Additional Problem set: Chapter 2

1. Find the Fourier transform of the function $f(x) = e^{-|x|}$.

2. Using what you found in 1), compute $\int_{-\infty}^{+\infty} \frac{\cos x}{1+x^2} dx$.

3. Using what you found in 1), find the Fourier transform of the following functions: a) $g(t) = te^{-|t|}$ b) $h(t) = e^{-2|t-3|}$

4. Consider the following functions:

$$f(x) = \begin{cases} \sqrt{\frac{\pi}{2}} & -1 \le x \le 1\\ 0 & \text{otherwise} \end{cases} \qquad g(x) = \begin{cases} \pi + \frac{\pi}{2}x, & -2 \le x \le 0\\ \pi - \frac{\pi}{2}x & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

a) Sketch the graphs of these functions and find their Fourier transforms.b) What is the link between *f* and *g*?

5. Let $\omega > 0$. Using Plancherel's theorem and the given table of Fourier transforms, compute the following integrals:

i)
$$\int_{-\infty}^{+\infty} \frac{1}{(x^2 + \omega^2)^2} dx \qquad ii) \int_{-\infty}^{+\infty} \frac{\sin^2(\omega x)}{x^2} dx$$

6. a) Let $a \neq 0$ and $b \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ be a piecewise continuous integrable function. Show that the function g(x) = f(ax + b) is also integrable and that

$$\hat{g}(\lambda) = \frac{1}{|a|} \hat{f}\left(\frac{\lambda}{a}\right) e^{i\lambda \frac{b}{a}}$$

b) Using the table of Fourier transforms and part a), find the Fourier transform of $g(x) = e^{-4x^2 + 8x + 8}$.

	f(y)	$\mathfrak{F}(f)(\alpha) = \widehat{f}(\alpha)$
1	$f(y) = \begin{cases} 1 & \text{si } y < b \\ 0 & \text{sinon} \end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin(b \alpha)}{\alpha}$
2	$f(y) = \begin{cases} 1 & \text{si } b < y < c \\ 0 & \text{sinon} \end{cases}$	$\frac{e^{-i\alpha b} - e^{-i\alpha c}}{i\alpha\sqrt{2\pi}}$
3	$f(y) = \begin{cases} e^{-\omega y} & \text{si } y > 0\\ 0 & \text{sinon} \end{cases} (\omega > 0)$	$\sqrt{2\pi} (\omega + i\alpha)$
4	$f(y) = \begin{cases} e^{-\omega y} & \text{si } b < y < c \\ 0 & \text{sinon} \end{cases}$	$\frac{1}{\sqrt{2\pi}} \frac{e^{-(\omega+i\alpha)b} - e^{-(\omega+i\alpha)c}}{(\omega+i\alpha)}$
5	$f(y) = \begin{cases} e^{-i\omega y} & \text{si } b < y < c \\ 0 & \text{sinon} \end{cases}$	$\frac{1}{i\sqrt{2\pi}} \frac{e^{-i(\omega+\alpha)b} - e^{-i(\omega+\alpha)c}}{\omega+\alpha}$
6	$\frac{1}{y^2 + \omega^2} \qquad (\omega \neq 0)$	$\sqrt{\frac{\pi}{2}} \frac{e^{- \omega\alpha }}{ \omega }$
7	$\frac{e^{- \omega y }}{ \omega } \qquad (\omega \neq 0)$	$\sqrt{\frac{2}{\pi}} \frac{1}{\omega^2 + \alpha^2}$
8	$e^{-\omega^2 y^2}$ ($\omega \neq 0$)	$\frac{1}{\sqrt{2}\left \omega\right }e^{-\alpha^{2}/4\omega^{2}}$
9	$ye^{-\omega^2 y^2}$ $(\omega \neq 0)$	$\frac{-i\alpha}{2\sqrt{2}\left \omega\right ^{3}}e^{-\frac{\alpha^{2}}{4\omega^{2}}}$
10	$\frac{4y^2}{(\omega^2 + y^2)^2} (\omega \neq 0)$	$\sqrt{2\pi} \left(\frac{1}{ \omega } - \alpha \right) e^{- \omega\alpha }$