Additional Problem set: Chapter 1

1. Consider the 2π-periodic function defined by $f(x)=e^{(x-\pi)}$ for $0 \leq x<2 \pi$.
a) Draw the graph of f and that of f^{\prime}.
b) Compute the Fourier series coefficients of f. Find the whole Fourier series $F(f)$.
c) Find the value of $F(f)(x)$ at every point $0 \leq x \leq 2 \pi$.
d) Show that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+n^{2}}=\frac{\pi}{e^{\pi}-e^{-\pi}}
$$

2. For every number number α that is NOT an integer, we consider the function

$$
f(x)=\cos (\alpha x), \pi \leq x<\pi .
$$

a) Find the Fourier series of f.
b) Using a), deduce the following formula

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}-\alpha^{2}}=\frac{1}{2 \alpha^{2}}-\frac{\pi}{2 \alpha \tan (\alpha \pi)}
$$

3. Let f and g be two piecewise continuous 2π-periodic functions. We define the 2π-periodic function

$$
h(x)=\int_{0}^{2 \pi} f(x-s) g(s) d s
$$

Find a formula between the complex Fourier coefficients of h and those of f and g.
4. a) Compute the Fourier series of the 2π-periodic odd function given by $f(x)=$ $x(\pi-x)$ for $0 \leq x \leq \pi$.
b) Using the previous question and Parseval's identity, deduce

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{6}}
$$

