3.2 Subspace

Given a vector space V, it is possible to form another vector space by taking a subset S of V and using the same operations (addition and multiplication) of V. For a set S to be a vector space, it must satisfy addition and multiplication closure conditions on top of the other 8 conditions on addition and multiplication which are naturally satisfied since S is a subset of V, so we just need to check addition and multiplication closure conditions. If the subset S is a vector space, we call vector space S is a subspace of V.

Definition: If s is a non-empty subset of a vector space v, and s satisfies the following conditions:

(i). $\alpha \bullet x \in S$, whenever $x \in S$ for any scalar α

(ii). $x + y \in S$, whenever $x \in S$, $y \in S$

Then we call S is a subspace of V.

Remark: Every vector space V, has at least two subspaces. Namely V itself and S = 0 (the zero space). These two subspaces are called trivial subspaces.

Example 1: Determine if the given set is a subspace of the given vector space.

(1). Let $S = \{(x_1, -x_1)\}$. Is S a subspace of vector space \mathbb{R}^2 ?

Let $x = (x_1, -x_1) \in S$, $y = (y_1, -y_1) \in S$, α is a scalar.

 $\alpha x = (\alpha x_1, -\alpha x_1) \in S$ $x + y = (x_1 + y_1, -x_1 - y_1) = (x_1 + y_1, -(x_1 + y_1)) \in S$

s is a subspace.

(2). Let $S = \{(x_1, x_2) | x_1 \neq 0, x_2 \neq 0\}$. Is S a subspace of vector space \mathbb{R}^2 ?

 $x = (1, 2) \in S, y = (-1, 1) \in S$ $x + y = (0, 3) \notin S$

s is not a subspace.

(3). Let $S = \{(x_1, x_2) | x_1 \ge 0\}$. Is S a subspace of vector space \mathbb{R}^2 ?

 $x = (1, 2) \in S,$ $-2x = (-2, -4) \notin S$

s is not a subspace.

(3). Let $S = \{(x_1, 0)\}$. Is S a subspace of vector space \mathbb{R}^2 ?

Let $x = (x_1, 0) \in S$, $y = (y_1, 0) \in S$, α is a scalar.

 $x + y = (x_1 + y_1, 0) \in S$ $\alpha x = (\alpha x_1, 0) \in S$

s is a subspace.

(3). Let $S = \{(x_1, 1)\}$. Is S a subspace of vector space \mathbb{R}^2 ?

 $x = (2,1) \in S$, but $2x = (4,2) \notin S$

s is not a subspace.

Exercise: Determine if the given set is a subspace of the given vector space.

(1). Let *s* be the set of 2×2 diagonal matrices. Is *s* a subspace of vector space M_{22} ? (yes)

(2). Let *s* be the set of matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$. Is *s* a subspace of vector space M_{22} ? (yes)

(2). Let *S* be the set of matrices of the form $\begin{pmatrix} a & b \\ 1 & c \end{pmatrix}$. Is *S* a subspace of vector space M_{22} ? (No)

Exercise: Determine if the given set is a subspace of the given vector space.

(1). Let C[a,b] be the set of all continuous functions on the interval [a,b]. Is this a subspace of F[a,b], the set of all real valued functions on the interval [a,b]? (yes)

(2). Let P_n be the set of all polynomials of degree *n* or less. Is this a subspace of F[a,b]? (yes)

(3). Let *s* be the set of all polynomials of degree exactly 2. Is this a subspace of F[a,b]? (no)

 $f(x) = x^2 \in S, g(x) = -x^2 + x \in S$, so it is not a subspace $(f+g)(x) = x \notin S$

(4). Let *s* be the set of all functions such f(2)=1. Is this a subspace of F[a,b]? (no)

 $f(x) = x - 1 \in S, g(x) \equiv 2 \in S$ (f + g)(x) = x - 1 + 2 = x + 1 $(f + g)(2) = 2 + 1 \neq 2 \notin S$

so it is not a subspace

(5). Let *s* be the set of all functions such f(2) = 0. Is this a subspace of F[a,b]? (yes)

Exercise: Let *A* be a particular vector in $\mathbb{R}^{2\times 2}$. Determine whether the following are subspaces of $\mathbb{R}^{2\times 2}$.

(a). $S = \{B \in \mathbb{R}^{2 \times 2} \mid AB = BA\}$

Let $B \in S, C \in S$, α is a scalar.

 $\therefore B \in S, C \in S$ $\therefore BA = AB, CA = AC$ $\therefore (B+C)A = BA + CA = AB + AC = A(B+C)$ $\therefore B+C \in S$ $\therefore (\alpha B)A = \alpha BA = \alpha AB = A(\alpha B)$ $\alpha B \in S$

So it is a subspace

(b).
$$S = \{B \in \mathbb{R}^{2 \times 2} \mid AB \neq BA\}$$

Let $B \in S$.

 $0A=0=A0\Longrightarrow 0\not\in S\Longrightarrow 0B=0\not\in S$

So it is not a subspace

(c).
$$S = \{B \in R^{2 \times 2} \mid AB = 0\}$$

(yes).

Null Space of a matrix.

Definition: Let *A* be an $m \times n$ matrix. The **null space** N(A) of *A* is the set

$$N(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}$$

Property: N(A) is a subspace.

Let $x \in A, y \in A, \alpha$ be a scalar.

$$x \in A, y \in A$$
$$Ax = Ay = 0$$
$$A(x + y) = Ax + Ay = 0 + 0 = 0$$
$$x + y \in A$$
$$A(\alpha x) = \alpha Ax = \alpha 0 = 0$$
$$\alpha x \in A$$

So N(A) is a subspace.

Example 2: Determine N(A) if $A = \begin{pmatrix} 2 & 1 & 0 & 2 \\ 1 & 1 & 1 & 0 \end{pmatrix}$

$$A = \begin{pmatrix} 2 & 1 & 0 & 2 \\ 1 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 2 \end{pmatrix} \xrightarrow{-2R_1 + R_2 \rightarrow R_2} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & -2 & 2 \end{pmatrix}$$
$$\xrightarrow{-R_2 \rightarrow R_2} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & -2 \end{pmatrix} \xrightarrow{-R_2 + R_1 \rightarrow R_1} \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 2 & -2 \end{pmatrix}$$

So, we have

$$\begin{cases} x_1 = x_3 - 2x_4 \\ x_2 = -2x_3 + 2x_4 \end{cases}$$

Let $x_3 = \alpha, x_4 = \beta$, we have

$$\begin{cases} x_1 = \alpha - 2\beta \\ x_2 = -2\alpha + 2\beta \\ x_3 = \alpha \\ x_4 = \beta \end{cases}$$
$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} \alpha - 2\beta \\ -2\alpha + 2\beta \\ \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} \alpha + \begin{pmatrix} -2 \\ 2 \\ 0 \\ 1 \end{pmatrix} \beta$$

N(A) contains all vectors of the form:

$$\begin{pmatrix} 1\\ -2\\ 1\\ 0 \end{pmatrix} \alpha + \begin{pmatrix} -2\\ 2\\ 0\\ 1 \end{pmatrix} \beta$$

where α, β are any scalars.

$$N(A) \text{ is a linear combination of vector} \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 2 \\ 0 \\ 1 \end{pmatrix} \text{ or the span of} \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 2 \\ 0 \\ 1 \end{pmatrix}. \text{ We give these}$$

definitions below.

Definition: Let v_1, v_2, \dots, v_n be vectors in a vector space $V, \alpha_1, \alpha_2, \dots, \alpha_n$ be scalars,

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

is called the **linear combinations** of vectors v_1, v_2, \dots, v_n , while

$$W = \{\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \mid \alpha_1, \alpha_2, \dots, \alpha_n \text{ are scalars}\}$$

be called the **span** of v_1, v_2, \dots, v_n , denoted by $span(v_1, v_2, \dots, v_n)$, or $W = span(v_1, v_2, \dots, v_n)$.

Example: Let
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
, what are $span(e_1), span(e_1, e_2), span(e_1, e_2, e_3)$ in \mathbb{R}^3 ?

 $span(e_1)$ is a line (x-axis) $span(e_1, e_2)$ is a plane (xy-plane) $span(e_1, e_2, e_3) = R^3$

Definition: The set $\{v_1, v_2, \dots, v_n\}$ is called a **spanning set** for vector space *V* if every vector in *V* can be written as a linear combination of v_1, v_2, \dots, v_n .

Example: Let $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, is $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ a spanning set for vector space: all 2×2 matrices?

For any matrix, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = aE_{11} + bE_{12} + cE_{21} + dE_{22}$, so it is a spanning set.

Exercise: Let $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, v = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$, is $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ a spanning set for vector space: all 2×2 matrices?.

For any matrix, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = aE_{11} + bE_{12} + cE_{21} + dE_{22} + 0v$, so it is a spanning set.

Exercise: Let $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \{v_1, v_2, v_3\}$ is a spanning set for vector space \mathbb{R}^3 ?

For any vector $u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ whether we can find scalars $\alpha_1, \alpha_2, \alpha_3$ such that $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = u$ or

$$\alpha_{1} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} = \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix}$$

(What we need to do is to determine if this system has at least one solution for every possible vector u. If the coefficient matrix determinant is non-zero, then the system has a unique solution, so we just need to compute the determinant of coefficient matrix.)

$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} + 0 + \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} = -2 - 1 = -3 \neq 0$$

Thus, there are unique scalars $\alpha_1, \alpha_2, \alpha_3$ such that $\alpha_1v_1 + \alpha_2v_2 + \alpha_3v_3 = u$. Thus, $\{v_1, v_2, v_3\}$ is a spanning set for vector space \mathbb{R}^3 .

Exercise: Let $v_1 = x+1$, $v_2 = x^2+2x$, $v_3 = x^2-1$ { v_1 , v_2 , v_3 } is a spanning set for vector space $P_3 = \{ax^2 + bx + c \mid a, b, c \text{ are scalars}\}$, the polynomial with degree 2 or less?

For any vector $P(x) = ax^2 + bx + c \in P_3$ whether we can find scalars $\alpha_1, \alpha_2, \alpha_3$ such that $\alpha_1v_1 + \alpha_2v_2 + \alpha_3v_3 = P(x)$ or $\alpha_1(x+1) + \alpha_2(x^2+2x) + \alpha_3(x^2-1) = ax^2 + bx + c$.

$$\begin{aligned} \alpha_{1}(x+1) + \alpha_{2}(x^{2}+2x) + \alpha_{3}(x^{2}-1) &= ax^{2} + bx + c \Rightarrow (\alpha_{2}+\alpha_{3})x^{2} + (\alpha_{1}+2\alpha_{2})x + \alpha_{1} - \alpha_{3} &= ax^{2} + bx + c \Rightarrow \\ \begin{cases} \alpha_{2}+\alpha_{3} &= a \\ \alpha_{1}+2\alpha_{2} &= b \Rightarrow \\ \alpha_{1}-\alpha_{3} &= c \end{cases} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} (3.2-1) \\ (3.2-1) \\ \begin{vmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & -1 \end{vmatrix} = - \begin{vmatrix} 1 & 0 \\ 1 & -1 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = 1 - 2 = -1 \neq 0 \end{aligned}$$

Thus, there are unique solution to equation (3.2-1). Thus, there are unique scalars $\alpha_1, \alpha_2, \alpha_3$ such that $\alpha_1v_1 + \alpha_2v_2 + \alpha_3v_3 = P(x)$. Thus, $\{v_1, v_2, v_3\}$ is a spanning set for vector space P_3 .

HW: 1,10(d), 14(c).