with perfect noise estimation, MLE, CRLB,
and PCRB is simulated under Gaussian and exponential delays.
In addition, the performance of IGMKPF, IGMKPF with perfect
noise estimation, MLEe, PCRB is simulated under the gamma
delay model. To illustrate the effects of noise estimation, we
compare KLD with the MSE of IGMKPF. The computer sim-
ulation results corroborate the superior performance of the pro-
posed method relative to MLEg and MLEpg, and its robustness
to general (Gaussian, exponential, gamma) network delay dis-
tributions. Therefore, the proposed IGMKPF method represents
areliable clock offset estimation scheme fit to overcome the un-
certainties caused by the unknown network delay distributions.

The rest of this paper is organized as follows. Section II for-
mulates the problem and introduces the state-space clock phase
offset estimation model which is used throughout the paper.
Section III derives the PCRB for the Gaussian, exponential, and
gamma delay models. Section IV provides a description of the
IGMKPF approach for estimating the clock offsetin WSNs. The
results of computer simulations are given in Section V. Finally,
concluding remarks are presented in Section VI.

II. PROBLEM FORMULATION AND OBJECTIVES

The two-way timing message exchange mechanism is a
recently proposed clock synchronization scheme for wire-
less sensor networks [12], [16], [17]. In this mechanism, the
synchronization of two nodes A and B is achieved through
a number of N cycles. Each cycle assumes two message
transmissions: one from node A to node B, followed by a
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reverse transmission from node B to node A. At the beginning
of the kth cycle, the node A sends its time reading 77 to
node B, which records the arrival time of the message as 15 ,
according to its own time scale. Similarly, a time message
exchange is performed from node B to node A. At time T3 4,
node B transmits the time information 75 ;, and 73 j back to
node A. Denoting by T} ; the arrival time at node A of the
message sent by node B, node A would then have access to the
time information 7} 3, j = 1,...,4 at the end of the kth cycle,
which provide sufficient information for estimating the clock
phase offset # 4 of node A relative to node B clock.

Similarly to [12], the differences between the kth up and
down-link delay observations corresponding to the kth timing
message exchange are defined by Uy, := 1o — Thp = d +
04+ Ly and Vi, := Ty j, — T3, = d — 6.4 + My, respectively.
The fixed value d denotes the fixed (deterministic) propagation
delay component (which in general is neglected (d ~ 0) in small
range networks that assume RF transmissions). Parameters Ly,
and M}, stand for the variable portions of the network delays,
and may assume any distribution such as Gaussian, exponen-
tial, Gamma, Weibull or mixture of two different distributions.

Given the observation samples z; = [Uy, Vi]T, our goal is to
find the minimum mean-square error estimate of the unknown
clock offset 6 4. For convenience, the notation xj, := 64 will be
used henceforth. Thus, it turns out that we need to determine the
estimator

:fk:E{:L'k|zl} (D

where z! denotes the set of observed samples up to time [, z' =
{20,21, ...,z }. Since the clock offset value is assumed to be
a constant, the clock offset can be modeled as following the
Gauss-Markov model:

T = Fop 1 +ve 1 2

where F' stands for the state transition matrix of the clock offset.
The additive process noise component v can be modeled as
Gaussian with zero mean and covariance E[v,vl | = Q = o2,
The vector observation model follows from the observed sam-

ples and it assumes the following expression:

_|d+xp+ Ly | |1 1
Zk—|:d_wk+Mk:|—|:1:|d+|:_1:|$k+nk (3)

— Ad + Bzy + 0 (4)
where A = [1 1]7, B = [1 — 1]7, and the observation
noise vector ny = [Ly, Mi]T has zero mean and covariance

R = diag{o2,02}, and it accounts for the random network
delays. One can now observe that (2) and (4) recast our initial
clock offset estimation problem into a Gauss-Markov estima-
tion problem with unknown state. Notice that the state-space
model depicted by the (2)—(4) subsumes as a special case
the original measurement equations. Choosing ' = 1 and
vg—1 = 01n (2) leads to a constant phase-offset model. How-
ever, the Gauss-Markov state-space equations (2)—(4) represent
a more realistic model because they can track time-varying
clock phase offsets. This corroborates the experimental results
concerning the drifting of clock values due to aging, tempera-
ture, air pressure, and other unpredictable factors.
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III. PCRB FOR SEQUENTIAL BAYESIAN ESTIMATION

We need a lower bound on the MSE of the estimator, 2, for
the true state x, defined by (2) and (4). Since we are interested
in the class of trackers that are unbiased, bounding the MSE can
be achieved by the PCRB alone. Assuming that the regularity
condition holds for the probability density functions, the poste-
rior Cramer-Rao bound (PCRB or Bayesian CRLB) [30] pro-
vides a lower bound on the MSE matrix for random parameters.
Let p(z,z) = p(z|z)p(x) denote the joint probability density
function (pdf) of z and z, where p(z) and p(z|x) stand for the
a-priori pdf of x and the conditional pdf of z given z, respec-
tively. Letting #(z) denote an estimate of z which is a function
of the observations z, the MSE matrix is

M= E,, {[a?(z) — o] [i(2) — a:]T} . )
The PCRB C provides a lower bound on the MSE matrix
M, and it is expressed as the inverse of the Bayesian Fischer
Information Matrix (BFIM) J
M>C=J1 (6)
The BFIM for z is defined as
J=FE, . {-AlInp(z,z)} 7
where A?) is the m X n matrix of second-order partial derivatives

with respect to the m x 1 parameter vector ¢ and n x 1 parameter
vector 6

32 82 82

94101 9162  0pibn
9% 9 9

6 | 94201 9206 T Dpabn
Ay = . . .
% 52 g

3¢mb1  Opmbz  Odmbn

In [30], the BFIM is shown to obey the recursion

T =DP - (D) @ +D) 7 DP ®
where
DI =F, {-AZ Inp(zrsalzn) } ©)
DY = B, {~ A2 nplrssalen)) (1o

D22 — { Aﬁii} lnp($k+1|$k)}
+E, { N 1np(zk+1|$k+1)} Can
The recursion is initialized with the value
Jo :E_T{—Aig lnp(:vo)}. (12)

In general, the expectations in (9)—(11) admit no closed-form
analytical solution and must be approximated numerically. If
the equations are nonlinear, then the expectation integrals can
be evaluated via Monte Carlo integration. If either the process
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model or observation model is linear, then some of the terms in
(9) and (10) become simply products of matrices. As a first step
in applying the Monte Carlo integration, we need to define the
following matrix functions:

At (T, Tpy1) = — AZF 1np(1k+1|xk) (13)
A2 (TkyTpy1) = — A”“ ln p(@gy1|ak) (14)
A (wg, wpq1) = — A Inp(wr|2n) (15)
AP (241, 2041) = = AL Inp(zpga|org).  (16)
‘We can rewrite the (9)—(11) as follows:
Dl = / A (e, ) 411241 )k (17)
12 _ 12

Dy~ = /A (@h, Thy1)P(Thy1|Zhy1)dTrsn (18)

Dj? = /(AZz’a($k7$k+1)P($k+1|Zk+1)
A (@hg1,2041)) P(@g1|Zrg1)dTigs (19)

Once we have a sample representation of the posterior
density, these expectation integrals can be calculated through
sample mean approximations. We can obtain the sample-based
representation of the posterior pdf p(2x1|2zx+1) by exploiting
the work done in particle filtering [31]. The a posteriori sam-
ples at k denoted by X ,E") with weight w,(cn) are passed through
the process model. The output samples of the process model
are then fed into the measurement model to assign new weights
to the samples. The weighted samples are then used in the
sequential importance resampling (SIR) step to produce the a
posteriori samples at time k + 1. Therefore, using the process
model density and likelihood density, we can generate weighted
samples on a stochastic grid to represent the posterior density
and estimate the Fisher component matrices with the empirical
averages

N
D} ~ % >oar(x X

, IV, are the a posteriori samples repre-
senting the den51ty p(x k+1|Zx+1) and N stands for the number
of samples. We will refer to the algorithm for computing PCRB
via sequential Monte Carlo integration as PCRB-IGMKPF
(see, e.g., [32] for additional details). The detailed derivation of
PCRB-IGMKPF is described next.
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PCRB-IGMKPF

1) Initialize the samples X én),
and then compute Jy from (12).
2) Predict X ,g +)1 by sampling forn = 1,..., N from

p(Tryrlrr = o).

3) From n}""¢, the observation noise density is approximated
7 7 h )
by py(ni) = 37y 7 N(ngs il RY)

» The posterior density is approximated by

G
) = Z al(cg—)lN (a:k*lv “l(cg)l
g=1

PY,).
e The process noise density is approximated by
Z /Bl(c )1N (vk 1 “«(Jlk) 1 1(21) .

e The observation noise density is approximated by

Py ka N (nk [T )7R(]))
7=1

pg($k71|zk71

P’Ukl

4) Preprediction step
* Calculate the prepredictive state density pg(z|Zr—1)
using KF.
* Calculate the preposterior state density py(zx|2x) using
KFE
5) Prediction step
¢ Calculate the predictive state density py(x|zr—1)
using GMM.
* Calculate the posterior state density p,(x|zx) using
GMM.
6) Observation update step
e Draw N samples {X,(f);l =1,---, N} from the
importance density function ¢(zx|zx) = py(zk|Zk).
* Calculate their corresponding importance weights

v P (Zklxg)) Py (X](cl)|zk—1)
Wy = " .

Py (xi)IZk)
W) _ @

a0,

* Normalize the weights w,,

e Approximate the state posterior distribution Py(Tr|Zr)
using the EM-algorithm.

7) Infer the conditional mean and covariance:

o= wxg and Peo= 0w () -
(G — )"

* Or equivalently, upon fitting the posterior GMM,
calculate the variables in (40).

A. PCRB for the Gaussian Network Delay Model

The relationship (2) determines
P(Thylrr)

the conditional pdf

1 —j%[(ﬁrwl—xky]

\/2mo2 ‘

P(Tpg1lzr) = (23)
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and the (4) decides the conditional pdf:

1 eih%[(zk"’liAdink*'l)z]

DP(Zk41|Tht1) = (24)
(Zkt1|Th41) Zra?
Accordingly, we can obtain the following equations:
1
A (@ wign) = = A7 Inp(apsr|er) = e (25)
AP (o wpg1) = — AT Inp(apg|og) = ) (26)
a © 1
AP (g, ahp1) = — AT Inp(wp|or) = ) 27
Azii($k+17zk+1) = — A Inp(Zgetr|Tr41)
BB 2

Therefore, we can estimate the Fisher component matrices with
the empirical averages

D]1c1:;[ ZAH (X(n) X;ﬁ’i)l) - (29)
n=1 v
D,?:N Z A2 (X("> X,g’fl) % (30)
n=1 v
N
Dizﬁﬁ z_:l (A22,a (X,ﬁ"),X,i’f ) A2 (X(n) X}g:_)l))
ZF_F_ (31)

From (8), it turns out that the evaluation of BFIM for Gaussian
case can be done via the recursion

T —1
1 2 1 1 1
sn=grz=(-) (o) () @

From (6), PCRB is the inverse of BFIM (J). Frorn the above
equations, we note that PCRB is a function of oZando2.In[12],
the CRLB is expressed as var(Zy) > 2N Thus, the lower
bound of MLE is limited by 2. In other words, to improve
the MSE performance, the number of observations has to be
increased. However, WSNs are power limited systems, and a
large number of message exchanges is not desirable. There-
fore, alternative algorithms with improved MSE-performance
are desirable.

B. PCRB for Exponential and Gamma Network Delay Models
Equation (2) determines the conditional pdf p(z41|2r)

1 —j%[(zwl—xk)z]

T TE) = e 33
P(Try1]or) Ners (33)

while (4) decides the conditional pdf
P(zrs1|zrg) = e =AdBr)l Gy

Equation (34) cannot be used to evaluate the entries of Fisher
matrix because of the second-order derivatives. Using the fact
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that a gamma-distributed random variable z ~ I'(aw = 1,8 =
A) assumes an exponential distribution with rate parameter A,
we will exploit this alternative route to evaluate the Fisher ma-
trix entries. Equation (4) leads to the conditional pdf

(e}

P(Zk41|Tr1) = % [(zrt1 — Ad — Bayi1)]"

7,0[(ZA-+1 7Ad7B1‘k+1 )]

Xe (35)

where if « is a positive integer, then I'(«) =
above equation, it follows that

22.b
AT (Tht1, Za41)
= A7 Inp(Zptr|Tr41)
(a —1)BTB
[(zr41 — Ad = Baxi1)]” [(Zh41 — Ad — Bayys)]
Therefore, we estimate the Fisher matrix entries with the empir-
ical averages

1 1
1,4 11 (n) 3 (n)
D, - N Z A (X Xk+1) o2

v

(a—1)!. From the

n=1

D12 1 o 12 n n 1
N_ZA (X0, x(,) = -
i(A22a(X(") X,ﬁi)l) A22b(X(") X}E:)l))

n=1
N
22b
Z ( k41> Zk+1)

ZIH

cw|’_'

C. Comparison Between PCRB and CRLB

Figs. 1 and 2 show CRLB and PCRB when the random delay
model is Gaussian with zero mean and variance 02 = 1 for
various initializations of the Fisher information matrix Jy and
different power levels for the process noise (o2). Figs. 1 and
2 show that for small power levels of the process noise o2 =
10’4, 10*57 108, depending on the initialization .J,, PCRB
might achieve similar or smaller values than CRLB [12] de-
pending on how Jj is selected. Fig. 3 shows that for negligible
process noise (02 = le — 6) relative to observation noise (02 =
1,0.7,0.5), PCRB exhibits lower values than CRLB. These plots
illustrate the fact that PCRB depends on the initialization (.Jp),
observation noise power (o2 ), and process noise power (o2). It
is natural that process modeling errors exist and their effect on
PCRB becomes noticeable at certain power levels (02). As the
process noise variance decreases to zero, the modeling error is
removed and the state-space model becomes identical with the
one adopted by the ML approach. The simulation results cor-
roborate the fact that CRLB exhibits almost the same perfor-
mance levels as PCRB when the process noise variance is suffi-
ciently small (less than 10~%) and the Fisher Information matrix
used for initialization is .Jy = 1. The simulation results also il-
lustrated an interesting fact, when the process noise variance is
sufficiently small (less than 10~%) and the initial value of Fisher
information matrix is Jy = (alg)’ PCRLB is significantly lower
than CRLB.
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Gaussian delay model
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Notice also that even in the presence of a reduced number
of observations, IGMKPF make use of a sufficient number of
samples (particles) for generating the pdf and statistics of ob-
servation noise. Because the state representing the phase offset
can be estimated using the MLE (Zwp,), the density p(Zwmr,)
can be also estimated using sequential Monte Carlo simulation.
Therefore, given the prior information (&1, p(Zmr)) and ob-
servations (z), the observation noise’s statistics can be esti-
mated. Since the estimated clock offset value yielded by ML
is close to the real value and the measurement model is linear,
the estimated observation noise’s statistics are close to the real
statistics. Therefore, IGMKPF is expected to be a robust esti-
mator and exhibit improved performance relative to MLE in
the presence of unknown network delay distributions and re-
duced number of observations. Therefore, PCRB is expected
to represent a tighter bound than CRLB in the presence of re-
duced number of observations and unknown observation noise
distributions.
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Computer simulations also illustrate the fact that PCRB might
increase as the number of observations increases. In the state-
space iterative estimation model, prediction errors and random
sampling errors [31] might occur due to the inefficient proposal
distribution, which might cause a constant error accumulation.
Therefore, in the state tracking process, these errors might accu-
mulate from one iteration to the next iteration. These accumu-
lative errors increase as the number of observations increase.
When the performance improvement due to the increase in the
number of observations is larger than the performance degra-
dation due to the cumulative errors, the MSE decreases as the
number of observations increases, and in the limit the cumula-
tive errors are neglected. On the other hand, when the perfor-
mance improvement due to the increase in the number of obser-
vations is less than the performance degradation induced by the
cumulative errors, the MSE increases as the number of obser-
vations increases. The cumulative errors play a more important
role in the performance as the number of observations increases.
For a large number of observations, tracking of the error accu-
mulation is important in the performance of the Bayesian iter-
ative estimation approach for phase offset that we will propose
later. In order to reduce the accumulative error, a more accurate
proposal distribution is needed. Since it is impossible to obtain
an efficient proposal distribution, there will always exist random
sampling errors.

Notice that particle filters (PFs) track the unknown state using
knowledge of the observation and process prior densities. How-
ever, the particle filter is not optimal due to the random sam-
pling errors, inefficient proposal distribution (particle filter sam-
ples from the proposal distribution) etc. Additionally, note that
the convergence of particle filter has not been proved to be uni-
form in time ¢ [32]. For a given fixed ¢, there is convergence as
N — oo but nothing is said about that limit at ¢ — oo. In prac-
tice, this could mean that at a later time ¢, a large value of N may
be required, though that value could depend also on other factors
such as the nature of the state-space model. GMKPF gives better
performance than general PF by using improved prediction and
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Fig. 4. Block diagram representation of the IGMKPF estimator.

proposal distributions. In case that the observation noise den-
sity is perfectly known and process noise variance is lower than
10—*, GMKPF has the same performance as MLE. However, in
the case that the observation noise density is unknown and can
be estimated accurately, and the process noise variance is neg-
ligible relative to the observation noise power, we will show in
the next section that IGMKPF yields better performance than
MLE and GMKPF.

IV. IGMKPF

The proposed IGMKPF estimator combines the GMKPF with
the observation noise density estimator. The observation noise
density estimator consists of the state model and a cost function
in the form of an innovation equation expressed as the differ-
ence between the observation and estimated state posterior pdfs:
p(z)—p(z). The innovation equation is produced by considering
the estimate yielded by a standard Kalman filter, as well as a
GMKPF estimator. In order to analyze the MSE-performance
of the proposed IGMKPF technique, computer simulations will
be conducted, and the PCRB and the KLLD between the true and
estimated network delay noise will be evaluated as well.

Fig. 4 provides a perspective on the proposed IGMKPF esti-
mator. In IGMKPF, the first processing stage is represented by
the GMKPF which is used to estimate the state posterior density
using the observation density, prior density, and process density.
The second processing stage consists in estimating the observa-
tion noise density using the innovation attained, by considering
the estimate of the standard Kalman filter. The estimated obser-
vation noise density, which is used as an input to the first pro-
cessing stage, is approximated by a GMM fitting function. The
iterative process between the two processing stages is repeated
until all the observations are processed.

Because GMKPF represents the main component of the pro-
posed iterative estimator, we will next review its key features
[22]. Particle filtering is a sequential Monte Carlo sampling
scheme established within the Bayesian paradigm. In terms of
a Bayesian perspective, the main entity of interest is the poste-
rior distribution p(x|zo.x) at time k. However, it is impossible
to find the analytical expression of p(zy|Zo.r) in closed form
except for some special cases such as Gaussian or exponential
pdfs because of the non-Gaussianity of the model (4). Alterna-
tively, particle filtering might be used to approximate p(xx|2o.x )
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by stochastic samples generated using a sequential importance
sampling technique. Since the particle filtering with the prior
importance function does not utilize any information from ob-
servations in proposing new samples, its use and filtering per-
formance may be ineffective or poor. Herein, the GMKPF is im-
plemented as an adaptation of the Gaussian mixture sigma point
particle filter (GMSPPF) [6], which comes out from the utiliza-
tion of another filtering technique producing a filtering proba-
bility density function used as importance function (IF) for the
particle filtering.

GMSPPF uses hybrid sequential Monte Carlo simulation and
a Gaussian sum filter in order to efficiently estimate posterior
distributions of unknown states in nonlinear dynamic systems.
However, since our state space model is linear, GMKPF is ob-
tained from GMSPPF by substituting a KF for the sigma point
Kalman filter (SPKF). Accordingly, the predicted and updated
Gaussian components in the GMMSs, i.e., the means and co-
variances of the involved probability densities (posterior, im-
portance, and so on) are calculated using the KF instead of the
SPKEF [6], [34]. In order to properly cope with the particle de-
pletion problem in case that the shape of the observation (mea-
surement) likelihood is very peaked, GMKPF expresses the pos-
terior density by a GMM obtained from the resampled equally
weighted particle set using the EM algorithm.

As aforementioned, GMKPF combines the measurement
update step based on the importance sampling (IS) with a
KF-based Gaussian sum filter for the time update and pro-
posal density generation step, and approximates the prior,
proposal and posterior density functions as GMMs using banks
of parallel KFs in the time update stage. The updated mean
and covariance of each mixand or component are calculated
from the KF updates. From the Gaussian sum filtering (GSF)
approach in [7], the output of a bank of (G’ and G”') parallel
KFs are used to calculate GMM approximations of p(zx|zx—1)
and p(x|zr ). The predictive state density is now approximated
by the GMM

o
Z a,(cg,)N (mk; ﬂl(cg')7]5]£g'))

g'=1

Py(Tk|ZE-1) = (36)

and the posterior state density is approximated by the GMM

ledd

xk|zk Z ag )N( (g ) P(g )) (37)
g'=1

This posterior state density will only be used as the proposal
distribution in the IS-based measurement update step.

In the measurement update stage, we draw [N samples (par-
ticles) {Xé");n = 1,...,N} from the proposal distribution
pg(zk|zr) (37) and calculate their corresponding importance
weights. Using a weighted EM algorithm to fit a G-component
GMM, GMKPF represents the posterior filtering density as fol-
lows:

G
= Z a,(cg)N (zk; /Lég), P,gg)>

g=1

py(Tk|Zk) (38)
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where G, a\?, and N(ay; 1", P{?)) denote the number of
GMMs, the mixing weights, and a normal distribution obtained
from the gth KF with predicted mean ué,g) = Iy and posi-
tive definite covariance P,Eg ), respectively. As a result, Gaussian
Mixture approximations can be obtained from these particles
and weights. Using this mechanism, the EM-based posterior
GMM further mitigates the “sample depletion” problem through
its inherent “kernel smoothing” nature [22].

The EM algorithm presents an iterative method to estimate £
through

0 = argmax  p(z|6) (39)
6

with the Gaussian mixture sg)emﬁed by the parameter set =
{all), e Z(G), ;1), - ¢ P(l) P(G)}. Specifically,
the EM algorithm is a two step 1terat1ve algorithm which oper-
ates as follows. Given 8V ), it finds the next value 8% via

« E-step: Q(8]6')) = E[logp(zw)Ao(f)].

e M-step: 09 = arg max Q010 j))
The [35] gives more detailed explanations of the EM algorithm
for modeling GMMs. Finally, the conditional mean state esti-
mate and the corresponding error covariance can be expressed
as

G
Tp = Z aég)ugg)
g=1
<4 T
=Y o [P,Sg) + (1 = ae) (w2 - ) } . (40)
g=1

The pseudocode of the GMKPF algorithm is described next.

GMKPF Algorithm

1) Attime & — 1, initialize the densities:
* The posterior density is approximated by

G
po(wrilzia) =y af”|N (xk iy, P15£1)1) :
=1
* The process noise density is approximated by

9 )

* The observation noise density is approximated by

ZW)N (nk,ung,R;j)) .

I
py(vk—1) = Zﬂ;@lN (vk 1,M1(,? L

i=1

2) Preprediction step:
* Calculate the prepredictive state density py(xk|zr—1)
using KF.
¢ Calculate the preposterior state density p,(zx|2x) using
KFE
3) Prediction step:
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* Calculate the predictive state density py(x|zr—1)
using GMM.

* Calculate the posterior state density py(x|zx) using
GMM.

4) Observation Update ste{)

e Draw N samples {x; D=1, -, N} from the
importance density functlon q(xk |zx) = Pg(xr|zk).

¢ Calculate their corresponding importance weights

o P (Zk|Xz(gl)) Py (Xz(cl)|zk—1)
w = .

b Py (Xg)|zk)

* Approximate the state posterior dlstrlbutlon Dg(Tr|ZK)
using the EM-algorithm.
5) Infer the conditional mean and covanance
_ N N, (
¢ Tk = Zz=1w I<c) and Py = Zz 1“’()( I<c) -
_ n -
2 — @)
¢ Or equivalently, upon fitting the posterior GMM,
calculate the variables in (40).

* Normalize the weights w

The improved performance of GMKPF comes with the price
of an increased computational complexity. Evaluating exactly
the number of floating point operations (flops) involved in
GMKPF is not possible because it is an iterative and quite com-
plex algorithm. However, we will evaluate its computational
complexity by quantifying only the most computationally
demanding steps in terms of the Big O notation. Let L(= 1)
denote the dimension of the state vector (z), and represent
by N the number of particles (samples in pseudocode) and
through G the number of GMM components. The state vector
and matrices are z € R, F € R™! P ¢ R'X! where
P is the a posteriori error covariance matrix. The Kalman
Filter requires approximately O(L?) flops since the matrix
times matrix multiplication is the most time consuming step
(Pegipe = FPr + Q), whereas the particle filter assumes
approximately O(N L?) flops due to the matrix times vector
multiplication (i‘,g‘il'k = Fa’:,(:), i=1,2,---,N)and sampling
step. The GMKPF necessitates approximately O(GL?) flops
due to the KF-step and O(GL?N) flops due to the EM-step
(considering only the most computationally demanding steps
and neglecting the rest of operations). If N > L, GMKPF re-
quires approximately O(GL?N) flops. Notice also that MLEg
necessitates approximately O(L) flops because it involves
summations and a division. This indicates that GMKPF is
approximately 300 times slower than MLEg in an application
with L = 1, N = 100, and G = 3.

In IGMKPEF, at the first iteration, GMKPF initializes the
densities and estimates the state posterior pdf using particles
for generation of pdfs (posterior pdf, prior pdf, process noise
pdf, observation noise pdf, and so on). Next, the observation
noise density generator block estimates the observation noise
pdf using both the measurement observations and the posterior
density computed by GMKPF. This iteration is repeated up
to the number of observations. The pseudocode of IGMKPF
algorithm is next described.
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IGMKPF Algorithm
1) Attime k, initialize the densities and set the initial state
Tp—1 = TML.
2) GMKPF step (estimate the state posterior density).
* Calculate the state posterior density p,(zx|zx) using
GMKPFE.
e If k reaches the end of observations, go to “Infer the
conditional mean and covariance step.”
3) Estimate the Observation Noise Density (OND) step
¢ Calculate the observation noise density p(7) given zj,
and p, (k|2 ), and state model [(2) and (4)].
* The observation noise density using GMM is
approximated by

ZW( N (nmtn) R(a))

4) k =k + 1, go to the GMKPF step.
5) Infer the conditional mean and covariance

o= Sl wgxg) and P = S ) () -

T
()~ Tx)

¢ Or equivalently, upon fitting the posterior GMM,
calculate the variables in (40).

To validate the accuracy of the observation noise density es-
timation, we use the KLD [28] as a measure of fitting the esti-
mated noise density to the true density. Fig. 5 shows the rela-
tionship between KLD and MSE-performance of IGMKPF. In
Fig. 5, the upper graph refers to KLD, while the lower graph de-
picts the MSE performance of IGMKPF. Upon 10 Monte Carlo
simulation runs, KL.D and MSE exhibit a quite similar behavior.
These plots illustrate the fact that the more accurately the ob-
servation noise density is estimated, the better the MSE perfor-
mance of IGMKPF is.

V. SIMULATION RESULTS

In this section, computer simulations will be conducted to
assess the performance of IGMKPF, PCRB-IGMKPF, MLEg
[12], MLEe [12], and CRLB for estimating the clock offset in
WSNss that are subject to three types of network delays: sym-
metric Gaussian, exponential, and Gamma. The process noise
assumes the power 02 = 10~%. The number of particles and
GMMs are 500 and 3, respectively. One aspect about using
IGMKEPF is that it requires proper initialization. Depending on
the problem, the initial guess may need to be close to the correct
value to achieve fast convergence. The ML estimators proposed
in [12] for symmetric Gaussian and exponential random delays
are good examples of initializations. The initial values o =
TMLEg, and £g = TuMLEe are near the true values in Gaussian
and non-Gaussian (exponential and gamma) delay distributions,
respectively. The convergence of IGMKPF is achieved after a
number of iterations on the order of the number of measure-
ments. Since GMKPF does not initialize the observation noise
density and does not track it, its performance might be limited.
However, IGMKPF tracks the observation noise density using
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Fig. 5. KLD and MSE for symmetric exponential random delays (A = 1).

the observation and estimated posterior pdfs. Therefore, the per-
formance of IGMKPF is expected to be better than GMKPF and
MLE.

Fig. 6 shows the MSE performances of MLEe, MLEg,
GMKPF, and IGMKPF. It shows the convergence of GMKPF
and IGMKPF in accordance with the accuracy of fitting the
observation noise density. In case of unknown observation den-
sity, GMKPF exhibits similar performance as ML. However, in
the case of known observation density, GMKPF converges to
the real clock offset. Notice also that IGMKPF converges to the
real clock offset even in the presence of unknown observation
noise distribution. This indicates that if IGMKPF can accu-
rately estimate the observation density, its MSE performance
is much better than that of MLE. Left-triangles and right-tri-
angles denote MLEe and MLEg, respectively. The dashed line
indicates GMKPF with the initial condition 2y = XypLge and
known observation noise density. The dashed-with-circles line
represents GMKPF with initial condition 9 = X¢rue + 1 and
unknown observation noise density. Dashed-with-addition-sign
line denotes GMKPF with initial condition ¢ = XyLge and
unknown observation density. Solid line denotes IGMKPF
with initial condition z¢g = X\LEe and estimated observation
density. In the symmetric Gaussian model, GMKPF shows
the same performance as MLE because it does not exploit the
observation noise density and the fixed parameter is J; = 1.
When the observation noise density is estimated, IGMKPF
shows better performance than MLE and GMKPF. If the obser-
vation noise density is not tracked, a bias will be induced in the
GMKPF estimate and it exhibits performance close to MLEg.
However, tracking the observation noise density helps to reduce
the bias, which will help IGMKPF estimate to be closer to the
real clock offset.

Figs. 7-9 show the MSE of the estimators under the assump-
tion that the random delay models are symmetric Gaussian,
exponential, and Gamma, respectively. Notations KN and EN
denote the setups with known observation noise density and
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estimated observation noise density, respectively. The MSEs
are plotted against the number of observations ranging from
15 to 30. To use the GMM fitting function in Matlab (such as
kmean), the number of observations starts at 15. Fig. 7 is for
the symmetric Gaussian delay model. Assuming the state-space
model depicted in Section II is linear-Gaussian, a closed-form
solution for Kalman filter can be considered. Theoretically, the
Kalman filter exhibits the same performance as MLE for the
linear Gaussian delay model. As indicated in Fig. 7, the Kalman
filter presents almost same performance as MLE. Note that
IGMKPF (G = 3) performs much better (over 100% reduc-
tion in MSE) relative to MLEg in the presence of a Gaussian
delay model. It is remarkable that the performance of MLE is
proportional to the number of observations, whereas that of
IGMKPF is proportional to the number of particles, the number
of GMMs, and the accuracy of noise density estimation, but it
might not strictly depend on the number of observations. The
initial conditions (initial state value (zg = Zwmr), initial prior
density [p(z9) = p(#mr)], measurement noise density, etc.)
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Exponential delay model (500 Monte Carlo simulations)
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Gamma delay model (500 Monte Carlo simulations)
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play a major role in the performance of IGMKPF. Since we
can get the initial conditions from MLE, which ensure the con-
vergence of IGMKPF even in the presence of reduced number
of observations and unknown network delay distributions, the
performance of IGMKPF is expected to be much better than
that of MLE. This is a desirable feature for WSNs in order to
keep the number of timing exchanges low so that energy is
conserved.

IGMKPF uses a 3-component GMM (G = 3) to predict the
state posterior, a 1-component GMM to capture the process
noise density, and a 3-component GMM for estimating the
measurement noise density. The GMKPF-estimator predicts
the posterior probability function (likelihood function) adap-
tively using the EM-algorithm, and thus its performance
depends on the ability of GMM to capture distributions such
as process noise, posterior pdfs, and so on. However, GMKPF
is neglecting the observation noise density in estimating the
posterior pdf because of lack of any adaptation mechanism
to predict the observation noise density. In order to overcome
this challenge, IGMKPF, which is configured in terms of two
estimators: GMKPF and observation noise density estimator, is
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iterated until the required accuracy of observation noise den-
sity estimation is obtained. Therefore, IGMKPF yields more
accurate estimates of the state as illustrated in Figs. 7 and 8, for
exponential (A = 1) and gamma (o = 2 and § = 2) network
delay models, respectively. In Fig. 9, IGMKPF exhibits also
much better performance than MLE in the presence of reduced
number of observations. When IGMKPF is properly initialized,
its performance goes close to PCRB. Notice also that PCRB is
much lower than CRLB.

Next we compare IGMKPF with other well-known clock
estimation schemes MLEg and MLEe in TPSN [17], RBS
[11], and FTSP [36], with respect to the number of required
timing messages (which practically indicates the amount of
energy consumption) to achieve a specific MSE-performance.
Let NTpsN—MLEg» I/VRBS—MLEg. and Nrrsp—_MLEg denote
the numbers of required timing messages for synchronization
in TPSN, RBS, and FTSP, respectively, assuming the MLE
scheme and a Gaussian delay model. In TPSN [17], denoting
by J the overall number of sensor nodes, and assuming that 2K
timing messages are required in every pairwise synchronization,
NTpsN—MLEg is equal to the number of pairwise synchroniza-
tion times the number of required timing messages per pairwise
synchronization. Thus, Nrpsn—mreg = 2K(J — 1). In RBS
w, since the number of unique

[11], NrBS—MLEg =

pairs in the network is %_1) In FTSP [36], the number
of required timing messages iS Nprsp—mLEg = JK. When
MSE = 103 and the number of nodes is 100, NrpsN—MLEg =
2K(100 — 1) = 2 x 500 x 99 = 99000 for MLEg [12],
NTPSN—IGMKPF = 2K(100 — 1) = 2 x 15 x 99 = 2970
for IGMKPF according to Fig. 7. Consequently, the benefit of
IGMKPF over MLEg is huge in terms of energy consumption
in the network. Similar statements hold for Nrps—_mLEe and

NFTSP—MLEg-

VI. CONCLUSION

This paper provided a novel Bayesian sequential Monte
Carlo method, IGMKPF, for estimating the clock offset in
WSNs. The benefits of the proposed synchronization method
are improved performance compared to MLE, and applicability
to arbitrary random delay models such as symmetric Gaussian,
symmetric exponential, and Gamma delay models. In general,
in case of (unknown) non-Gaussian distributions, analytical
closed-form expressions for MSE-performance do not neces-
sarily exist and it is also hard to derive lower bounds. The paper
derived the PCRB and IGMKPF, an estimator that is robust to
the lack of knowledge concerning the network delay distribu-
tion and to the presence of reduced number of observations.
An important element in improving the estimator performance
is the prediction of unknown observation noise density which
led to an improved IGMKPF estimator. The paper presented
a robust estimator based on IGMKPF which is capable of
estimating the clock offset in arbitrary delay models and in the
presence of time-varying clock offsets, and that can be used
in a number of WSN applications with tight synchronization
requirements [18], [19]. Since IGMKPF estimates iteratively
the unknown delay probability density function, IGMKPF
exhibits better performance than MLE or standard particle
filtering algorithms. Most particle filters are not realistic due
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to many assumptions (including a-priori knowledge of obser-
vation noise distribution). PCRB represents a lower bound for
the MSE performance of IGMKPF. Because of the difficulty in
evaluating PCRB in closed-form expression, the plotted PCRB
graphs represent simulated bounds (obtained via IGMKPF) of
the actual PCRB. In the presence of optimal settings (efficient
proposal, optimal number of particles, etc.), the simulated
PCRB might represent a tighter bound. The performance gap
between IGMKPF and PCRB is due to the impossibility of es-
timating precisely the observation noise density with a reduced
number of observations. There are also the sampling errors,
the error accumulation due to the iterative nature of algorithm
and inefficient proposal distribution that contribute to this. The
proposed clock synchronization algorithm considers only the
correction of clock phase-offset errors. Extension of this work
to the situation when clock skew and drift errors are present
represents an interesting open research problem.
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