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The present paper tackles the C∞ regularity problem for CR 
maps h : M → M ′ between C∞-smooth CR submanifolds 
M, M ′ embedded in complex spaces of possibly different 
dimensions. For real hypersurfaces M ⊂ Cn+1 and M ′ ⊂
Cn′+1 with n′ > n ≥ 1 and M strongly pseudoconvex, we 
prove that every CR transversal map of class C n′−n+1 that 
is nowhere C∞ on some non-empty open subset of M must 
send this open subset to the set of D’Angelo infinite points of 
M ′. As a corollary, we obtain that every CR transversal map 
h : M → M ′ of class C n′−n+1 must be C∞-smooth on a dense 
open subset of M when M ′ is of D’Angelo finite type. Another 
consequence establishes the following boundary regularity 
result for proper holomorphic maps in positive codimension: 
given Ω ⊂ Cn+1 and Ω′ ⊂ Cn′+1 pseudoconvex domains with 
smooth boundaries ∂Ω and ∂Ω′ both of D’Angelo finite type, 
n′ > n ≥ 1, any proper holomorphic map h : Ω → Ω′ that 
extends C n′−n+1-smoothly up to ∂Ω must be C∞-smooth on a 
dense open subset of ∂Ω. More generally, for CR submanifolds 
M and M ′ of higher codimensions, our main result describes 
the impact of the existence of a nowhere smooth CR map 
h : M → M ′ on the CR geometry of M ′, allowing to extend 
the previously mentioned results in the hypersurface case to 
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any codimension, as well as deriving a number of regularity 
results for CR maps with D’Angelo infinite type targets.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction and results for real hypersurfaces

In this paper, we are interested in the following question: Under which conditions on 
C∞-smooth CR manifolds M ⊂ C

N and M ′ ⊂ C
N ′ can we guarantee that a CR map 

h : M → M ′, which we assume to be of some finite smoothness C k a priori, is actually 
C∞-smooth on an open, dense subset of M?

This question is motivated by the problem of boundary regularity of holomorphic 
maps between smoothly bounded domains in CN : CR maps arise as their boundary 
values. The case most well-studied is when N = N ′ = 1 and the domains are simply 
connected; in that case, the boundary regularity of the Riemann map, as studied by 
Painlevé, Caratheodory, Kellogg, and many others serve as an answer to that problem.

In several dimensions, the Riemann map becomes unavailable as a tool, as there are 
many different equivalence classes of simply connected domains of holomorphy. How-
ever, Fefferman’s mapping theorem [11] proved that biholomorphic mappings between 
smoothly bounded strictly pseudoconvex domains in CN , N > 1, necessarily extend 
smoothly up to the boundary. The proof of Fefferman’s mapping theorem and also the 
proof of its generalization due to Bell and Ligocka [1], which reduced the assumptions 
on the domains to “condition (R)”, rely on inherently global objects associated to the 
domain, in particular on properties of its Bergman kernel. Such methods however stop 
short of covering all pseudoconvex domains, as there exist smoothly bounded pseudocon-
vex domains which do not satisfy condition (R) by work of Christ [6]. Furthermore they 
also are not applicable when it comes to studying the boundary regularity of proper 
holomorphic mappings between smoothly bounded domains in complex spaces of dif-
ferent dimensions (see [13]). One natural alternative is then to derive global boundary 
regularity after investigating local regularity along smooth boundary patches.

Historically, the starting point for investigating the local question was again the case 
of (bijective) CR mappings between smooth, strongly pseudoconvex hypersurfaces in 
C

N studied by Nirenberg, Webster, and Yang [24]. The case of mappings of positive 
codimension, i.e. N ′ > N , from a strictly pseudoconvex hypersurface in CN to one in 
C

N ′ is remarkably different, and harder. One of the reasons is that there actually exist 
continuous, and even Hölder continuous of exponent α for small α, CR embeddings of the 
sphere into a sphere in a higher dimensional space which fail to be smooth anywhere, by 
results due to Dor [10], Hakim [14] and Stensones [27]. It turns out that, in contrast with 
the equidimensional case, one can make up for that lack of smoothness by requiring a 
certain amount of a priori regularity for the map; this has, for example, been illustrated in 
the works of Forstnerič [12] and Huang [16,17] where it was shown that any C k-smooth, 
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for a suitable integer k, CR map between spheres must be C∞-smooth (and in fact 
even rational). Since then, the natural question of whether a similar regularity result 
holds for CR maps of positive codimension between general strongly pseudoconvex real 
hypersurfaces had been open for a while (see e.g. [15]), until the recent breakthrough 
by Berhanu–Xiao [4] who settled the problem in the affirmative for CR maps that are 
a priori CN ′−N+1-smooth to start with. In a subsequent paper, Berhanu–Xiao [5] were 
also able to extend their approach to deal with Levi-nondegenerate target hypersurfaces 
as well (see also [18] for recent related results in the codimension one case).

In this paper, we carry out a study of the C∞ regularity problem without assuming any 
geometric condition on the target manifold. Our basic approach differs significantly from 
all of these previous works: Our main result shows that if a CR mapping h : M → M ′ (of 
a certain a priori C k regularity) fails to be C∞-smooth on a large set in M , then M ′ has 
to carry a certain amount of complex structure (along the image of M under h). More 
precisely, we shall prove (see Theorems 1.1 and 2.2) that the image of any generic point in 
such a large set of bad points has a formal holomorphic manifold that is tangent to M ′ to 
infinite order, and hence must be a point of infinite type in the sense of D’Angelo [8]. To 
our knowledge, exhibiting such an explicit link between failure of regularity of a CR map 
and impact on the CR geometry of the target manifold seems to be a completely new 
point of view in the C∞ CR regularity problem. As a consequence, our present approach 
not only allows us to provide sharper and more general results than earlier works, but 
also recovers many of the previously known results. The approach we are taking is, at 
least in philosophy, akin to our recent work [21] on the convergence of formal power series 
mappings. We will apply ideas from [21], adapted to the C∞ setting, to the problem at 
hand. However, the implementation of these ideas require different strategies and new 
ingredients because of the different nature of the C∞ CR regularity problem.

We will discuss results valid for hypersurfaces in the introduction and leave more 
general results for later. Before stating our first theorem, let us start by recalling the 
notion of infinite type of a point q ∈ M ′ introduced by D’Angelo [8], which means that 
the order of contact of M ′ at q with (possibly singular) complex curves is unbounded. 
To be more precise, let � be a defining function for M ′ near q. One defines the 1-type of 
M ′ at q as

Δ(M ′, q) = sup
γ : Δ→C

N′

γ(0)=q,γ �≡q

ν0(ρ ◦ γ)
ν0(γ) ∈ R ∪ {∞},

where γ runs over all (non-trivial) holomorphic curves in CN ′ centered at q and ν0

denotes the vanishing order at 0. We say that q is a D’Angelo finite type point of M ′ if 
Δ(M ′, q) < ∞, and an infinite type point of M ′ if Δ(M ′, q) = ∞. We denote the set of 
infinite type points in M ′ by EM ′ and recall that EM ′ is closed in M ′ by e.g. [8,9]. We 
say that M ′ is of D’Angelo finite type if EM ′ = ∅.
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We also need to recall that a CR map h : M → M ′ between real hypersurfaces M ⊂
C

N , M ′ ⊂ C
N ′ , with respective CR bundles T (0,1)M and T (0,1)M ′, is said to be CR 

transversal if

T
(1,0)
h(p) M

′ + T
(0,1)
h(p) M

′ + dh(CTpM) = CTh(p)M
′.

for every point p ∈ M .
We may now state our first main result, which, as mentioned above, highlights how the 

failure of being C∞-smooth for a CR map impacts the geometry of the target manifold 
M ′.

Theorem 1.1. Let M ⊂ C
n+1 and M ′ ⊂ C

n′+1 be C∞-smooth real hypersurfaces, n′ >

n ≥ 1. Assume that M is strongly pseudoconvex and that h : M → M ′ is a CR transversal 
mapping of class C n′−n+1. If there exists a non-empty open subset Ω of M where h is 
nowhere C∞, then h(Ω) ⊂ EM ′ .

As an immediate consequence of Theorem 1.1, we obtain the following regularity 
result:

Theorem 1.2. Let M ⊂ C
n+1 and M ′ ⊂ C

n′+1 be C∞-smooth real hypersurfaces, n′ >

n ≥ 1. Assume that M is strongly pseudoconvex and that M ′ is of D’Angelo finite type. 
Then every CR transversal mapping h : M → M ′ of class C n′−n+1 is C∞-smooth on a 
dense open subset of M .

In the special case where M ′ is strongly pseudoconvex, Theorem 1.2 recovers Berhanu–
Xiao’s result alluded above [4] (for an embedded hypersurface M) since every CR map 
between strictly pseudoconvex hypersurfaces is CR transversal by the Hopf Lemma.

When both hypersurfaces are pseudoconvex, using results from the known literature, 
we will show that Theorem 1.2 also yields the following.

Corollary 1.3. Let Ω ⊂ C
n+1 and Ω′ ⊂ C

n′+1 be pseudoconvex domains and h : Ω → Ω′

be a holomorphic map, n′ > n ≥ 1. Assume that M ⊂ ∂Ω and M ′ ⊂ ∂Ω′ are C∞-smooth 
real hypersurfaces of D’Angelo finite type. If h extends C n′−n+1-smoothly up to M and 
satisfies h(M) ⊂ M ′, then h extends C∞-smoothly up to a dense open subset of M .

Finally, let us also mention the following new result which follows as an application 
of Corollary 1.3 to the boundary regularity of (global) proper holomorphic mappings of 
positive codimension.

Corollary 1.4. Let Ω ⊂ C
n+1 and Ω′ ⊂ C

n′+1 be pseudoconvex domains with smooth 
boundaries ∂Ω and ∂Ω′ both of D’Angelo finite type, n′ > n ≥ 1. Let h : Ω → Ω′ be a 
proper holomorphic map that extends C n′−n+1-smoothly up to a dense open subset of 
∂Ω. Then h extends C∞-smoothly up to a dense open subset of ∂Ω.
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Let us remark that the preceding results, Theorem 1.2, Theorem 1.1, Corollary 1.3, 
and Corollary 1.4 hold without any changes for weakly pseudoconvex sources having a 
dense open subset of strongly pseudoconvex points. For instance, they all can be applied 
in the setting where M is pseudoconvex and does not contain any analytic disc.

We finish the introduction with an outline of the organization of the paper. In §2, 
we state the general main result, Theorem 2.2, which applies to minimal source CR 
manifolds M ⊂ C

N of arbitrary codimension. It also implies a number of further new 
regularity results, which not only extend Theorem 1.2 to the setting where the source 
manifold is allowed to be of higher codimension but are also valid for target manifolds 
of infinite D’Angelo type.

The next sections provide the proof of Theorem 2.2 which splits naturally into an 
analytic part and a geometric part. The first part is developed in §3 and corresponds 
to the analytic piece of the proof. In it, we prove a smooth regularity result for CR 
maps that satisfy a smooth system of equations. The result, Theorem 3.1, generalizes a 
result due to the second author [19], and may be of independent interest. The second, 
geometric, part of the proof is carried out in §4 and §5. We first introduce in §4 some 
new numerical invariants associated to any continuous CR map h : M → C

N ′ , establish 
some of their basic properties and then associate to these invariants an open subset 
decomposition of (part of) the CR manifold M . In §5 we relate this decomposition to 
the C∞-regularity of the mapping (Proposition 5.1) as well as to the CR geometry of 
the image set h(M) (Proposition 5.2).

Finally, in §6, we show, among other things, that the decomposition obtained in §4
covers, at least in the situations discussed in §2, a dense open subset of M . The proofs 
of all theorems and corollaries stated in §1 and §2 are then completed in §7.

2. Statement of further results for CR manifolds of any codimension

This section is devoted to the formulation of the more general results already alluded 
to in the introduction. We let M ⊂ C

N be a C∞-smooth CR submanifold, with N ≥ 2, 
and recall that a map h : M → C

N ′ of class C 1 is CR if h = (h1, . . . , hN ′) where each 
hj a CR function on M . (If h is assumed to be only continuous, then the preceding 
definition needs to be understood in the sense of distributions.)

Let us now consider a subset M ′ ⊂ C
N ′ (not necessarily CR nor a manifold). For 

every q ∈ M ′, denote by IM ′(q) ⊂ C∞(CN ′
, q) the ideal of all germs at q of C∞-smooth 

functions ρ : (CN ′
w , q) → R that vanish on M ′ near q and denote by Γp(M) the set of all 

germs at p of CR vector fields of M .
The definition of a D’Angelo infinite type point naturally extends to the more general 

setting of an arbitrary subset M ′ ⊂ C
N ′ in analogy to the hypersurface case. We define 

the 1-type of M ′ at q as

Δ(M ′, q) = sup
γ : Δ→C

N′

(
inf

ρ∈IM′ (q)

ν0(ρ ◦ γ)
ν0(γ)

)
∈ R ∪ {∞},
γ(0)=q, γ �≡q
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and say that q is a D’Angelo infinite type point of M ′ if Δ(M ′, q) = ∞. We denote the 
set of points in M ′ which are of infinite type by EM ′ . Observe that if M ′, M ′′ are two 
subsets of CN ′ with M ′′ ⊂ M ′ then for q ∈ M ′′, Δ(M ′′, q) ≤ Δ(M ′, q) and therefore 
EM ′′ ⊂ EM ′ .

We also recall that a formal holomorphic subvariety X ⊂ C
N ′ through q is given 

by a (radical) ideal Iq(X) ⊂ C�Z ′ − q�. We say that a formal holomorphic subvariety 
X ⊂ C

N ′ through the point q ∈ M ′ is tangent to infinite order to M ′ at q if for any formal 
holomorphic map ϕ(t) ∈ C�t�N

′ with ϕ(0) = q and ψ ◦ ϕ(t) = 0 for every ψ ∈ Iq(X)
we have ν0

(
�
(
ϕ(t), ϕ(t)

))
= ∞, for every � ∈ IM ′(q). Note that it follows from this 

definition that if there exists a nontrivial formal holomorphic subvariety through q which 
is tangent to M ′ up to infinite order then q is an infinite type point.

Let us now assume that we are given a CR map h : M → C
N ′ . For every p ∈ M , we 

set

r0(p) := dimC span
{
ρw(h(p), h(p)) : ρ ∈ Ih(M)(h(p))

}
(2.1)

and more generally, if h is of class C �, for some 
 ≥ 1,

rk(p) := dimC span
{
L̄1 . . . L̄jρw(h(p), h(p)) : ρ ∈ Ih(M)(h(p)),

L̄1, . . . , L̄j ∈ Γp(M), 0 ≤ j ≤ k
}
, k ≤ 
. (2.2)

In the second equation, the case j = 0 refers to no application of a CR vector field. The 
complex gradients

ρw(h(p), h(p)) =
(

∂ρ

∂w1

(
h(p), h(p)

)
, . . . ,

∂ρ

∂wN ′

(
h(p), h(p)

))
,

and their CR derivatives

L̄1 . . . L̄jρw(h(p), h(p)) =
(
L̄1 . . . L̄j

∂ρ

∂w1

(
h(p), h(p)

)
, . . . , L̄1 . . . L̄j

∂ρ

∂wN ′

(
h(p), h(p)

))

are considered as vectors in CN ′ .
We note that for 0 ≤ k ≤ 
, p �→ rk(p) ∈ {1, . . . , N ′} is an integer-valued, lower 

semicontinuous function on M . We define

rk := max {e ∈ Z+ : rk(p) ≥ e for p on some dense subset of M} , k ≤ 
.

Let us recall that M is said to be minimal at the point p ∈ M if there does not exist 
any CR submanifold Σ ⊂ M through p, with dim Σ < dimM , of the same CR dimension 
as M (see [28,2]). We say that M is minimal if it is minimal at each of its points.

Before we state our general main result, let us introduce one more notion.
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Definition 2.1. Let M ⊂ C
N be a C∞-smooth CR submanifold, and h : M → C

N ′ be 
a C k-smooth CR map. A C k-smooth CR family of formal (complex) submanifolds of 
(complex) dimension r through h(M) is given by a collection (Γξ)ξ∈M of formal (complex) 
submanifolds of CN ′ of dimension r in such that, for every ξ ∈ M , Γξ passes through 
h(ξ) and such that Γξ is parameterized by a formal holomorphic map of the form

(Cr, 0) � t �→ ϕξ(t) = h(ξ) +
∑
α∈N

r

|α|≥1

ϕα(ξ)tα,

where for every α ∈ N
r the function ϕα is a C k-smooth CR function on M .

Theorem 2.2. Let M ⊂ C
N be a C∞-smooth CR minimal submanifold, k, 
 ∈ N with 

1 ≤ k ≤ 
 ≤ N ′ be given integers and h : M → C
N ′ be a CR mapping of class CN ′−�+k. 

Assume that rk ≥ 
 and that there exists a non-empty open subset M1 of M where h is 
nowhere C∞.

Then there exists a dense open subset M2 ⊂ M1 such that for every p ∈ M2, there 
exists a neighborhood V ⊂ M2 of p, an integer r ≥ 1, and a C 1-smooth CR family of 
formal (complex) submanifolds (Γξ)ξ∈V of dimension r through h(V ) for which Γξ is 
tangent to infinite order to h(M) at h(ξ), for every ξ ∈ V .

In particular, there exists a dense open subset M2 of M1 with h(M2) ⊂ Eh(M).

Theorem 2.2 provides a detailed picture of how “irregularity” of a given CR map affects 
the CR geometry of the target set h(M). Images of “irregular” points under the given map 
must not only be of infinite type, but the image of large open subsets carries even more 
structure than that: One obtains a family of formal holomorphic submanifolds tangent 
to h(M) to infinite order that depends in a CR manner on the “irregular” points. This 
property will be crucial in the application of Theorem 2.2 given in Corollary 2.6 below, 
providing a regularity result valid for targets which are foliated by complex submanifolds.

The integers rk in the statement of the theorem appear very naturally in various 
geometric settings. We will discuss in §6 a number of sufficient conditions providing 
lower bounds on them, in particular, on r0 and r1, yielding a number of new corollaries 
(not covered by the results in the introduction). In the first one, for M ′ ⊂ C

N ′ , we denote 
by κM ′ the maximum dimension of real submanifolds of class C 1 contained in EM ′ .

Corollary 2.3. Let M ⊂ C
N and M ′ ⊂ C

N ′ be C∞-smooth CR submanifolds with n′ =
dimCR M ′ and assume that M is minimal. Then every CR mapping h : M → M ′ of 
class C n′ and of rank > κM ′ is C∞-smooth on a dense open subset of M . In particular, 
if M ′ is of D’Angelo finite type, then every CR mapping h : M → M ′ of class C n′ is 
C∞-smooth on a dense open subset of M .

If we know more about the target, we can improve the a priori smoothness assumptions 
significantly. Our next corollary shows that if the target is Levi-nondegenerate, then the 
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a priori regularity can be dropped by (n − 1) where n is the CR dimension of the source 
submanifold:

Corollary 2.4. Let M ⊂ C
N and M ′ ⊂ C

N ′ be C∞-smooth CR submanifolds with 
n = dimCR M , n′ = dimCR M ′. Assume that M is minimal and that M ′ is Levi-
nondegenerate and of D’Angelo finite type. Then every CR immersion h : M → M ′

of class C n′−n+1 is C∞-smooth on a dense open subset of M .

If we want to allow complex manifolds in the target, then we can use geometric 
information given by Theorem 2.2 on how those complex manifolds are situated in the 
target (and how large they can be) in conjunction with the formal submanifolds Γξ

provided by Theorem 2.2 in order to rule out maps which are nowhere smooth on an 
open subset of M . We can for instance recover the following result by Berhanu–Xiao [5]
(referring to their paper for the standard notion of signature):

Corollary 2.5. Let M ⊂ C
n+1 and M ′ ⊂ C

n′+1 be (connected) C∞-smooth real hy-
persurfaces with M strongly pseudoconvex and M ′ Levi-nondegenerate of signature 
′, 
n′ > n ≥ 1. If n′ − 
′ ≤ n, then every CR transversal map h : M → M ′, of class 
C n′−n+1, is C∞-smooth on some dense open subset of M .

Our following result uses not only the formal submanifolds Γξ constructed in Theo-
rem 2.2, but also the CR dependence of Γξ on ξ. This is in contrast to Corollary 2.3
and 2.4, where we just use the fact that the Γξ exist. We recall that the tube over the 
light cone (in CN ′

w ), defined by the equation

N ′−1∑
j=1

(Re wj)2 = (Re wN ′)2, (2.3)

is one of the basic examples of a uniformly 2-nondegenerate hypersurface. The precise 
statement given by Theorem 2.2 allows us, in a way similar to the case of convergence 
of formal maps in [21], to treat the case of maps taking values in the tube over the light 
cone.

Corollary 2.6. Let M ⊂ C
N be a C∞-smooth minimal CR submanifold and M ′ ⊂ C

N ′

be the tube over the light cone. Then every CR map h : M → M ′, of class C N ′−1 and of 
rank ≥ 3, is C∞-smooth on a dense open subset of M .

Let us remark that both in Corollary 2.6 and also in the preceding Corollary 2.3 the 
rank of the map is measured in terms of its rank as a real C 1 map (from the real manifold 
M to the real manifold M ′). Since h, in both cases, is a CR map, its linear part at each 
point p ∈ M also gives rise to a complex linear map L(p). In the setting of Corollary 2.6, 
the requirement that the real rank of h is at least 3 corresponds to requiring that the 
complex rank of L(p) is at least 2 for every p.
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The last corollaries we are going to mention will provide a regularity result for finitely 
nondegenerate source manifolds and in particular, for Levi-nondegenerate sources. Before 
we formulate this result, we need to introduce the property which will allow us to use 
the finite nondegeneracy of M . While in many respects similar to the notion of CR 
transversality, the crucial definition needed here is in some sense dual to transversality. 
Recall that if M ′ ⊂ C

N ′ is a smooth CR submanifold, then its complex tangent spaces
T c
qM

′, q ∈ M ′, form a subbundle T cM ′ of the tangent bundle TM ′. The characteristic 
bundle of M ′ is the annihilator of this bundle, i.e. T 0

q M
′ := (T c

qM
′)⊥ ⊂ T ∗

q M
′. One can 

check that if h is CR, then h∗T 0M ′ ⊂ T 0M . We use the following definition:

Definition 2.7. We say that a CR map h : M → M ′ between CR submanifolds M ⊂ C
N

and M ′ ⊂ C
N ′ , of CR codimension d and d′ respectively, is strictly noncharacteristic (at 

the point p ∈ M) if

h∗(T 0
h(p)M

′) = T 0
pM.

Remark 2.8. We recall that a map h is CR transversal at p ∈ M if

T
(1,0)
h(p) M

′ + T
(0,1)
h(p) M

′ + h′(p)(CTpM) = CTh(p)M
′.

Clearly, CR transversality implies that d′ ≤ d. On the other hand, if h is strictly non-
characteristic, then d ≤ d′. If d = d′ one may check that a map is CR transversal if and 
only if it is strictly noncharacteristic. This conclusion holds in particular when M and 
M ′ are hypersurfaces.

Let us recall that a CR submanifold M ⊂ C
N
z is σ-finitely nondegenerate for some 

σ ∈ Z+ (see [2]) if and only if for every p ∈ M , and for any (real) defining function 
� = (�1, . . . , �d) for M near p, we have

span
{(

L̄1 . . . L̄k�
r
z

)
(p, p̄) : L̄j ∈ Γp(M), 0 ≤ j ≤ k ≤ σ, 1 ≤ r ≤ d

}
= C

N .

Corollary 2.9. Let M ⊂ C
N and M ′ ⊂ C

N ′ be C∞-smooth CR submanifolds. Assume 
that M is minimal and σ-finitely nondegenerate for some σ ∈ Z+ and that M ′ is of 
D’Angelo finite type. Then every strictly noncharacteristic CR map h : M → M ′ of class 
CN ′−N+σ is C∞-smooth on some dense open subset of M .

A particular case of the preceding corollary is the case of a Levi-nondegenerate man-
ifold M (meaning σ = 1). Even in this case, the regularity result given by Corollary 2.9
is new, and provides, using Remark 2.8, a generalization of Theorem 1.2 to higher codi-
mensions:

Corollary 2.10. Let M ⊂ C
N and M ′ ⊂ C

N ′ be C∞-smooth CR submanifolds. Assume 
that M is minimal and Levi-nondegenerate and that M ′ is of D’Angelo finite type. Then 
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every strictly noncharacteristic CR map h : M → M ′ of class CN ′−N+1 is C∞-smooth 
on some dense open subset of M .

3. A smooth regularity result

In this section, we state and prove our main technical tool to be used later in the 
paper. It provides a criterion that exhibits sufficient conditions ensuring that a CR map, 
of class C 1, is in fact C∞-smooth. We note that a (weaker) similar result was obtained 
by the first author in [19], based in part on the work of Roberts [26]. However, for the 
purpose of this paper, we really need the stronger form stated below.

Theorem 3.1. Let M ⊂ C
N be a C∞-smooth generic submanifold, p0 ∈ M , and let 

h : (M, p0) → C
� be a germ of a C 1 CR mapping at p0, g : (M, p0) → C

k be a 
germ of a continuous CR mapping at p0. Let U × V × O be an open neighborhood of 
(p0, h(p0), g(p0)) ∈ C

N
z ×C

�
w ×C

k
Λ, and R : U × V ×O → C

� be a C∞-smooth mapping, 
holomorphic in Λ ∈ O. Assume that:

(i) R(z, ̄z, h(z, ̄z), h(z, z̄), g(z, z̄)) = 0 for z ∈ M near p0.
(ii) RkRw(p0, p̄0, h(p0, p̄0), h(p0, p̄0), g(p0, p̄0)) = 
.
(iii) All components of h and g extend holomorphically to a common wedge with edge 

M at p0.

Then h is C∞-smooth in a neighborhood of p0.

Even though the theorem is similar to the almost holomorphic implicit function theo-
rem in [19], we cannot directly apply that theorem. We also include a number of details 
which are missing from the proof of the theorem in [19]. We split the proof into several 
steps.

3.1. Smooth wedge coordinates

Let M ⊂ C
N be a C∞-smooth generic submanifold of codimension d, p0 ∈ M , and 

let ρ be a Rd-valued defining function of M near p0. Recall that a wedge of edge M
at p0 is an open subset of CN of the form W = {z ∈ U : ρ(z, ̄z) ∈ Γ} for some open 
neighborhood U of p0 in CN and some open convex cone Γ with vertex the origin in Rd, 
see e.g. [2]. In what follows, we write Br

ε (x) for the ball of radius ε > 0, centered at the 
point x ∈ R

r.
We start with the following known fact.

Proposition 3.2. Let M ⊂ C
N be a generic C∞-smooth submanifold of CR dimension n

and codimension d. Let p0 ∈ M , W be a wedge with edge M at p0. Then there exist a 
wedge W ′ ⊂⊂ W with compact closure, ε1, ε2, r > 0 and smooth coordinates (η, s, t) =
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Φ−1(η, η̄, ζ, ζ̄) ∈ C
n × R

d × R
d for CN near p0, where Φ: B2n

ε1 (0) × B2d
ε2 (0) → C

N is a 
smooth diffeomorphism, with the following properties, where we write σ = s + it:

i) Φ(0, 0, 0) = p0, Φ(η, s, 0) ⊂ M ;
ii) Φ(B2n

ε1 ×Bd
ε2 × (0, r)d) ⊂ W ′

iii) For every α, β ∈ N
n and every γ, δ ∈ N

d and every a ∈ N there exist constants 
Cα,β,γ,δ and Cα,β,γ,δ,a such that for every continuous CR function ϕ on M extending 
to a holomorphic function ϕ̃ on W , we have that the function f = ϕ̃ ◦Φ satisfies the 
following:∣∣∣∣∂|α|+|β|+|γ|+|δ|f

∂ηαη̄βsγtδ
(η, η̄, s, t)

∣∣∣∣ ≤ Cα,β,γ,δ supW ′ |ϕ̃| ‖t‖−(|α|+|β|+|γ|+|δ|)
,

(η, s, t) ∈ B2n
ε1 ×Bd

ε2 × (0, r)d, (3.1)

and ∣∣∣∣∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ
∂f

∂σ̄j
(η, η̄, s, t)

∣∣∣∣ ≤ Cα,β,γ,δ,a supW ′ |ϕ̃| ‖t‖a ,

(η, s, t) ∈ B2n
ε1 ×Bd

ε2 × (0, r)d, 1 ≤ j ≤ d. (3.2)

Proof. We assume that p0 = 0. We consider a smooth defining function of M near 0 of 
the form Im ζ = ϕ(η, η̄, Re ζ), where CN

z = C
n
η ×C

d
ζ , and furthermore ∇ϕ(0) = 0 (so that 

T c
0M = {ζ = 0}). Thus, for some neighborhoods U1, U2 of 0 in Cn and Rd respectively, 

the map

Ψ: Cn
η × R

d
s � (η, s) �→ (η, s + iϕ(η, η̄, s))

parametrizes M near 0 for (η, s) ∈ U1 ×U2. We choose an almost holomorphic extension 
of Ψ to U1 ×U2 ×R

d, again denoted by Ψ, in the s-variable (see for this e.g. [23]). After 
possibly shrinking U1 and U2 a bit, we can assume that for a ∈ N there exist constants 
Ca > 0 such that this new Ψ: U1 × U2 × R

d is a smooth map which satisfies:

Ψ(η, η̄, s, 0) = (η, s + iϕ(η, η̄, s)) ∈ M ;∣∣∣∣ ∂Ψ
∂σ̄j

(η, η̄, s, t)
∣∣∣∣ ≤ Ca ‖t‖a , j = 1, . . . , d, η ∈ U1, s ∈ U2.

(3.3)

Note that since ∇ϕ(0) = 0, we have that Ψ′(0) = id; hence, again after possibly shrink-
ing U1 and U2 a bit, we can assume that Ψ: U1 × U2 × Ũ2 → Ψ(U1 × U2 × Ũ2) is a 
diffeomorphism from U1 × U2 × Ũ2 onto a neighborhood of 0.

Now consider a wedge W with edge M near 0. This means that in a small neighborhood
of 0, we can assume that we can write W (in our chosen coordinates) as Cn

η × R
d
s × Γ, 

for some open, convex cone Γ ⊂ R
d. Let us also choose an arbitrary ξ ∈ T0C

N with 
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ξ ∈ W . It follows that Ψ−1(W ) has the property that we can find a (closed) convex cone 
Γ′ ⊂ R

d \{0}, with Γ′∪{0} = CH{u1, . . . , ud} for some vectors u1, . . . , ud in Rd, linearly 
equivalent to Rd

+, such that for some small balls B2n
ε1 (0) ⊂ C

n, Bd
ε̃2(0) ⊂ R

d, and some 
r̃ > 0 we have B2n

ε1 (0) × Bd
ε̃2(0) × Γ′

r̃ ⊂ Ψ−1(W ), where Γ′
r̃ = {t ∈ Γ′ : ‖t‖ < r̃}. Now 

consider the complex linear transformation U : Cd → C
d defined by U(σ1, . . . , σd) =∑d

j=1 σjuj . By choice of Γ′, we have U(iRd
+) = {0} × Γ′. By choosing an appropriate ε2

and r we can assume that U(Bd
ε2(0) + i(0, r)d) ⊂ Bd

ε̃2(0) × Γ′
r̃.

We define the map Φ: B2n
ε1 (0) ×Bd

ε2(0) × (−r, r)d → C
N ,

Φ(η, η̄, s, t) = Ψ(η, η̄, Us, Ut).

Note that since Γ′ ⊂ Γ was a closed cone, and r can be chosen as small as needed, we 
can find a wedge W ′ ⊂⊂ W and a constant C > 0 such that

1
C

‖t‖ ≤ d(Ψ(η, s, t), ∂W ′) ≤ C ‖t‖ . (3.4)

Also note that since U(s + it) = Us + iUt is complex linear, the estimates (3.3) hold 
also for the corresponding derivatives of Φ (where we might to use different constants 
Ca, a ∈ N, of course):

Φ(η, η̄, s, 0) = (η, Us + iϕ(η, η̄, Us)) ∈ M ;∣∣∣∣ ∂Φ
∂σ̄j

(η, η̄, s, t)
∣∣∣∣ ≤ Ca ‖t‖a , j = 1, . . . , d, η ∈ B2n

ε1 (0), s ∈ Bd
ε2(0), ∀a ∈ N.

(3.5)

If a continuous CR function ϕ : M → C extends holomorphically to W near 0, we 
know by a result of Rosay [25] that the extension, which we are still going to denote 
by ϕ̃, is actually continuous up to the edge M on any finer wedge than the given W . 
Therefore, we can apply Cauchy’s inequalities to the domain W ′: since ϕ̃ is continuous 
up to the edge, and holomorphic in W , we have that∣∣∣∣∂|α|+|β|ϕ̃

∂ηαζβ
(η, ζ)

∣∣∣∣ ≤ α!β! supW ′ |ϕ̃|
(Kd((η, ζ), ∂W ′))|α|+|β| ,

with a constant K just depending on the metric used.
Combining this inequality with (3.4), applying the chain rule, and using the fact that 

Ψ is smooth, we can therefore find, for any α, β ∈ N
n, and every γ, δ ∈ N

d, a constant 
Cα,β,γ,δ (independent of ϕ̃) such that (3.1) holds.

Furthermore, if we appeal to (3.5), a similar argument shows that (3.2) holds. �
3.2. Edge of the wedge theory

In this subsection, we discuss the necessary smooth edge of the wedge theory. We 
consider H = B2n

ε (0) ×Bd
ε (0) ×{0}d ⊂ C

n
η×R

d
s×R

d
t , and H+ = B2n

ε (0) ×Bd
ε (0) ×(0, r)d, 
1 2 1 2
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H− = B2n
ε1 (0) ×Bd

ε2(0) ×(−r, 0)d. We use, as before, the complex variables σ = s +it ∈ C
d. 

We define A∞(H+) to be the set of all functions f ∈ C∞(H+) which have the following 
property: For every α, β ∈ N

n, every γ, δ ∈ N
d, and every a ∈ N there exist constants 

Cα,β,γ,δ, Cα,β,γ,δ,a, and b ∈ N such that

∣∣∣∣∂|α|+|β|+|γ|+|δ|f

∂ηαη̄βsγtδ
(η, η̄, s, t)

∣∣∣∣ ≤ Cα,β,γ,δ ‖t‖−b
, (η, s, t)H+,∣∣∣∣∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ
∂f

∂σ̄j
(η, η̄, s, t)

∣∣∣∣ ≤ Cα,β,γ,δ,a ‖t‖a , (η, s, t) ∈ H+.

(3.6)

The analogous definition is given for A∞(H−). It is well known, see e.g. [2,3], that every 
function f in A(H±) has a boundary value distribution defined for χ ∈ D(H) by

〈bv f, χ〉 = lim
t→0
t∈R

d
±

∫
Cn×Rd

f(z, s, t)χ(z, s) dm.

The edge of the wedge theorem that we are going to use is the following.

Theorem 3.3. Assume that U ∈ D ′(H) is both a boundary value from above and from 
below, i.e. there exist f+ ∈ A∞(H+) and f− ∈ A∞(H−) such that bv f+ = bv f− = U . 
Then U ∈ C∞(H).

A proof of Theorem 3.3 can be found in e.g. [19].
There are a number of interesting properties for the sets A∞(H±). The most important 

of them is probably the inclusion C∞(H) ⊂ A∞(H±) which follows from the existence 
of an almost analytic extension of a smooth function in the s variables : If U ∈ C∞(H), 
then there exists a function Ũ ∈ C∞(Cn × R

d × R
d) with Ũ |H = U and such that ∂Ũ

∂σ̄j

vanishes to infinite order on H for j = 1, . . . , d (see [23]).
Also, if X is a partial differential operator in the (η, s)-variables with smooth coeffi-

cients, and X̃ denotes the extension given by almost analytic extension of the coefficients 
of X, then X̃f ∈ A∞(H±) for f ∈ A∞(H±) and X bv f = bv X̃f .

3.3. A priori regularity for ∂̄-bounded extensions

Our goal in this section is to recall a Hölder regularity result for extensions of Hölder 
continuous functions which are ∂̄-bounded and whose (first order) derivatives are of a 
certain growth (later to be applied to extensions of continuous CR functions).

We first introduce some notation: a continuous function f : Ω → C is Hölder contin-
uous on a set Ω ⊂ R

p with Hölder exponent α ∈ (0, 1] if there exists a constant C such 
that

|f(x) − f(y)| ≤ C ‖x− y‖α .
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The space of all Hölder continuous functions on Ω with Hölder exponent α is denoted 
by C 0,α(Ω). If Ω is compact, it becomes a Banach space if endowed with the norm

‖f‖0,α = ‖f‖∞ + ‖f‖α ,

where

‖f‖∞ = max
x∈Ω

|f(x)|, ‖f‖α = max
x�=y∈Ω

|f(x) − f(y)|
‖x− y‖α .

Let H ⊂ C
n
η × R

d
s be open, and write (for some r > 0)

H+ = H × (0, r)d, H− = H × (−r, 0)d, H+, H− ⊂ H × R
d
t .

The following result follows from inspecting the proof of Coupet’s paper [7] including his 
proposition 1, and is stated in the context we need to refer to:

Proposition 3.4. Let H̃ ⊂⊂ H , 0 < α < 1. Set β = α
1+α and write σ = s +it ∈ C

d. There 
exists a constant K = K(α, H̃) such that if h ∈ C 1(H+) is continuous up to H × {0}
with

∀(η, s, t) ∈ H+,

∣∣∣∣ ∂h∂σ̄j
(η, η̄, s, t)

∣∣∣∣ ≤ C, h|t=0 ∈ C 0,α(H),

∀(η, s, t) ∈ H+, |hsj (η, η̄, s, t)| ≤
C

‖t‖ , |hηk
(η, η̄, s, t)| ≤ C

‖t‖ , |hη̄k
(η, η̄, s, t)| ≤ C

‖t‖ ,

for some constant C > 0 and j = 1, . . . , d, k = 1, . . . , n, then

h ∈ C 0,β(H̃+), with ‖h‖β ≤ K(C + ‖h|t=0‖0,α),

where H̃+ = H̃ × (0, ̃r)d for arbitrary r̃ < r.

3.4. Proof of Theorem 3.1

Proof. For the proof of the theorem, we need to extend R almost analytically in (most) of 
its variables. This will allow us to consider h and h̄ (mostly) as independent variables. We 
will from now on choose coordinates for M as in Proposition 3.2, adapted to the wedge 
W to which we assume that h and g extend. In these coordinates, h and g extending 
continuously to functions h+(η, η̄, s, t), g+(η, η̄, s, t) ∈ A∞(H+) where H+ = B2n

ε1 ×Bd
ε2 ×

(0, r)d and H = B2n
ε1 ×Bd

ε2 . The plan is to use the smooth identity

R(q, q̄, h(q, q̄), h(q, q̄), g(q, q̄)) = 0

for q in some neighborhood of p0 in M , to express h in a second way through an “almost 
reflection identity”, which will show that it also extends continuously to a function 
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h− ∈ A∞(H−). An application of Theorem 3.3 then implies the smoothness of h near 
p0.

We write w = x + iy with x, y ∈ R
N ′ , and for simplicity assume that h(p0) = 0 and 

g(p0) = 0. We write R as a map in the following way: R(η, η̄, s, x, y, Λ) is defined on 
a set of the form B2n

ε1 (0) × Bd
ε2(0) × U2 × U2 × O, where U2 ⊂ R

N ′ and O ⊂ C
k are 

neighborhoods of the origin. We can extend R almost analytically in s, x, and y, to a 
smooth map defined on B2n

ε1 (0) × Bd
ε2(0) × R

d
t × U2 × R

N ′

x′ × U2 × R
N ′

y′ × O. We write 
complex coordinates σ = s + it, χ = x + ix′, and υ = y + iy′. The extended map will be 
denoted by R̃(η, η̄, s, t, x, x′, y, y′, Λ) = R̃(η, η̄, s, t, χ, χ̄, υ, ̄υ, Λ). It relates to R by

R̃(η, η̄, s, 0, x, 0, y, 0,Λ) = R(η, η̄, s, x, y,Λ)

and satisfies that

∂

∂σ̄j
R̃, j = 1, . . . , d, ∂

∂χ̄�
R̃, and ∂

∂ῡ�
R̃, 
 = 1, . . . , N ′,

all vanish to infinite order along t = 0, x′ = y′ = 0 (actually, locally uniformly in Λ).
We introduce new complex coordinates (Z, ζ) ∈ C

N ′ × C
N ′ by

χ = Z + ζ

2 , υ = Z − ζ

2i .

Let us set

R̂(η, η̄, s, t, Z, Z̄, ζ, ζ̄,Λ) = R̃

(
η, η̄, s, t,

Z + ζ

2 ,
Z + ζ

2 ,
Z − ζ

2i ,
Z − ζ

2i ,Λ
)
.

Note that R̂(η, η̄, s, 0, h(η, η̄, s), h(η, η̄, s), h(η, η̄, s), h(η, η̄, s), g(η, η̄, s)) = 0 for (η, s) ∈ H

and that since (Z, ζ) are complex coordinates, the derivatives

∂

∂σ̄j
R̂, j = 1, . . . , d, ∂

∂Z̄�

R̂, and ∂

∂ζ̄�
R̂, 
 = 1, . . . , N ′,

vanish to infinite order along t = 0, ζ = Z̄; to be more exact, we can assume (after 
possibly shrinking the neighborhoods a bit near the origin) that for any a ∈ N there 
exists a constant C = Ca, depending also on the chosen neighborhood, such that

d∑
j=1

∥∥∥∥∥ ∂R̂∂σ̄j

∥∥∥∥∥+
N ′∑
�=1

∥∥∥∥∥ ∂R̂∂Z̄�

∥∥∥∥∥+
N ′∑
�=1

∥∥∥∥∥∂R̂∂ζ̄�
∥∥∥∥∥ ≤ Ca

(
‖t‖ +

∥∥Z̄ − ζ
∥∥)a (3.7)

Let us now compute the (real) Jacobian of R̂ with respect to Z (at 0), that is, the 
Jacobian with respect to all of the underlying real variables of Z. For this, we note that 
for each 
, 
 = 1, . . . , N ′, we have



B. Lamel, N. Mir / Advances in Mathematics 335 (2018) 696–734 711
R̂Z�
(0) = 1

2 R̃χ�
(0)︸ ︷︷ ︸

=R̃x�
(0)

+ 1
2i R̃υ�

(0)︸ ︷︷ ︸
=R̃y�

(0)

= 1
2 (Rx�

(0) − iRy�
(0)) = Rw�

(0),

and that

R̂Z�
(0) = 1

2 R̃χ�
(0) − 1

2i R̃υ�
(0) = R̃χ̄�

(0) + R̃ῡ�
(0) = 0.

Hence the Jacobian matrix of R̂ with respect to all of the underlying real variables 
constituting the complex variables Z, evaluated at the origin, has the determinant

∣∣∣∣∣ ∂R̂

∂(Z, Z̄)
(0)

∣∣∣∣∣ =
∣∣∣∣∣∣
∂R̂
∂Z (0) ∂R̂

∂Z̄
(0)

∂R̂
∂Z (0) ∂R̂

∂Z̄
(0)

∣∣∣∣∣∣ =
∣∣∣∣∣
∂R
∂w (0) 0

0 ∂R
∂w (0)

∣∣∣∣∣ = |det(Rw(0))|2 �= 0.

We can thus apply the (smooth) implicit function theorem and from it see that there 
exists a unique smooth function Φ, defined in a neighborhood Û1 × Û2 × Û3 × Û4 ⊂
C

n ×C
d ×C

N ′ ×C
k of 0 , taking values in some open neighborhood V̂ of 0 ∈ C

N ′ , such 
that

R̂(η, η̄, s, t, Z, Z̄, ζ, ζ̄,Λ) = 0 ⇔ Z = Φ(η, η̄, s, t, ζ, ζ̄,Λ)

for (η, σ, Z, ζ, Λ) ∈ Û1 × Û2 × V̂ × Û3 × Û4.
Differentiating with respect to σ̄ and ζ̄, using the usual matrix notation, we see that 

for Z = Φ(η, η̄, s, t, ζ, ζ̄, Λ)

Φσ̄ = −R−1
Z

(
R̂σ̄ + R̂Z̄Φσ̄

)
Φζ̄ = −R−1

Z

(
R̂ζ̄ + R̂Z̄Φζ̄

)
.

Using these equalities, (3.7), and the fact that detRZ does not vanish at any point, we 
see that for every α, β ∈ N

n, γ, δ ∈ N
d, ε, ν ∈ N

N ′ , every μ ∈ N
k and every a ∈ N there 

exists a constant C = Cα,β,γ,δ,ε,ν,μ,a > 0 such that for j = 1, . . . , d and 
 = 1, . . . , N ′, 
and (η, σ, ζ, Λ) ∈ Û1 × Û2 × Û3 × Û4

∥∥∥∥∂|α|+|β|+|γ|+|δ|+|ε|+|ν|

∂ηαη̄βsγtδζεζ̄νΛμ

∂Φ
∂σ̄j

(η, η̄, s, t, ζ, ζ̄,Λ)
∥∥∥∥ ≤ C

(
‖t‖ +

∥∥Φ(η, η̄, s, t, ζ, ζ̄,Λ) − ζ̄
∥∥)a∥∥∥∥∂|α|+|β|+|γ|+|δ|+|ε|+|ν|

∂ηαη̄βsγtδζεζ̄νΛμ

∂Φ
∂ζ̄�

(η, η̄, s, t, ζ, ζ̄,Λ)
∥∥∥∥ ≤ C

(
‖t‖ +

∥∥Φ(η, η̄, s, t, ζ, ζ̄,Λ) − ζ̄
∥∥)a ,

(3.8)

where Û1, Û2, Û3, Û4 may have possibly been shrunk.
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We recall that, shrinking ε1, ε2 if necessary, for (η, s) ∈ H,

R̂
(
η, η̄, s, 0, h(η, η̄, s), h(η, η̄, s), h(η, η̄, s), h(η, η̄, s), g(η, η̄, s))

)
= 0,

from which we conclude that

h(η, η̄, s) = Φ(η, η̄, s, s̄, h(η, η̄, s), h(η, s), g(η, η̄, s)), (η, s) ∈ H.

We recall that we write h+(η, η̄, s, t), and g+(η, η̄, s, t) for the almost analytic extensions 
of h and g to H+, which exist by assumption.

We now set

h−(η, η̄, s, t) := Φ(η, η̄, s, t, h+(η, η̄, s,−t), h+(η, η̄, s,−t), g+(η, η̄, s,−t)),

(η, s) ∈ H, t ∈ (−r, 0)d,

and claim that h− lies in A∞(H̃−) for some (possibly smaller) neighborhood H̃ ⊂ H of 
0 in Cn × R

d and some 0 < r̃ < r.
One can check that the slow growth condition for h−(η, η̄, s, t) is satisfied on H−, 

because Φ is smooth, and h+, h̄+, and ḡ+ are all of slow growth on H+ by assumption. 
We therefore only have to check that for any α, β ∈ N

n, any γ, δ ∈ N
d, and any a ∈ N, 

there exists a constant Cα,β,γ,δ,a such that∣∣∣∣∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ
∂h−
∂σ̄j

(η, η̄, s, t)
∣∣∣∣ ≤ Cα,β,γ,δ,a ‖t‖a , (z, s, t) ∈ H̃−, j = 1, . . . , d. (3.9)

So we first compute the derivative with respect to σ̄j = sj − itj . Recall that

∂h+(η, η̄, s,−t)
∂σ̄j

= ∂h+

∂σ̄j
(η, η̄, s,−t),

and compute (we drop the arguments):

∂h−
∂σ̄j

= Φσ̄j
+ Φζ

∂h+

∂σ̄j
+ Φζ̄

∂h+

∂σj
+ ΦΛ

∂g+

∂σ̄j
(3.10)

Using similar arguments as in showing that h− is of slow growth, one sees that the 
second and the fourth summand satisfy the estimate (3.9). Indeed, if α, β ∈ N

n, β, γ ∈ N
d, 

and a are given, then we can write

∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ

(
Φζ

∂h+

∂σ̄j

)
,

∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ

(
ΦΛ

∂g+

∂σ̄j

)
as (finite) sum of terms, each of which is a product of three types of factors: First, 
some derivative of Φ, evaluated at (η, η̄, s, t, h+(η, η̄, s,−t), h+(η, η̄, s, −t), g+(η, η̄, s,−t)), 



B. Lamel, N. Mir / Advances in Mathematics 335 (2018) 696–734 713
which stays uniformly bounded over H−; second, some derivatives of h+, h̄+, and ḡ, each 

of which are of slow growth; and third, some derivative of either ∂h+
∂σ̄j

or ∂g+
∂σ̄j

. Since by 
(3.2) each of these vanishes to infinite order at t = 0 , so does this finite sum.

In order to deal with the first and the third summand, we first need some preparation: 
Since h(η, η̄, s) is C 1, by the result of Rosay [25] already mentioned above, h+ is actually 
C 1 up to the edge; therefore, (3.10) and (3.2) imply that there exists a constant C > 0
with 

∣∣∣∂h−
∂σ̄j

(η, η̄, s, t)
∣∣∣ ≤ C for (η, η̄, s, t) ∈ H−, j = 1, . . . , d, and that h− ∈ C (H− ∪H). 

Also choose C so large that we have that∣∣∣∣∂h−
∂sj

(η, η̄, s, t)
∣∣∣∣ < C

‖t‖ ,
∣∣∣∣∂h−
∂η�

(η, η̄, s, t)
∣∣∣∣ < C

‖t‖ ,
∣∣∣∣∂h−
∂η̄�

(η, η̄, s, t)
∣∣∣∣ < C

‖t‖ ,

j = 1, . . . , d, 
 = 1, . . . , n.

Recalling that for (η, s) ∈ H

h(η, η̄, s) = Φ
(
η, η̄, s, 0, h+(η, η̄, s, 0), h+(η, η̄, s, 0), g(η, η̄, s, 0)

)
= h−(η, η̄, s, 0),

we thus see that h−(η, η̄, s, t) satisfies the assumptions of Proposition 3.4 for any α < 1. 
Therefore, h−, when restricted to any set of the form H̃− = H̃ × (r̃, 0)d as in that 
corollary, is C 0,β0(H̃) for every β0 < 1

2 . Fix any such β0 for the remainder of the proof.
For (η, s, t) ∈ H̃−, we can therefore estimate

‖h+(η, η̄, s,−t) − h−(η, η̄, s, t)‖ ≤ C ‖t‖β0 .

We now return to the terms of interest. We claim that both

Φσ̄

(
η, η̄, s, t, h+(η, η̄, s,−t), h+(η, η̄, s,−t), g+(η, η̄, s,−t)

)
,

Φζ̄

(
η, η̄, s, t, h+(η, η̄, s,−t), h+(η, η̄, s,−t), g+(η, η̄, s,−t)

)
are flat along t = 0 on H̃− that is, we will check that for j = 1, . . . , d, 
 = 1, . . . , N ′ and 
given α, β ∈ N

n, γ, δ ∈ N
d, and a ∈ N there exists a constant Cα,β,γ,δ,a > 0 such that for 

(η, s) ∈ H̃−∥∥∥∥∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ
Φσ̄j

(
η, η̄, s, t, h+(η, η̄, s,−t), h+(η, η̄, s,−t), g+(η, η̄, s,−t)

)∥∥∥∥
≤ Cα,β,γ,δ,a ‖t‖a∥∥∥∥∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ
Φζ̄�

(
η, η̄, s, t, h+(η, η̄, s,−t), h+(η, η̄, s,−t), g+(η, η̄, s,−t)

)∥∥∥∥
≤ C ‖t‖a

(3.11)
α,β,γ,δ,a
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Write A = |α| + |β| + |γ| + |δ|. First choose a constant C̃ > 0 and b ∈ N such that for 
ever α̃, β̃ ∈ N

n and every γ̃, ̃δ ∈ N
d with |α̃| + |β̃| + |γ̃| + |δ̃| ≤ A we have∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|

∂ηα̃η̄β̃sγ̃tδ̃
h+(η, η̄, s,−t)

∥∥∥∥∥ ≤ C̃

‖t‖b
,∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|

∂ηα̃η̄β̃sγ̃tδ̃
g+(η, η̄, s,−t)

∥∥∥∥∥ ≤ C̃

‖t‖b
, (η, s, t) ∈ H−.

(3.12)

By (3.8) we can choose a K > 0 such that for j = 1, . . . , d and 
 = 1, . . . , N ′,∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|+|ε̃|+|ν̃|

∂ηα̃η̄β̃sγ̃tδ̃ζ ε̃ζ̄ ν̃Λμ̃
Φσ̄j

(η, η̄, σ, σ̄, ζ, ζ̄,Λ)

∥∥∥∥∥
≤ K

(
‖t‖ +

∥∥Φ(η, η̄, σ, σ̄, ζ, ζ̄,Λ) − ζ̄
∥∥) a+Ab

β0 ,∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|+|ε̃|+|ν̃|

∂ηα̃η̄β̃sγ̃tδ̃ζ ε̃ζ̄ ν̃Λμ̃
Φζ̄�

(η, η̄, σ, σ̄, ζ, ζ̄,Λ)

∥∥∥∥∥
≤ K

(
‖t‖ +

∥∥Φ(η, η̄, σ, σ̄, ζ, ζ̄,Λ) − ζ̄
∥∥) a+Ab

β0 ,

holds on Û1 × Û2 × Û3 × Û4 for all α̃, β̃ ∈ N
n, γ̃, ̃δ ∈ N

d, ε̃, ̃ν ∈ N
N ′ , and μ̃ ∈ N

k such 
that

|α̃| + |β̃| + |γ̃| + |δ̃| + |ε̃| + |ν̃| ≤ A.

We thus see that for (η, s, t) ∈ H̃− and 
 = 1, . . . , N ′

∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|+|ε̃|+|ν̃|

∂ηα̃η̄β̃sγ̃tδ̃ζ ε̃ζ̄ ν̃Λμ̃
Φζ̄�

(
η, η̄, s, t, h+(η, η̄, s,−t), h+(η, η̄, s,−t), g+(η, η̄, s,−t)

)∥∥∥∥∥
≤ K

(
‖t‖ +

∥∥∥Φ(η, η̄, σ, σ̄, h+(η, η̄, s,−t), h+(η, η̄, s,−t), g+(η, η̄, s,−t))

−h+(η, η̄, s,−t)‖)
a+Ab
β0

= K (‖t‖ + ‖h−(η, η̄, s, t) − h+(η, η̄, s,−t)‖)
a+Ab
β0

≤ K
(
‖t‖ + C ‖t‖β0

) a+Ab
β0

≤ K̃ ‖t‖a+Ab
,

(3.13)

and with the same argument, for j = 1, . . . , d and (η, s, t) ∈ H̃−∥∥∥∥∥∂|α̃|+|β̃|+|γ̃|+|δ̃|+|ε̃|+|ν̃|

∂ηα̃η̄β̃sγ̃tδ̃ζ ε̃ζ̄ ν̃Λμ̃
Φσ̄j

(
η, η̄, s, t, h+(η, η̄, s,−t), h+(η, η̄, s,−t), g+(η, η̄, s,−t)

)∥∥∥∥∥
≤ K̃ ‖t‖a+Ab

,
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for the same range of α̃, β̃ ∈ N
n, γ̃, ̃δ ∈ N

d, ε̃, ̃ν ∈ N
N ′ , and μ̃ ∈ N

k as above.
If we now consider the term

∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ
Φζ̄�

(
η, η̄, s, t, h+(η, η̄, s,−t), h+(η, η̄, s,−t), g+(η, η̄, s,−t)

)
,

then by the chain rule, we can write it as a sum of M ∈ N terms (where M is a 
combinatorial constant involving the multiindices α, β, γ, δ) each of which is a product 
of a derivative of the form

∂|α̃|+|β̃|+|γ̃|+|δ̃|+|ε̃|+|ν̃|

∂ηα̃η̄β̃sγ̃tδ̃ζ ε̃ζ̄ ν̃Λμ̃
Φζ̄

(
η, η̄, s, t, h+(η, η̄, s,−t), h+(η, η̄, s,−t), g+(η, η̄, s,−t)

)
with at most A factors of derivatives of the form

∂|α̃|+|β̃|+|γ̃|+|δ̃|

∂ηα̃η̄β̃sγ̃tδ̃
h+(η, η̄, s,−t), ∂|α̃|+|β̃|+|γ̃|+|δ̃|

∂ηα̃η̄β̃sγ̃tδ̃
h+(η, η̄, s,−t),

∂|α̃|+|β̃|+|γ̃|+|δ̃|

∂ηα̃η̄β̃sγ̃tδ̃
g+(η, η̄, s,−t).

Using this observation together with (3.12) and (3.13) we see that for 
 = 1, . . . , N ′,∥∥∥∥∂|α|+|β|+|γ|+|δ|

∂ηαη̄βsγtδ
Φζ̄�

(
η, η̄, s, t, h+(η, η̄, s,−t), h+(η, η̄, s,−t), g+(η, η̄, s,−t)

)∥∥∥∥
≤ MK̃ ‖t‖a+Ab

(
C̃

‖t‖b

)A

≤ MK̃C̃A ‖t‖a ,

(3.14)

and thus, (3.11) holds for Φζ̄ . As the same argument applies to Φσ̄j
, j = 1, . . . , d, 

we get that h− lies in A∞(H̃−) as claimed. The final conclusion follows by applying 
Theorem 3.3. �
4. Numerical invariants for a CR map and associated open subsets decomposition

4.1. Admissible rings of functions, numerical invariants and some basic properties

Here we introduce a new sequence of invariants attached to a CR map that relates to 
its smoothness properties. If X is a real manifold, x0 ∈ X and 
 ∈ Z+ ∪ {∞}, we denote 
by C �(X, x0) the ring of germs of C �-smooth functions at x0 and by C �(X) the ring of 
C �-functions over X.

In this section we assume that M ⊂ C
N is a C∞-smooth generic submanifold of CR 

dimension n, and h : M → C
N ′
w is a continuous CR map. We denote by C k

CR(M, p), 



716 B. Lamel, N. Mir / Advances in Mathematics 335 (2018) 696–734

 ∈ Z+ ∪ {∞}, the ring of germs of C k-smooth CR functions at a point p ∈ M . For a 
given ψ ∈ C 1(M, p), we denote by L̄ψ = (L̄1ψ, . . . , L̄nψ) where L̄1, . . . , L̄n is a given 
choice of a basis of C∞-smooth CR vector fields near p. The reader should note that, 
wherever we use this notation in what follows, the conditions involved will not depend 
on the choice of the basis of CR vector fields.

It will be convenient to introduce the following:

Definition 4.1. Let M and h be as above, μ ∈ Z+, p ∈ M , and j be an integer satisfying 
0 ≤ j ≤ μ.

a) We denote by A j,μ
p the set of all pairs (g, R) with g = (g1, . . . , gk) ∈ (C μ−j

CR (M, p))k
for some integer k and R(z, ̄z, w, w̄, Λ) ∈ C∞(M × C

N ′ × C
k, (p, h(p), g(p))), which 

have the property that R is holomorphic in Λ and which satisfy

R
(
ξ, ξ̄, h(ξ, ξ̄), h(ξ, ξ̄), g(ξ, ξ̄)

)
= 0

for ξ ∈ M near p.
b) If h is assumed to be C μ−j-smooth, we denote by F j,μ

p the subring of C μ−j(M, p)
consisting of those functions ψ that may written in the form

ψ(ξ, ξ̄) = R
(
ξ, ξ̄, h(ξ, ξ̄), h(ξ, ξ̄), g(ξ, ξ̄)

)
for ξ ∈ M near p where g = (g1, . . . , gk) ∈ (C μ−j

CR (M, p))k for some integer k, and 
R(z, ̄z, w, w̄, Λ) ∈ C∞(M × C

N ′ × C
k, (p, h(p), g(p))) is holomorphic in Λ.

c) For (g, R) ∈ A j,μ
p , we define

Rw : = Rw

(
ξ, ξ̄, h(ξ, ξ̄), h(ξ, ξ̄), g(ξ, ξ̄)

)
=
(
Rw1

(
ξ, ξ̄, h(ξ, ξ̄), h(ξ, ξ̄), g(ξ, ξ̄)

)
, . . . , RwN′

(
ξ, ξ̄, h(ξ, ξ̄), h(ξ, ξ̄), g(ξ, ξ̄)

))
,

for ξ ∈ M near p.

Remark 4.2. Note that if ψ ∈ F j,μ
p then there is a neighborhood of p in M such that for 

any z in that neighborhood, (the germ at z of) ψ ∈ F j,μ
z .

We note that for any p ∈ M , the space

Dμ
j (M,p) =

{
Rw

(
p, p̄, h(p, p̄), h(p, p̄), g(p, p̄)

)
: (g,R) ∈ A j,μ

p

}
⊂ C

N ′

is a vector space. We define, for p ∈ M and any integer 0 ≤ j ≤ μ:

S μ
j (M,p) := dimC Dμ

j (M,p) (4.1)
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For every p ∈ M and each μ ∈ Z+, we have

Dμ
0 (M,p) ⊂ Dμ

1 (M,p) ⊂ · · · ⊂ Dμ
μ (M,p),

and hence

S μ
0 (M,p) ≤ S μ

1 (M,p) ≤ . . . ≤ S μ
μ (M,p).

Remark 4.3. We note that even though S μ
j (M, p) was defined using specific coordinates 

in CN ′ , it is not hard to see that S μ
j (M, p) is actually independent of the specific choice 

of (local) holomorphic coordinates in CN ′ near h(p). The same is true for the numbers 
rj(p) defined by (2.2).

We do need to be careful as the sequence S μ
j (M, p) might be strictly increasing up 

to a certain j, then stabilize, and then can start to strictly increase again. Stabilization, 
however, is crucial for what follows.

For p ∈ M , we set

V
j,μ
p =

(
Dμ

j (M,p)
)⊥

=
{
V ∈ C

N ′
: V ·Rw(p, p̄, h(p, p̄), h(p, p̄), g(p, p̄)) = 0, ∀(g,R) ∈ A j,μ

p

}
.

(4.2)

Since Dμ
j (M, p) is increasing in j, we have that

V
μ,μ
p ⊂ V

μ−1,μ
p ⊂ · · · ⊂ V

0,μ
p and dimV

j,μ
p = N ′ − S μ

j (M,p).

In the following remark, we define the “holomorphic” derivatives of elements of F j,μ
p .

Remark 4.4. Let μ ∈ Z+, p ∈ M , and j be an integer satisfying 0 ≤ j ≤ μ.

(i) For ψ ∈ F j,μ
p and V ∈ V

j,μ
p , one can define V · ψw (at p) in a unique way.

Indeed, if ψ ∈ F j,μ
p can be written in two different ways, using (g1, R1) and (g2, R2), 

so that

ψ(ξ, ξ̄) = R1
(
ξ, ξ̄, h(ξ, ξ̄), h(ξ, ξ̄), g1(ξ, ξ̄)

)
= R2

(
ξ, ξ̄, h(ξ, ξ̄), h(ξ, ξ̄), g2(ξ, ξ̄)

)
for ξ ∈ M near p, where each gi ∈ (C μ−j

CR (M, p))ki for some integer ki, and Ri ∈
C∞(M × C

N ′ × C
ki

Λi
, (p, h(p), gi(p))) is holomorphic in its last argument, i = 1, 2, 

then we have for g = (g1, g2) and R defined by

R
(
ξ, ξ̄, w, w̄,Λ1,Λ2

)
= R1 (ξ, ξ̄, w, w̄,Λ1

)
−R2 (ξ, ξ̄, w, w̄,Λ2

)
that (R, g) ∈ A j,μ

p . Then for every V ∈ V
j,μ
p , we have V ·Rw = 0 and so
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V ·R1
w = V ·R2

w (at p). (4.3)

It follows that for every V ∈ V
j,μ
p , the natural definition

V · ψw := V ·R1
w (at p) (4.4)

is well defined, since (4.3) shows that the right hand side of (4.4) is independent of 
a particular choice of representative (gi, Ri) for ψ.

(ii) For any polynomial P (t, ̄t) =
∑

α,β P
α,βtαt̄β ∈ F j,μ

p [t, ̄t], t ∈ C
r, and any V ∈ V

j,μ
p , 

we define

V · Pw(t, t̄) :=
∑
α,β

(V · Pα,β
w )tαt̄β ,

which is well defined by (i).

Lemma 4.5. Let M ⊂ C
N be a C∞-smooth generic minimal submanifold, of CR dimen-

sion n, and p ∈ M . Let μ, j be integers satisfying 0 ≤ j < μ and let h : M → C
N ′ be a 

CR map of class C μ−j. Let K̄ be a C∞-smooth CR vector field on M defined near p.

(i) Let ψ ∈ F j,μ
p and assume that both ψ and K̄ are defined on a neighborhood Up of p. 

Then K̄ψ ∈ F j+1,μ
p , and for every z ∈ Up, (the germ at z) of K̄ψ belongs to F j+1,μ

z . 
Furthermore, if V : Up → C

N ′ is a CR map of class C 1 and satisfies V (z) ∈ V
j+1,μ
z

for z ∈ Up, then V · (K̄ψ)w is defined all over Up and one has

V · (K̄ψ)w = K̄(V · ψw), on Up.

(ii) Let (g, R) ∈ A j,μ
p . Then there exists (ĝK̄ , R̂K̄) ∈ A j+1,μ

p such that K̄Rw = R̂K̄
w .

In applications of Lemma 4.5, the place of K̄ will be taken up by entries of a local 
basis L̄1, . . . , L̄n of CR vector fields on M near p. In order to simplify notation, we will 
in that case write R̂L̄j =: R̂j .

Proof. Let ψ ∈ F j,μ
p . By definition there exist g ∈ (C μ−j

CR (M, p))k for some integer k
and R ∈ C∞(M × C

N ′ × C
k, (p, h(p), g(p))), holomorphic in its last argument (denoted 

by Λ in what follows) such that

ψ(z, z̄) = R
(
z, z̄, h(z, z̄), h(z, z̄), g(z, z̄)

)
, z ∈ M near p.

Hence for z ∈ M near p,

(K̄ψ)(z, z̄) = Rz̄(z, z̄, h(z, z̄), h(z, z̄), g(z, z̄)) · K̄(z̄)

+ Rw̄(z, z̄, h(z, z̄), h(z, z̄), g(z, z̄)) · (K̄h̄)(z, z̄)

+ R (z, z̄, h(z, z̄), h(z, z̄), g(z, z̄)) · (K̄ḡ)(z, z̄).
Λ
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Since g and h are CR maps of class C μ−j , their components all extend holomorphically 
to a (common) wedge of edge M at p by Tumanov’s theorem [28] and the extensions 
are of class C μ−j up to the edge (on any strictly finer wedge), see e.g. [25,2]. Keeping 
the same notation for the maps g, h and for their extension on some appropriate finer 
wedge, we then may write

K̄ḡ =
N∑
j=1

aj(z, z̄)
∂g

∂zj
(z, z̄), K̄h̄ =

N∑
j=1

aj(z, z̄)
∂h

∂zj
(z, z̄)

for z ∈ M near p, where the aj are C∞ functions defined on Up. Using the notation 

∂g =
(

∂g
∂z1

, . . . , ∂g
∂zN

)
and similarly for h, we can therefore write

(K̄ψ)(z, z̄) = R̃
(
z, z̄, h(z, z̄), h(z, z̄), g(z, z̄), (∂h)(z, z̄), (∂g)(z, z̄)

)
,

with R̃ ∈ C∞
(
M × C

N ′ × C
k+NN ′+kN , (p, h(p), g(p), ∂h(p), ∂g(p))

)
, and holomorphic 

in its last three arguments. Hence L̄ψ ∈ F j+1,μ
p , and as observed in Remark 4.2, for 

z ∈ Up, the germ at z of L̄ψ belongs to F j+1,μ
z .

Next, suppose that we are given a neighborhood Up of p in M , as in Lemma 4.5, and 
Up � z �→ V (z) ∈ V

j+1,μ
z of class C 1 and CR. Then we have on Up

V · (K̄ψ)w = V · K̄(ψw) = K̄(V · ψw),

since V is CR. This completes the proof of part (i) of the lemma. Part (ii) can be proven 
as well by using the same type of arguments as in (i). The proof of the lemma is therefore 
complete. �
4.2. Open subset decomposition associated to the numerical invariants

For k, 
 ∈ N, 
 ≤ N ′ and ν ∈ N with k ≤ ν ≤ N ′ − 
 + k − 1, we define

Ω�
k,ν =

{
z ∈ M : S N ′−�+k

j (M, ξ) = S N ′−�+k
j (M, z) for ξ near z, k ≤ j ≤ ν + 1, and


 ≤ S N ′−�+k
k (M, z) < . . . < S N ′−�+k

ν (M, z) = S N ′−�+k
ν+1 (M, z)

}
,

(4.5)

Ω�
k,N ′−�+k =

{
z ∈ M : S N ′−�+k

j (M, ξ) = S N ′−�+k
j (M, z) for ξ

near z, k ≤ j ≤ N ′ − 
 + k, and


 ≤ S N ′−�+k
k (M, z) < . . . < S N ′−�+k

N ′−�+k (M, z) = N ′}.
(4.6)

We also define, for k, 
 ∈ N, k ≤ ν ≤ N ′ − 
 + k, and 
 ≤ m ≤ N ′,

Ω̂�,m
k,ν :=

{
z ∈ Ω�

k,ν : S N ′−�+k
ν (M, z) = m

}
. (4.7)
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Note that by construction, for each k, 
 ∈ N with 
 ≤ N ′ and every ν with k ≤ ν ≤
N ′ − 
 + k we have

N ′⋃
m=�

Ω̂�,m
k,ν = Ω�

k,ν (4.8)

and that each Ω̂�,m
k,ν is open in Ω�

k,ν and also open in M . Let us finally note that the 
definition (4.6) implies that

Ω̂�,m
k,N ′−�+k = ∅, for m < N ′. (4.9)

5. Relating the smoothness of a CR map to the open subset decomposition

For M and h as in §4 we denote by M∞
h the open subset of M consisting of those 

points p ∈ M such that h is C∞-smooth in a neighborhood of p. The relevance of the 
introduction of the open subsets Ω̂�,m

k,ν in §4.2 to the study of the smoothness properties 
of the map h and the CR geometry of h(M) is explained by our next two results.

Proposition 5.1. Let M ⊂ C
N be a C∞-smooth generic minimal submanifold, and 

h : M → C
N ′ be a CR map of class C 1. Let 
, k ∈ N with 
 ≤ N ′, k ≤ ν ≤ N ′ − 
 + k, 

and let the sets Ω�
k,ν be defined as above. Then 

⋃N ′−�+k
ν=k Ω̂�,N ′

k,ν ⊂ M∞
h .

Proof. Let z ∈
⋃N ′−�+k

ν=k Ω̂�,N ′

k,ν . Hence there is k ≤ ν ≤ N ′ − 
 + k such that 
S N ′−�+k

ν (M, z) = N ′. Hence we can find (g, R1), . . . , (g, RN ′) ∈ A ν,N ′−�+k
z such that 

for ξ ∈ M near z

Rj(ξ, ξ̄, h(ξ, ξ̄), h(ξ, ξ̄), g(ξ, ξ̄)) = 0, j = 1, . . . , N ′,

and

Rk{Rj
w(z, z̄, h(z, z̄), h(z, z̄), g(z, z̄)), 1 ≤ j ≤ N ′} = N ′.

Since M is minimal, all components of h and g extend holomorphically to a common 
wedge of edge M at z by Tumanov’s theorem [28]. Observing that h is of class C 1

and g of class CN ′−�+k−ν and hence at least continuous, we may apply Theorem 3.1 to 
conclude that h is C∞-smooth in a neighborhood of z. The proof of Proposition 5.1 is 
complete. �
Proposition 5.2. Let M ⊂ C

N be a C∞-smooth generic minimal submanifold and 
h : M → C

N ′ be a CR map of class C 1. Let k, 
, m, ν ∈ N with k ≤ ν ≤ N ′ − 
 + k − 1
and 
 ≤ m < N ′. If h is of class C N ′−�+k−ν on Ω̂�,m

k,ν , then for every p ∈ Ω̂�,m
k,ν , there 

exists a neighborhood Up of p in Ω̂�,m
k,ν , and for every ξ ∈ Up, an (N ′ −m)-dimensional 
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formal holomorphic submanifold Γξ through h(ξ) that is tangent to h(M) to infinite or-
der at h(ξ). Furthermore, the family of formal holomorphic submanifolds (Γξ)ξ∈Up

can be 
parametrized in such a way that the dependence on ξ ∈ Up is CR and of class CN ′−�+k−ν .

The proof of Proposition 5.2 is more involved than that of the previous proposition and 
is mainly inspired by some arguments originating from our previous work on convergence 
of formal maps [21].

Throughout the rest of §5, we fix k, 
, m, ν ∈ N with k ≤ ν ≤ N ′ − 
 + k − 1 and 

 ≤ m < N ′.

For z ∈ Ω̂�,m
k,ν , we have by definition dimV

ν,N ′−�+k
z = N ′−m. However, locally around 

any point p ∈ Ω̂�,m
k,ν we can actually give a basis of vectors spanning Vν,N ′−�+k

z for z close 
to p which depend on z in a CR manner. The next proposition gives an exact statement.

Proposition 5.3. Under the assumptions of Proposition 5.2, for every p ∈ Ω̂�,m
k,ν , there 

exists a neighborhood Wp ⊂ Ω̂�,m
k,ν of p and CR maps V j : Wp → C

N ′ of class 
CN ′−�+k−ν , j = 1, . . . , N ′ − m, whose components belong to F ν,N ′−�+k

p , such that 
{V 1(z), . . . , V N ′−�(z)} forms a basis of Vν,N ′−�+k

z for every z ∈ Wp.

For the proof of Proposition 5.3, we shall need the following lemma.

Lemma 5.4. Let M ⊂ C
N be a C∞-smooth generic submanifold of CR dimension n, 

p ∈ M , and Rp be a subring of C τ (M, p), for some τ ∈ Z+, satisfying the following 
condition: for every ψ ∈ Rp, if ψ(p) �= 0 then 1/ψ ∈ Rp. Let N ′ ≥ 1, 1 ≤ δ < N ′, and 
A1, . . . , Aδ be germs of p of CN ′-valued mappings with components in Rp. Assume that:

(i) The rank of the N ′ × δ matrix A := (A1, . . . , Aδ) is equal to δ at p;
(ii) For any smooth CR vector field L̄ of M near p, the rank of the N ′ × 2δ matrix 

(A, L̄A) is constantly equal to δ in a neighborhood of p.

Then there exist N ′ − δ germs at p of CN ′-valued mappings, with components in Rp ∩
C τ
CR(M, p), denoted by V 1, . . . , V N ′−δ such that for 1 ≤ j ≤ N ′ − δ and 1 ≤ γ ≤ δ, we 

have

V j ·Aγ :=
N ′∑
i=1

V j
i A

γ
i = 0 in Rp, (5.1)

and such that V1(p, p̄), . . . , VN ′−δ(p, p̄) are linearly independent.

The proof of Lemma 5.4 can be obtained by elementary linear algebra by following 
e.g. the steps of [20, Lemma 4.5] and will therefore be left to the reader.

Proof of Proposition 5.3. Let p ∈ Ω̂�,m
k,ν . We may choose (g, R1), . . . , (g, Rm) ∈ A ν,N ′−�+k

p

such that
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Rk{Rj
w(p, p̄, h(p, p̄), h(p, p̄), g(p, p̄)), 1 ≤ j ≤ m} = m. (5.2)

We shall apply Lemma 5.4 to the subring Rp := F ν,N ′−�+k
p of CN ′−�+k−ν(M, p) and to

Aj(z, z̄) := Rj
w(z, z̄, h(z, z̄), h(z, z̄), g(z, z̄)), 1 ≤ j ≤ m.

One can check that for every ψ ∈ F ν,N ′−�+k
p with ψ(p) �= 0, 1/ψ ∈ F ν,N ′−�+k

p . Further-
more, (5.2) shows that condition (i) in Lemma 5.4 is already satisfied.

In order to apply Lemma 5.4, we now check that condition (ii) is also satisfied. For 
this, choose a basis L̄r, 1 ≤ r ≤ n, of C∞-smooth CR vector fields for M near p. Then by 
Lemma 4.5 (ii), for every 1 ≤ j ≤ m, 1 ≤ r ≤ n, there exists (gj,r, R̂j,r) ∈ A ν+1,N ′−�+k

p

such that L̄rA
j = R̂j,r

w . Hence for all j, r as above, we have a collection (g, Rj) and 
(gj,r, R̂j,r) all belonging to A ν+1,N ′−�+k

p . Since p ∈ Ω̂�,m
k,ν , the rank of the family of 

vectors in CN ′ given by Rj
w, R̂

j,r
w , for j, r as above is constant and equal to m in a 

neighborhood of p. Since this latter rank coincides with that of the family of vectors 
Aj , L̄rA

j , 1 ≤ j ≤ m, 1 ≤ r ≤ n, the claim is proved. To conclude, we now just have to 
apply Lemma 5.4, recall that dimV

ν,N ′−�+k
z = N ′ − m for all z ∈ M near p and note 

that for z in some sufficiently small neighborhood of p in M , we have

V
ν,N ′−�+k
z =

{
V ∈ C

N ′
: V ·Rj

w(z, z̄, h(z, z̄), h(z, z̄), g(z, z̄)) = 0, j = 1, . . . , 

}
.

The proof of Proposition 5.3 is complete now. �
In order to prove Proposition 5.2, we shall now follow and adapt the approach devel-

oped in [21]. We first make the following simple useful observation which follows from 
our previous construction.

Lemma 5.5. Under the assumptions of Proposition 5.2, for every p ∈ Ω̂�,m
k,ν , let 

(V 1, . . . , V N ′−m) and Wp be the basis and the neighborhood constructed in the proof 
of Proposition 5.3. Then for every z ∈ Wp, we have Vν,N ′−�+k

z = V
ν+1,N ′−�+k
z . Further-

more, for every ξ ∈ Wp, for j = 1, . . . , N ′ − m, and for every (g, R) ∈ A ν+1,N ′−�+k
ξ

defined on a neighborhood Uξ ⊂ Wp of ξ, we have

V j(z) ·Rw(z, z̄, h(z, z̄), h(z, z̄), g(z, z̄)) = 0, z ∈ Uξ.

We can now state and prove the last step towards the completion of the proof of 
Proposition 5.2. This next result can be thought of as a (C∞–)smooth version of [21, 
Theorem 4.1].

Proposition 5.6. Let M ⊂ C
N be a C∞-smooth generic minimal submanifold and 

h : M → C
N ′ be a CR map of class C 1. Let k, 
, m, ν ∈ N with k ≤ ν ≤ N ′ − 
 + k − 1

and 
 ≤ m < N ′. Assume that h is of class CN ′−�+k−ν on Ω̂�,m
k,ν and for every p ∈ Ω̂�,m

k,ν , 
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let V = (V 1, . . . , V N ′−m) and Wp be given by Proposition 5.3. For t = (t1, . . . , tN ′−m) ∈
C

N ′−m, we set t · V :=
∑N ′−m

i=1 tiV
i. For every d ∈ Z+, define a family of homogeneous 

polynomial maps of degree d in (F ν,N ′−�+k
p [t])N ′ inductively by setting

D1(t) := t · V , Dd+1(t) := 1
d + 1(t · V ) ·Dd

w(t), d ≥ 1. (5.3)

In addition set D(t) :=
∑∞

d=1 D
d(t) ∈ (F ν,N ′−�+k

p �t�)N ′ and write D(t) =∑
α∈NN′−m dαt

α. Then, shrinking Wp if necessary, the following holds:

(a) for each α ∈ N
N ′−m, dα is well defined on Wp and is of class CN ′−�+k−ν and CR 

on Wp.
(b) for every ξ ∈ Wp, t �→ D(ξ; t) := h(ξ) +

∑
α∈NN′−m dα(ξ)tα defines an (N ′ −

m)-dimensional formal holomorphic submanifold through h(ξ), denoted by Γξ.
(c) for every ξ ∈ Wp, Γξ is tangent to h(M) to infinite order at h(ξ).

Proof of Proposition 5.6. a) The fact that all the dα’s, for α ∈ N
N ′−m are well defined 

and of class CN ′−�+k−ν on Wp follows from the fact that the V i’s belong to F ν,N ′−�+k
p , 

are well defined on Wp, and from the construction given in (5.3). It remains to check that 
the dα’s are CR over Wp. Choose a basis of C∞-smooth CR vector fields L̄s, s = 1, . . . , n, 
for M defined all over Wp. We show by induction on d that L̄s(Dd(t)) = 0, s = 1, . . . , n, 
where we consider Dd(t) as a polynomial map with coefficients in C 1(Wp).

For d = 1, in view of (5.3) and Proposition 5.3, D1(t) is polynomial map with coeffi-
cients that are CR over Wp. Assume now that Dd(t) has all its coefficients CR over Wp. 
This means that for s = 1, . . . , n, L̄s(Dd(t)) = 0 over Wp. By Lemma 4.5 (i), L̄s(Dd(t))
is a homogeneous polynomial in t with coefficients in F ν+1,N ′−�+k

p and defined all over 
Wp. Furthermore, since Vν,N ′−�+k

z = V
ν+1,N ′−�+k
z for z ∈ Wp (see Lemma 5.5), we have, 

for every t ∈ C
N ′−m, a CR map of class C 1 given by Wp � z �→ t · V (z) ∈ V

ν+1,N ′−�+k
z . 

Hence, using again Lemma 4.5 (i), we get

L̄s

(
(d + 1)Dd+1(t)

)
= L̄s((t · V ) ·Dd

w(t)) = (t · V ) · (L̄sD
d(t))w on Wp.

Since L̄s(Dd(t)) = 0 over Wp, we have (t ·V ) ·(L̄sD
d(t))w = 0 and hence L̄s(Dd+1(t)) = 0

for s = 1, . . . , n which completes the proof of (a).
Regarding part (b), we use the fact that the vectors V 1(ξ), . . . , V N ′−m(ξ) are of rank 

N ′ −m at every ξ ∈ Wp, shrinking Wp if necessary, by Proposition 5.3. Hence

∂D

∂t
(ξ, 0) =

⎛⎜⎝ V 1
1 (ξ) . . . V N ′−m

1 (ξ)
...

...
V 1
N ′(ξ) . . . V N ′−m

N ′ (ξ)

⎞⎟⎠
is of maximal rank N ′ −m for ξ ∈ Wp.
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We prove part (c) by showing that for every ξ ∈ Wp and for every germ 
ρ : (CN ′

, h(ξ)) → R of a C∞-smooth function that vanishes on h(M) near h(ξ) the 
identity

ρ
(
h(ξ) + D(ξ; t), h(ξ) + D(ξ; t)

)
∼ 0

holds in the ring of formal power series R�t, ̄t�. In the previous statement, we have 
identified ρ with its formal power series expansion at h(ξ). From now on we fix ξ ∈ Wp

and ρ as above. We also assume that ρ is defined on some neighborhood Xξ of h(ξ)
in CN ′ and that Vξ is an open neighborhood of ξ (in M) such that h(Vξ) ⊂ Xξ and 
Vξ ⊂ Wp.

We need the following lemma, analogous to [21, Lemma 4.2], whose proof will therefore 
be omitted.

Lemma 5.7. Let ξ ∈ Wp, ρ, Vξ and D be as above. For z ∈ Vξ, write the formal power 
series expansion

ρ
(
h(z) + D(z; t), h(z) + D(z; t)

)
∼
∑

a,b∈Z+

1
a!b! R

a,b(z; t, t̄) ∈ R�t, t̄� (5.4)

where each Ra,b is homogeneous of degree a in t and of degree b in t̄. Then for any 
a, b ∈ Z+, there exists a universal polynomial Ua,b in all its arguments such that

Ra,b(z; t, t̄) = Ua,b

[(
ρwβw̄δ (h(z), h(z))

)
|β|≤a
|δ|≤b

, (s!Ds(z; t))s≤a, (r!Dr(z; t))r≤b

]
. (5.5)

Furthermore, for a, b ∈ Z+, writing Ua,b = Ua,b((Λβ,δ)|β|≤a
|δ|≤b

, S1, . . . , Sa, T1, . . . , Tb), 

Λβ,δ ∈ C, Si, Tj ∈ C
N ′ , and Ra+1,b for Ra+1,b(z; t, ̄t), we have

Ra+1,b =
a∑

i=1
(i + 1)! ∂Ua,b

∂Si

[(
ρwβw̄δ (h(z), h(z))

)
|β|≤a
|δ|≤b

, (s!Ds(z; t))s≤a, (r!Dr(z; t))r≤b

]
·Di+1(z; t)

+
∑
|γ|≤a
|μ|≤b

∂Ua,b

∂Λγ,μ

[(
ρwβw̄δ (h(z), h(z))

)
|β|≤a
|δ|≤b

, (s!Ds(z; t))s≤a, (r!Dr(z; t))r≤b

]

×D1(z; t) ·
(
ρwγ w̄μ(h(z), h(z))

)
w

(5.6)

In view of Lemma 5.7, we may now complete the proof of Proposition 5.6 (c) by 
showing that for ξ ∈ Wp, ρ as above, and for every z ∈ Vξ, Ra,b(z; t, ̄t) = 0 for every 
a, b ∈ Z+ by induction on e := b + a and hence in particular at z = ξ. First observe 
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that R0,0(z; t, ̄t) = ρ(h(z), h(z)) and hence is identically zero for z ∈ Vξ. Let e ∈ Z+
and suppose that Ra,b(z; t, ̄t) = 0 for z ∈ Vξ and a + b ≤ e. We are going to show that 
Ra+1,b(z; t, ̄t) = Ra,b+1(z; t, ̄t) = 0 for z ∈ Vξ and a + b ≤ e. By Lemma 5.7 we have for 
a + b ≤ e and z ∈ Vξ

Ra,b(z; t, t̄) = Ua,b

[(
ρwβw̄ν (h(z), h(z))

)
|β|≤a
|ν|≤b

, (s!Ds(z; t))�≤a, (r!Dr(z; t))r≤b

]
= 0.

(5.7)

Since for every integer d, Dd(z; t) is polynomial in t with coefficients that are at the same 
time CR and belong to F ν,N ′−�+k

ξ (cf. Proposition 5.6 (a) proved above), we may see 

(5.7) as a polynomial identity in (t, ̄t), with coefficients in F ν,N ′−�+k
ξ . Hence it follows 

from Lemma 5.5 that

D1(z; t) ·Ra,b
w (z; t, t̄) = (t · V (z)) ·Ra,b

w (z; t, t̄) = 0, z ∈ Vξ. (5.8)

But in view of (5.7), we have that for z ∈ Vξ the left-hand side L of (5.8) satisfies

L =
a∑

i=1
i! ∂Ua,b

∂Si

[(
ρwβw̄δ (h(z), h(z))

)
|β|≤a
|δ|≤b

, (s!Ds(z; t))s≤a, (r!Dr(z; t))r≤b

]
·D1(z; t) ·Di

w(z; t)

+
∑
|γ|≤a
|μ|≤b

∂Ua,b

∂Λγ,μ

[(
ρwβw̄δ (h(z), h(z))

)
|β|≤a
|δ|≤b

, (s!Ds(z; t))s≤a, (r!Dr(z; t))r≤b

]
D1(z; t)

·
(
ρwγw̄μ(h(z), h(z))

)
w

=
a∑

i=1
(i + 1)! ∂Ua,b

∂Si

[(
ρwβw̄δ (h(z), h(z))

)
|β|≤a
|δ|≤b

, (s!Ds(z; t))s≤a, (r!Dr(z; t))r≤b

]
·Di+1(z; t)

+
∑
|γ|≤a
|μ|≤b

∂Ua,b

∂Λγ,μ

[(
ρwβw̄δ (h(z), h(z))

)
|β|≤a
|δ|≤b

, (s!Ds(z; t))s≤a, (r!Dr(z; t))r≤b

]
D1(z; t)

·
(
ρwγw̄μ(h(z), h(z))

)
w
.

(5.9)

In the last equality, we have used the definition given in (5.3). Now in view of Lemma 5.7, 
the last quantity we found for L in (5.9) happens to coincide with Rj+1,k(z; t, ̄t). Hence 
Rj+1,k(z; t, ̄t) = 0 for z ∈ Vξ and j + k ≤ e. Furthermore, since ρ is real-valued, we have 
Rk+1,j(z; t, t̄) = Rj,k+1(z; , t, ̄t). Hence the induction step is complete, which finishes the 
proof of Proposition 5.6 (c). �
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6. Density and elementary rank properties

Let us now again consider a C∞-smooth CR submanifold M ⊂ C
N and a fixed subset 

M ′ ⊂ C
N ′ . Recall that we defined for a CR map h : M → C

N ′ of class at least Cm and 
every 0 ≤ k ≤ m the following quantities in (2.1)–(2.2):

rk(p) := dimC span
{

L̄1 . . . L̄jρw(h(p), h(p)) : ρ ∈ Ih(M)(h(p)),

L̄1, . . . , L̄j ∈ Γp(M), 0 ≤ j ≤ k
}
,

rk := max {e ∈ Z+ : rk(p) ≥ e for p on some dense subset of M} .

If h(M) ⊂ M ′, we may also define:

rk,M ′(p) := dimC span
{

L̄1 . . . L̄jρw(h(p), h(p)) : ρ ∈ IM ′(h(p)),

L̄1, . . . , L̄j ∈ Γp(M), 0 ≤ j ≤ k
}
,

rk,M ′ := max {e ∈ Z+ : rk,M ′(p) ≥ e for p on some dense subset of M} .

In what follows, we will use the following obvious fact: when h(M) ⊂ M ′, for every 
p ∈ M , rk(p) ≥ rk,M ′(p) and hence rk ≥ rk,M ′ .

The goal of this section is to discuss some elementary bounds on these integers rk
when one puts various geometric properties on the pair (M, h(M)). The first bound 
involves r0.

Lemma 6.1. Let M ⊂ C
N be a C∞-smooth CR submanifold and h : M → C

N ′ be a 
continuous CR map. If there exists a C∞-smooth CR submanifold M ′ ⊂ C

N ′ such that 
h(M) ⊂ M ′ then r0 ≥ N ′ − n′ where n′ = dimCR M ′. In particular, if M ′ is maximally 
real, then r0 = N ′.

Proof. Pick p ∈ M . Then by [2, Theorem 1.8.1], there exist holomorphic coordinates 
(χ, (ζ, τ)) ∈ C

n′ × C
N ′−n′−d′ × C

d′ near h(p), vanishing at h(p), such that M ′ is given 
by the zero set of C∞-smooth functions of the form:

ζ = θ(χ, τ, χ̄, τ̄), Im τ = Φ(χ, χ̄,Re τ). (6.1)

Here θ and Φ are defined and C∞-smooth near the origin in Cn′+d′ and Cn′ × R
d′ , 

θ(0) = 0, Φ(0) = dΦ(0) = 0 and θ being CR on the generic submanifold M̂ ′ = {(χ, τ) :
Im τ = Φ(χ, χ̄, Re τ)} ⊂ C

n′+d′ . In the same vein as what mentioned in Remark 4.3, 
the integers rj,M ′ , j ∈ N, are independent of the choice of holomorphic coordinates in 
C

N ′ . We therefore use w = (χ, ζ, τ) as coordinates near h(p) and the smooth defining 
functions (6.1) ρ = (ρ1, . . . , ρN ′−n′) to see that ρw has rank at least N ′ − n′. Since 
ρj ∈ IM ′(h(p)), j = 1, . . . , N ′ − n′, we have r0,M ′(p) ≥ N ′ − n′ for every p ∈ M and 
hence r0 ≥ N ′ − n′. �
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The next result provides a bound for r1.

Lemma 6.2. Let M ⊂ C
N be a C∞-smooth CR submanifold and h : M → C

N ′ be a CR 
map of class C 1. Suppose that there exists a C∞-smooth Levi-nondegenerate submanifold 
M ′ ⊂ C

N ′ such that h(M) ⊂ M ′. If h is immersive (on a dense open subset of M), then 
r1 ≥ N ′ − n′ + n where n = dimCR M , n′ = dimCR M ′.

The content of this Lemma is a well-known fact that can be found in other variants 
in the existing literature (see e.g. [22]). We give a self-contained proof of the statement 
we need here.

Proof. Pick a point p ∈ M where h is immersive. We will use a defining function of 
M ′ as in the proof of Lemma 6.1, where we can (because of the assumption of Levi-
nondegeneracy) achieve the additional property that if we write Φ = (Φ1, . . . , Φd′), then 
the matrices

Φ1
χ,χ̄, . . . ,Φd′

χ,χ̄,

have no common kernel when evaluated at 0, and also assuming that Φχs vanishes at 0. 
Denote the components of h in the (χ, ζ, τ)-variables by h = (f, F, g). When we compute 
r1,M ′ , we have in particular amongst the ρw(0) with ρ ∈ IM ′(0) the vectors(

Φj
χ(0), 0, 0, . . . ,

(
1
2i −

1
2Φj

Re τ (0)
)
, . . . , 0

)
, (0, 0, . . . , 1, . . . , 0, . . . , 0) , j = 1, . . . , d′.

Since the last N ′ − n′ slots in these give rise to linearly independent vectors in CN ′−n′

as already noted in the computation for (i), we just need to consider the L̄Φj
χ(f, f̄ , Re g)

for all CR vector fields L̄ on M . Choose a basis L̄1, . . . , L̄n of the CR vector fields on M
near p. Since h is immersive, L̄1f̄ , . . . , L̄nf̄ , is of rank n at p. We claim that the vectors

L̄jΦk
χ(f, f̄ ,Re g) = Φk

χ,χ̄L̄j f̄ + 1
2Φk

χ,s L̄j ḡ, j = 1, . . . , n, k = 1, . . . , d′

have rank at least n when evaluated at p. Since we have normalized Φ so that 
Φχ,s(f, f̄ , Re g)|p = 0, it is enough to check that the

Φk
χ,χ̄ L̄j f̄ , j = 1, . . . , n, k = 1, . . . , d′

are of rank at least n at p. We decompose χ = (χ1, χ2) ∈ C
n×C

n′−n and correspondingly 
f = (f1, f2) ∈ C

n × C
n′−n, and write the matrix

L̄f̄ :=
(
L̄1f̄

1 L̄2f̄
1 . . . L̄nf̄

1

¯ 2̄ ¯ 2̄ ¯ 2̄

)
=
(
L̄f̄1

¯ 2̄

)
.

L1f L2f . . . Lnf Lf
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After a complex linear change of coordinates in the χ, we may assume that L̄f̄2(p, p̄) = 0, 
and L̄f̄1 = In×n is the identity matrix. When we now consider

Φk
χ,χ̄L̄f̄ =

(
Φk

χ,χ̄1L̄f̄1 + Φk
χ,χ̄2L̄f̄2)

and evaluate at p, we obtain

Φk
χ,χ̄(f(p, p̄), f(p, p̄),Re g(p, p̄))L̄f̄(p, p̄) = Φk

χ,χ̄1(f(p, p̄), f(p, p̄),Re g(p, p̄)).

We note that the vectors

U1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ1
χ1,χ̄1
...

Φ1
χn′ ,χ̄1

Φ2
χ1,χ̄1
...

Φ2
χn′ ,χ̄1

...

...
Φd′

χ1,χ̄1
...

Φd′
χn′ ,χ̄1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, U2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ1
χ1,χ̄2
...

Φ1
χn′ ,χ̄2

Φ2
χ1,χ̄2
...

Φ2
χn′ ,χ̄2

...

...
Φd′

χ1,χ̄2
...

Φd′
χn′ ,χ̄2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . Un =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ1
χ1,χ̄n

...
Φ1

χn′ ,χ̄n

Φ2
χ1,χ̄n

...
Φ2

χn′ ,χ̄n

...

...
Φd′

χ1,χ̄n

...
Φd′

χn′ ,χ̄n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , Un′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ1
χ1,χ̄n′

...
Φ1

χn′ ,χ̄n′

Φ2
χ1,χ̄n′

...
Φ2

χn′ ,χ̄n′
...
...

Φd′
χ1,χ̄n′

...
Φd′

χn′ ,χ̄n′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

are not only linearly independent in Cn′d′ : If we consider the space D = {w =
(w1, . . . , wd′) ∈ C

n′d′ : wj ∈ C
n′
, w1 = · · · = wd′} as a subspace of Cn′d′ , then 

{w ∈ D : w · U1 = · · · = w · Un′ = 0} = {0} since the matrices Φj
χ,χ̄ are hermitian 

and were assumed to have no common kernel (by Levi-nondegeneracy of M ′). Therefore, 
for 
 ≤ n′, dimC{w ∈ D : w · U1 = . . . = w · U� = 0} ≤ n′ − 
, and those vectors w’s 
which annihilate U1, . . . , Un belong to an at most n′ − n-dimensional subspace of D. It 
follows that the rank of the Φj

χ,χ̄�
for j = 1, . . . , d′ and 
 = 1, . . . , n is at least n at p. 

This proves that r1,M ′(p) ≥ N ′ − n′ + n and hence that r1 ≥ N ′ − n′ + n as desired. �
For the statement of the next lemma, we need to define the following quantities for 

k ∈ Z+:

rMk (p) := dimC span
{
L̄1 . . . L̄jρz(p, p) : ρ ∈ IM (p), L̄1, . . . , L̄j ∈ Γp(M), 0 ≤ j ≤ k

}
,

rMk := max
{
e ∈ Z+ : rMk (p) ≥ e for p on some dense subset of M

}
.

(6.2)

Lemma 6.3. Let M ⊂ C
N be a C∞-smooth finitely nondegenerate CR submanifold of 

CR codimension d and h : M → C
N ′ be a CR map of class C 1. Suppose that there 
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exists a smooth CR submanifold M ′ ⊂ C
N ′ with h(M) ⊂ M ′, with dimCR M ′ = n′. If 

h is of class C k+1 for some k ∈ Z+ and strictly noncharacteristic at p, then rk(p) ≥
N ′ − n′ − d + rMk (p) ≥ rMk (p). In particular, if M is at most 
-finitely nondegenerate 
for some 
 ≤ k0 on an open dense subset of M and if h is of class C k0+1 and strictly 
noncharacteristic (on some open dense subset of M), then rk0 ≥ N .

Proof. We may replace M without loss of generality by a generic submanifold, so that 
we assume that M ⊂ C

N , where N = n + d and n = dimCR M .
Pick a point p ∈ M where h is strictly noncharacteristic. As in the proof of Lemma 6.1, 

we may choose coordinates (χ, ζ, τ) such that M ′ near h(p) is locally defined by (6.1), 
and as in the proof of Lemma 6.2, we write h = (f, F, g). Consider the generic manifold 
M̂ ′ ⊂ C

n′
χ × C

d′
τ defined by Im τ = Φ (χ, χ̄,Re τ); it is locally CR-diffeomorphic to M ′. 

We write ĥ = (f, g) and obtain a smooth map ĥ : M → M̂ ′ defined in a neighborhood
of p. Denoting, for j ≤ k + 1, r̂j,M̂ ′(p) the integers associated to the map ĥ, one easily 
checks that

rj,M ′(p) ≥ N ′ − n′ − d′ + r̂j,M̂ ′(p). (6.3)

Note that since h is strictly noncharacteristic, and M ′ and M̂ ′ are CR diffeomorphic, ĥ
is also strictly noncharacteristic.

This means that the pullbacks ĥ∗θν of the characteristic forms

θν = ∂(Im τν − Φν(χ, χ̄,Re τ))|M̂ ′ , ν = 1, . . . , d′

span T 0M (near p). After possibly reordering, we can assume that ĥ∗θ1, . . . , ̂h∗θd span.
We are next going to consider the generic submanifold M̃ ′ ⊂ C

n′ ×C
d′−d×C

d defined 
by

ρν(χ, χ̄, τ, τ̄) = Im τν − Φν (χ, χ̄,Re τ) = 0, ν = 1, . . . , d.

Of course, ĥ can also be considered as a map into the (larger) manifold M̃ ′ ⊂ C
n′+d′ . 

Hence we see that r̂j,M̂ ′(p) ≥ r̂j,M̃ ′(p) + d′ − d, for 0 ≤ j ≤ k + 1; taken together with 
(6.3), we see that

rj,M ′(p) ≥ N ′ − n′ − d + r̂j,M̃ ′(p), j ≤ k + 1. (6.4)

By construction, ĥ, viewed as a map from M into M̃ ′, is also strictly noncharacteristic.
We are now going to check that r̂k,M̃ ′(p) ≥ rMk (p) thereby finishing the proof of the 

Lemma. We first extend each of the components ĥj of ĥ (which are CR functions of class 
C k+1 by assumption) to C k+1-functions on CN such that each of the derivatives ∂ĥj

∂z̄�
, 

for 1 ≤ 
 ≤ N , vanish to order k on M near p. The equations

ρ̃1(z, z) = ρ1
(
ĥ(z), ĥ(z)

)
= 0, . . . , ρ̃d(z, z̄) = ρd

(
ĥ(z), ĥ(z)

)
= 0
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are then defining equations for M of class C k+1 (near p) since ĥ is strictly noncharac-
teristic at p. We have that

ρ̃jz(z, z̄) = ρjw

(
ĥ(z), ĥ(z)

) ∂ĥ

∂z
(z, z̄) + O(k + 1),

where the O(k + 1)-term vanishes to order (at least) k on M . Therefore, an application 
of at most k CR vector fields L̄1, . . . , L̄a, for some a ≤ k, on M gives an expression of 
the form

L̄1 . . . L̄aρ̃
j
z(z, z̄)

=
(
L̄1 . . . L̄aρ

j
w

(
ĥ(z), ĥ(z)

)) ∂ĥ

∂z
(z, z̄) + ρjw

(
ĥ(z), ĥ(z)

)
μ(z, z̄)

+
a−1∑
γ=1

∑
1≤i1<...<iγ≤a

L̄i1 . . . L̄iγρ
j
w

(
ĥ(z), ĥ(z)

)
λi1...iγ (z, z̄) + O(k + 1 − a).

Taking all these equations together (for all possible choices of L̄1, . . . , L̄a and a ≤ k), we 
infer that, as claimed, r̂k,M̃ ′(p) ≥ rMk (p). Summing up everything we have proved so far, 
we get the desired result. �

We conclude this section by the following useful and elementary property of the open 
subsets constructed in §4.

Proposition 6.4. Let M ⊂ C
N be a C∞-smooth generic submanifold, h : M → C

N ′

a continuous CR map, and fix 
, k ∈ N such that 0 ≤ 
 ≤ N ′. If the open subset 
Mk

� := {z ∈ M : S N ′−�+k
k (M, z) ≥ 
} is dense in M , then the open subset of M given 

by 
⋃N ′−�+k

ν=k Ω�
k,ν is dense in M , where the open subsets Ω�

k,ν are given by (4.5) and (4.6).

Proof. Since by assumption Mk
� is dense in M , we only need to prove that 

⋃N ′−�+k
ν=k (Ω�

k,ν∩
Mk

� ) is dense in Mk
� . For every ν with k ≤ ν ≤ N ′ − 
 + k, consider the open subset of 

Mk
� given by

Mν := {z ∈ Mk
� : S N ′−�+k

ν (M, ξ) = S N ′−�+k
ν (M, z) for ξ near z}.

As each mapping Mk
� � z �→ S N ′−�+k

ν (M, z) is integer valued and lower semi-continuous, 
each Mν is dense in Mk

� and hence so is their intersection 
⋂N ′−�+k

ν=k Mν . We now observe 
that since for z ∈ Mk

� 
 ≤ S N ′−�+k
ν (M, z) ≤ N ′ for all ν with k ≤ ν ≤ N ′ − 
 + k, we 

have that

N ′−�+k⋂
ν=k

Mν ⊂
N ′−�+k⋃

ν=k

(
Ω�

k,ν ∩Mk
�

)
which proves the proposition. �
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7. Proof of Theorems 2.2 and 1.1, Corollaries 1.3, 2.3, 2.4, 2.5, 2.6 and 2.9

7.1. Proof of Theorem 2.2

Since any smooth CR submanifold in CN is locally smoothly CR diffeomorphic to a 
generic submanifold in a lower dimensional complex space, see e.g. [2], we may assume 
without loss of generality that M itself is generic in CN . We first note that by definition, 
if h is of class C N ′−�+k, then for ξ ∈ M , we have S N ′−�+k

k (M, ξ) ≥ rk(ξ) since, by 

Lemma 4.5, all of the L̄1 · · · L̄j�(h(z), h(z)) ∈ A j,N ′−�+k
ξ for L̄1, . . . , L̄j ∈ Γξ(M) and 

� ∈ Ih(M)(h(ξ)), 0 ≤ j ≤ k. Since we assume that rk ≥ 
, we have that 
 ≤ rk ≤
S N ′−�+k

k (M, ξ) for ξ on some dense open subset of M . Hence the set Mk
� ⊂ M from 

Proposition 6.4 is actually dense, and we obtain from that Proposition and (4.8) that

O :=
N ′−�+k⋃

ν=k

N ′⋃
m=�

Ω̂�,m
k,ν ⊂ M

is dense in M . If h is nowhere C∞ on some nonempty subset M1 of M , then by Propo-
sition 5.1 and (4.9), we have that

M2 = M1 ∩ O = M1 ∩

⎛⎝N ′−�+k⋃
ν=k

N ′−1⋃
m=�

Ω̂�,m
k,ν

⎞⎠ =
N ′−�+k−1⋃

ν=k

N ′−1⋃
m=�

(Ω̂�,m
k,ν ∩M1) (7.1)

is dense in M1 and the conclusion of Theorem 2.2 follows now immediately from Propo-
sition 5.2.

7.2. Proof of Theorem 1.1

First note that since M is strongly pseudoconvex the integer rM1 defined in (6.2) must 
be equal to n + 1. Because both M and M ′ are generic of codimension one in their 
respective complex space, we can use Remark 2.8 to see that we may apply Lemma 6.3, 
which tells us that r1 ≥ n +1 (because h is at least of class C 2). We can therefore apply 
Theorem 2.2 with k = 1 and 
 = n + 1 and get that there exists a dense open subset ω
of Ω such that h(ω) ⊂ Eh(M) ⊂ EM ′ . The inclusion h(Ω) ⊂ EM ′ now follows since the set 
EM ′ is a closed subset of M ′ (see [8,9]).

7.3. Proof of Corollary 1.3

Corollary 1.3 is a direct consequence of Theorem 1.2, since in such a situation, the 
set of strongly pseudoconvex points in M is open and dense in M and the mapping h
is automatically CR transversal at every point of M (see [2, Proposition 9.10.5] whose 
proof applies in our setting as well).
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7.4. Proof of Corollary 2.3

Corollary 2.3 is an immediate consequence of Theorem 2.2 with k = 0, 
 = N ′ − n′

and Lemma 6.1.

7.5. Proof of Corollary 2.4

Corollary 2.4 is an immediate consequence of Theorem 2.2 with k = 1, 
 = N ′−n′+n

and Lemma 6.2.

7.6. Proof of Corollary 2.5

Corollary 2.5 is a consequence of Theorem 2.2, Lemma 6.3 and the following result, 
whose proof can be obtained by adapting the arguments of [22, Proposition 3.1].

Proposition 7.1. Let M ⊂ C
n+1 and M ′ ⊂ C

n′+1 be (connected) C∞-smooth real hy-
persurfaces with M strongly pseudoconvex and M ′ Levi-nondegenerate of signature 
′, 
n′ > n ≥ 1. Assume that there exists a point p ∈ M and a germ at p of CR transversal 
map h : (M, p) → M ′ of class C 2 satisfying the following: there exists a neighborhood 
V ⊂ M of p , and for every ξ ∈ V , a smooth complex curve Υξ containing h(ξ), depend-
ing in a C 1 manner on ξ ∈ V , such that the order of contact of Υξ with M ′ at h(ξ) is 
greater or equal to 3. Then necessarily n < n′ − 
′ < n′.

7.7. Proof of Corollary 2.6

Corollary 2.6 is a consequence of Theorem 2.2, Lemma 6.1 and the following result.

Proposition 7.2. Let M ⊂ C
N be a C∞- smooth minimal CR submanifold and M ′ ⊂ C

N ′

the tube over the light cone given by (2.3). Assume that there exists a point p ∈ M and 
a germ at p of a continuous CR map h : (M, p) → M ′ satisfying the following: there 
exists a neighborhood V ⊂ M of p, and for every ξ ∈ V , a smooth complex curve Υξ

containing h(ξ), depending on a continuous and CR fashion on ξ ∈ V , such that the 
order of contact of Υξ with M ′ at h(ξ) is greater or equal to 3. Then there exists a 
germ at p of a continuous CR function g and real constants αj , ηj, 1 ≤ j ≤ N ′ − 1 with ∑N ′−1

j=1 α2
j = 1, such that for ξ near p

h(ξ) = (α1g(ξ) + iη1, . . . , αN ′−1g(ξ) + iηN ′−1, g(ξ)).

The proof of Proposition 7.2 consists of following the steps of the proof of [21, Proposi-
tion 6.6] and [22, Lemma 2.3] and using the well-known fact that a continuous real-valued 
CR function on a smooth minimal CR submanifold of CN is necessarily constant. We 
leave the details to the reader.
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7.8. Proof of Corollary 2.9

We apply Lemma 6.3 in conjunction with Theorem 2.2 with k = σ and 
 = N .
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