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The present paper tackles the ¥ regularity problem for CR
maps h: M — M’ between ¢ °°-smooth CR submanifolds
M, M’ embedded in complex spaces of possibly different
dimensions. For real hypersurfaces M C C"*! and M’ C
Cv*+1 with n/ > n > 1 and M strongly pseudoconvex, we
prove that every CR transversal map of class €™ ~"+! that
is nowhere ¢°° on some non-empty open subset of M must
send this open subset to the set of D’Angelo infinite points of
M'. As a corollary, we obtain that every CR transversal map
h: M — M’ of class €™~ must be €°°-smooth on a dense
open subset of M when M’ is of D’Angelo finite type. Another
consequence establishes the following boundary regularity
result for proper holomorphic maps in positive codimension:
given Q C C"*! and Q' € C*'*+! pseudoconvex domains with
smooth boundaries 99 and Q' both of D’Angelo finite type,
n’ > n > 1, any proper holomorphic map h: Q — €’ that
extends €™ ~"+1-smoothly up to 8 must be ¥>°-smooth on a
dense open subset of 9. More generally, for CR submanifolds
M and M’ of higher codimensions, our main result describes
the impact of the existence of a nowhere smooth CR map
h: M — M’ on the CR geometry of M’, allowing to extend
the previously mentioned results in the hypersurface case to
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any codimension, as well as deriving a number of regularity
results for CR maps with D’Angelo infinite type targets.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction and results for real hypersurfaces

In this paper, we are interested in the following question: Under which conditions on
%>°-smooth CR manifolds M c CN and M’ c CN' can we guarantee that a CR map
h: M — M’', which we assume to be of some finite smoothness €* a priori, is actually
% *°-smooth on an open, dense subset of M7

This question is motivated by the problem of boundary regularity of holomorphic
maps between smoothly bounded domains in C¥: CR maps arise as their boundary
values. The case most well-studied is when N = N’ = 1 and the domains are simply
connected; in that case, the boundary regularity of the Riemann map, as studied by
Painlevé, Caratheodory, Kellogg, and many others serve as an answer to that problem.

In several dimensions, the Riemann map becomes unavailable as a tool, as there are
many different equivalence classes of simply connected domains of holomorphy. How-
ever, Fefferman’s mapping theorem [11] proved that biholomorphic mappings between
smoothly bounded strictly pseudoconvex domains in CV, N > 1, necessarily extend
smoothly up to the boundary. The proof of Fefferman’s mapping theorem and also the
proof of its generalization due to Bell and Ligocka [1], which reduced the assumptions
on the domains to “condition (R)”, rely on inherently global objects associated to the
domain, in particular on properties of its Bergman kernel. Such methods however stop
short of covering all pseudoconvex domains, as there exist smoothly bounded pseudocon-
vex domains which do not satisfy condition (R) by work of Christ [6]. Furthermore they
also are not applicable when it comes to studying the boundary regularity of proper
holomorphic mappings between smoothly bounded domains in complex spaces of dif-
ferent dimensions (see [13]). One natural alternative is then to derive global boundary
regularity after investigating local regularity along smooth boundary patches.

Historically, the starting point for investigating the local question was again the case
of (bijective) CR mappings between smooth, strongly pseudoconvex hypersurfaces in
CV studied by Nirenberg, Webster, and Yang [24]. The case of mappings of positive
codimension, i.e. N’ > N, from a strictly pseudoconvex hypersurface in CV to one in
CcN s remarkably different, and harder. One of the reasons is that there actually exist
continuous, and even Holder continuous of exponent « for small a;, CR embeddings of the
sphere into a sphere in a higher dimensional space which fail to be smooth anywhere, by
results due to Dor [10], Hakim [14] and Stensones [27]. It turns out that, in contrast with
the equidimensional case, one can make up for that lack of smoothness by requiring a
certain amount of a priori regularity for the map; this has, for example, been illustrated in
the works of Forstneri¢ [12] and Huang [16,17] where it was shown that any %*-smooth,



698 B. Lamel, N. Mir / Advances in Mathematics 335 (2018) 696—73/

for a suitable integer k, CR map between spheres must be €°°-smooth (and in fact
even rational). Since then, the natural question of whether a similar regularity result
holds for CR maps of positive codimension between general strongly pseudoconvex real
hypersurfaces had been open for a while (see e.g. [15]), until the recent breakthrough
by Berhanu—Xiao [4] who settled the problem in the affirmative for CR maps that are
a priori €N "=N+1_gmooth to start with. In a subsequent paper, Berhanu—Xiao [5] were
also able to extend their approach to deal with Levi-nondegenerate target hypersurfaces
as well (see also [18] for recent related results in the codimension one case).

In this paper, we carry out a study of the € regularity problem without assuming any
geometric condition on the target manifold. Our basic approach differs significantly from
all of these previous works: Our main result shows that if a CR mapping h: M — M’ (of
a certain a priori €% regularity) fails to be ¥>°-smooth on a large set in M, then M’ has
to carry a certain amount of complex structure (along the image of M under h). More
precisely, we shall prove (see Theorems 1.1 and 2.2) that the image of any generic point in
such a large set of bad points has a formal holomorphic manifold that is tangent to M’ to
infinite order, and hence must be a point of infinite type in the sense of D’Angelo [8]. To
our knowledge, exhibiting such an explicit link between failure of regularity of a CR map
and impact on the CR geometry of the target manifold seems to be a completely new
point of view in the ¥ CR regularity problem. As a consequence, our present approach
not only allows us to provide sharper and more general results than earlier works, but
also recovers many of the previously known results. The approach we are taking is, at
least in philosophy, akin to our recent work [21] on the convergence of formal power series
mappings. We will apply ideas from [21], adapted to the € setting, to the problem at
hand. However, the implementation of these ideas require different strategies and new
ingredients because of the different nature of the ¥>° CR regularity problem.

We will discuss results valid for hypersurfaces in the introduction and leave more
general results for later. Before stating our first theorem, let us start by recalling the
notion of infinite type of a point ¢ € M’ introduced by D’Angelo [8], which means that
the order of contact of M’ at ¢ with (possibly singular) complex curves is unbounded.
To be more precise, let ¢ be a defining function for M’ near q. One defines the 1-type of
M’ at q as

A(M',q) = sup volpo7) € RU {oo},
v A—)CN/ VO(’.}/)
7(0)=g,7#q

where 7 runs over all (non-trivial) holomorphic curves in C " centered at q and 1y
denotes the vanishing order at 0. We say that ¢ is a D’Angelo finite type point of M’ if
A(M',q) < oo, and an infinite type point of M’ if A(M’',q) = co. We denote the set of
infinite type points in M’ by &) and recall that &y is closed in M’ by e.g. [8,9]. We
say that M’ is of D’Angelo finite type if & = 0.
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We also need to recall that a CR map h: M — M’ between real hypersurfaces M C
CN, M’ c CV', with respective CR bundles T(®Y M and TV M, is said to be CR
transversal if

(1,0) (0,1) _
Th(p) M’ + Th(p) M’ + dh((CTpM) = (CTh(p)M/.
for every point p € M.

We may now state our first main result, which, as mentioned above, highlights how the

failure of being ¢°°-smooth for a CR map impacts the geometry of the target manifold
M.

Theorem 1.1. Let M C C"t! and M’ C C*'*! be € -smooth real hypersurfaces, n' >
n > 1. Assume that M is strongly pseudoconvez and that h: M — M’ is a CR transversal
mapping of class &t If there exists a non-empty open subset Q2 of M where h is
nowhere €, then h(2) C Enp .

As an immediate consequence of Theorem 1.1, we obtain the following regularity
result:

Theorem 1.2. Let M C C™! and M’ C C**+1 be €°°-smooth real hypersurfaces, n' >
n > 1. Assume that M is strongly pseudoconvex and that M' is of D’Angelo finite type.
Then every CR transversal mapping h: M — M’ of class €™ =1t s €% _smooth on a

dense open subset of M.

In the special case where M’ is strongly pseudoconvex, Theorem 1.2 recovers Berhanu—
Xiao’s result alluded above [4] (for an embedded hypersurface M) since every CR map
between strictly pseudoconvex hypersurfaces is CR transversal by the Hopf Lemma.

When both hypersurfaces are pseudoconvex, using results from the known literature,
we will show that Theorem 1.2 also yields the following.

Corollary 1.3. Let Q ¢ C"*! and ' C Cr'+L e pseudoconver domains and h: Q — Q'
be a holomorphic map, n’ > n > 1. Assume that M C 0Q and M’ C 9 are €°°-smooth
real hypersurfaces of D’Angelo finite type. If h extends %”/_"+1—smoothly up to M and
satisfies h(M) C M’, then h extends €°°-smoothly up to a dense open subset of M.

Finally, let us also mention the following new result which follows as an application
of Corollary 1.3 to the boundary regularity of (global) proper holomorphic mappings of
positive codimension.

Corollary 1.4. Let Q@ C C**! and Q' ¢ CV*! be pseudoconvex domains with smooth
boundaries O and 9 both of D’Angelo finite type, n' > n > 1. Let h: Q@ — Q' be a
proper holomorphic map that extends ‘5”,_”+1—sm00thly up to a dense open subset of
00). Then h extends €°°-smoothly up to a dense open subset of ON).
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Let us remark that the preceding results, Theorem 1.2, Theorem 1.1, Corollary 1.3,
and Corollary 1.4 hold without any changes for weakly pseudoconvex sources having a
dense open subset of strongly pseudoconvex points. For instance, they all can be applied
in the setting where M is pseudoconvex and does not contain any analytic disc.

We finish the introduction with an outline of the organization of the paper. In §2,
we state the general main result, Theorem 2.2, which applies to minimal source CR
manifolds M C C¥ of arbitrary codimension. It also implies a number of further new
regularity results, which not only extend Theorem 1.2 to the setting where the source
manifold is allowed to be of higher codimension but are also valid for target manifolds
of infinite D’Angelo type.

The next sections provide the proof of Theorem 2.2 which splits naturally into an
analytic part and a geometric part. The first part is developed in §3 and corresponds
to the analytic piece of the proof. In it, we prove a smooth regularity result for CR
maps that satisfy a smooth system of equations. The result, Theorem 3.1, generalizes a
result due to the second author [19], and may be of independent interest. The second,
geometric, part of the proof is carried out in §4 and §5. We first introduce in §4 some
new numerical invariants associated to any continuous CR map h: M — CV ', establish
some of their basic properties and then associate to these invariants an open subset
decomposition of (part of) the CR manifold M. In §5 we relate this decomposition to
the ¢ *°-regularity of the mapping (Proposition 5.1) as well as to the CR geometry of
the image set h(M) (Proposition 5.2).

Finally, in §6, we show, among other things, that the decomposition obtained in §4
covers, at least in the situations discussed in §2, a dense open subset of M. The proofs
of all theorems and corollaries stated in §1 and §2 are then completed in §7.

2. Statement of further results for CR manifolds of any codimension

This section is devoted to the formulation of the more general results already alluded
to in the introduction. We let M C CN be a ¥>°-smooth CR submanifold, with N > 2,
and recall that a map h: M — CN' of class ' is CR if h = (hy,...,hn/) where each
hj a CR function on M. (If h is assumed to be only continuous, then the preceding
definition needs to be understood in the sense of distributions.)

Let us now consider a subset M’ ¢ CN' (not necessarily CR nor a manifold). For
every ¢ € M, denote by #y/(q) € €°°(CN', ¢) the ideal of all germs at ¢ of ¥>°-smooth
functions p: (CN', q) — R that vanish on M’ near ¢ and denote by T',(M) the set of all
germs at p of CR vector fields of M.

The definition of a D’Angelo infinite type point naturally extends to the more general
setting of an arbitrary subset M’ c CV "in analogy to the hypersurface case. We define
the 1-type of M’ at q as

A(M',q) = sup ( —I/O(pO’y)) € RU{oo},
v Asey \PE (@) vo(7)
7(0)=q; v#q
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and say that ¢ is a D’Angelo infinite type point of M’ if A(M’,q) = oco. We denote the
set of points in M’ which are of infinite type by &u. Observe that if M’ M" are two
subsets of CN' with M” c M’ then for ¢ € M", A(M",q) < A(M’,q) and therefore
Envrr C Epgr-

We also recall that a formal holomorphic subvariety X ¢ CN' through ¢ is given
by a (radical) ideal .#;(X) C C[Z’ — ¢]. We say that a formal holomorphic subvariety
XccM through the point ¢ € M’ is tangent to infinite order to M’ at ¢ if for any formal
holomorphic map ¢(t) € C[t]N" with ¢(0) = ¢ and v o (t) = 0 for every @ € .Z,(X)
we have vy (Q (gp(t),m)) = oo, for every o € #p/(q). Note that it follows from this
definition that if there exists a nontrivial formal holomorphic subvariety through ¢ which
is tangent to M’ up to infinite order then ¢ is an infinite type point.

Let us now assume that we are given a CR map h: M — CN'. For every p € M, we
set

ro(p) = dime span { pu (h(p), h(p)) : p € Fian) ((p))} (2.1)

and more generally, if & is of class €, for some £ > 1,

ri(p) := dim¢ Span{l_q o Lipw(h(p), h(p)) : p € Ihany(h(p)),

El,...,Ljerp(M),ogjgk}, k<t (2.2)

In the second equation, the case j = 0 refers to no application of a CR vector field. The
complex gradients

pult0)850) = (e (TG oo 5 (). 1) )

8’[1}1

and their CR derivatives

_ _ _ _ _ 9 - _ 9 -
Ly Lipw(h(p), h(p)) = (L1...L;—2 (h(p),h(p)) v Ly L 2L (h(p),h(p))
8w1 awN/
are considered as vectors in CN'.
We note that for 0 < k < ¢, p — rg(p) € {1,..., N’} is an integer-valued, lower
semicontinuous function on M. We define

ri :=max {e € Zy : r;(p) > e for p on some dense subset of M}, k < £.

Let us recall that M is said to be minimal at the point p € M if there does not exist
any CR submanifold ¥ C M through p, with dim > < dim M, of the same CR dimension
as M (see [28,2]). We say that M is minimal if it is minimal at each of its points.

Before we state our general main result, let us introduce one more notion.
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Definition 2.1. Let M C CV be a ¥>-smooth CR submanifold, and h: M — CN' be
a ¢*-smooth CR map. A ¢*-smooth CR family of formal (complex) submanifolds of
(complex) dimension r through k(M) is given by a collection (I'¢)¢c as of formal (complex)
submanifolds of CN" of dimension r in such that, for every ¢ € M, I'c passes through
h(€) and such that I'¢ is parameterized by a formal holomorphic map of the form

(C7,0) 3t pe(t) = h(&) + Y @alE)?,

a€eN"
la|>1

where for every o € N” the function ¢, is a €*-smooth CR function on M.

Theorem 2.2. Let M C CN be a €*°-smooth CR minimal submanifold, k,¢ € N with
1< k<< N’ be given integers and h: M — CN' be a CR mapping of class EN' ~ttk,
Assume that Ty, > € and that there exists a non-empty open subset My of M where h is
nowhere €.

Then there exists a dense open subset My C My such that for every p € Ms, there
exists a neighborhood V. C My of p, an integer r > 1, and a €*-smooth CR family of
formal (complex) submanifolds (T'¢)ecv of dimension r through h(V') for which T'¢ is
tangent to infinite order to h(M) at h(§), for every £ € V.

In particular, there exists a dense open subset My of My with h(Maz) C &yary-

Theorem 2.2 provides a detailed picture of how “irregularity” of a given CR map affects
the CR geometry of the target set h(M). Images of “irregular” points under the given map
must not only be of infinite type, but the image of large open subsets carries even more
structure than that: One obtains a family of formal holomorphic submanifolds tangent
to h(M) to infinite order that depends in a CR manner on the “irregular” points. This
property will be crucial in the application of Theorem 2.2 given in Corollary 2.6 below,
providing a regularity result valid for targets which are foliated by complex submanifolds.

The integers r; in the statement of the theorem appear very naturally in various
geometric settings. We will discuss in §6 a number of sufficient conditions providing
lower bounds on them, in particular, on r¢ and 71, yielding a number of new corollaries
(not covered by the results in the introduction). In the first one, for M’ C CV ,, we denote
by kar the maximum dimension of real submanifolds of class €' contained in &y-.

Corollary 2.3. Let M C CN and M’ c CN' be €°°-smooth CR submanifolds with n' =
dimocgr M’ and assume that M is minimal. Then every CR mapping h: M — M’ of
class €™ and of rank > Ky is €°°-smooth on a dense open subset of M. In particular,
if M’ is of D’Angelo finite type, then every CR mapping h: M — M’ of class €™ is
€ >°-smooth on a dense open subset of M.

If we know more about the target, we can improve the a priori smoothness assumptions
significantly. Our next corollary shows that if the target is Levi-nondegenerate, then the
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a priori regularity can be dropped by (n — 1) where n is the CR dimension of the source
submanifold:

Corollary 2.4. Let M C CN and M’ c CN' be €°°-smooth CR submanifolds with
n = dimcr M, n' = dimcr M'. Assume that M is minimal and that M’ is Levi-
nondegenerate and of D’Angelo finite type. Then every CR immersion h: M — M’
of class &'t s € smooth on a dense open subset of M.

If we want to allow complex manifolds in the target, then we can use geometric
information given by Theorem 2.2 on how those complex manifolds are situated in the
target (and how large they can be) in conjunction with the formal submanifolds I'¢
provided by Theorem 2.2 in order to rule out maps which are nowhere smooth on an
open subset of M. We can for instance recover the following result by Berhanu—Xiao [5]
(referring to their paper for the standard notion of signature):

Corollary 2.5. Let M C C"*' and M’ c C"*' be (connected) €>°-smooth real hy-
persurfaces with M strongly pseudoconver and M’ Levi-nondegenerate of signature £,
n >mn > 1. If n — ¢ < n, then every CR transversal map h: M — M’, of class
&'t s € _smooth on some dense open subset of M.

Our following result uses not only the formal submanifolds I's constructed in Theo-
rem 2.2, but also the CR dependence of I'c on £. This is in contrast to Corollary 2.3
and 2.4, where we just use the fact that the I'¢s exist. We recall that the tube over the
light cone (in CN'), defined by the equation

N’'—1

> (Re w;)? = (Re wnr)?, (2.3)

Jj=1

is one of the basic examples of a uniformly 2-nondegenerate hypersurface. The precise
statement given by Theorem 2.2 allows us, in a way similar to the case of convergence
of formal maps in [21], to treat the case of maps taking values in the tube over the light
cone.

Corollary 2.6. Let M C CV be a €>-smooth minimal CR submanifold and M' C cN’
be the tube over the light cone. Then every CR map h: M — M’, of class EN' 1 and of
rank > 3, is €°°-smooth on a dense open subset of M.

Let us remark that both in Corollary 2.6 and also in the preceding Corollary 2.3 the
rank of the map is measured in terms of its rank as a real ¢ map (from the real manifold
M to the real manifold M’). Since h, in both cases, is a CR map, its linear part at each
point p € M also gives rise to a complex linear map L(p). In the setting of Corollary 2.6,
the requirement that the real rank of h is at least 3 corresponds to requiring that the
complex rank of L(p) is at least 2 for every p.
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The last corollaries we are going to mention will provide a regularity result for finitely
nondegenerate source manifolds and in particular, for Levi-nondegenerate sources. Before
we formulate this result, we need to introduce the property which will allow us to use
the finite nondegeneracy of M. While in many respects similar to the notion of CR
transversality, the crucial definition needed here is in some sense dual to transversality.
Recall that if M’ ¢ CV' is a smooth CR submanifold, then its complez tangent spaces
TsM', g € M', form a subbundle T°M’ of the tangent bundle TM’. The characteristic
bundle of M is the annihilator of this bundle, i.e. TQ M’ := (T{M')* € Ty M’. One can
check that if h is CR, then h*T°M’ C T°M. We use the following definition:

Definition 2.7. We say that a CR map h: M — M’ between CR submanifolds M c CV
and M' c CN /, of CR codimension d and d’ respectively, is strictly noncharacteristic (at
the point p € M) if

* 0 0
h (Th(p)M’) =T,M.
Remark 2.8. We recall that a map h is CR transversal at p € M if

1,0 0,1
T M+ Th0 )M + W (p) (CT, M) = CTy ) M.
Clearly, CR transversality implies that d’ < d. On the other hand, if h is strictly non-
characteristic, then d < d'. If d = d’ one may check that a map is CR transversal if and
only if it is strictly noncharacteristic. This conclusion holds in particular when M and
M’ are hypersurfaces.

Let us recall that a CR submanifold M C C¥ is o-finitely nondegenerate for some
o € Zy (see [2]) if and only if for every p € M, and for any (real) defining function
0= (0',...,0% for M near p, we have

span{(il...ikgg) (p,p): L €T,(M),0<j<k<o, 1<r<d} =CN.

Corollary 2.9. Let M C CN and M’ ¢ CN' be €>-smooth CR submanifolds. Assume
that M is minimal and o-finitely nondegenerate for some o € Zy and that M’ is of
D’Angelo finite type. Then every strictly noncharacteristic CR map h: M — M’ of class
EN'=N+o s €% _smooth on some dense open subset of M.

A particular case of the preceding corollary is the case of a Levi-nondegenerate man-
ifold M (meaning o = 1). Even in this case, the regularity result given by Corollary 2.9
is new, and provides, using Remark 2.8, a generalization of Theorem 1.2 to higher codi-
mensions:

Corollary 2.10. Let M ¢ CN and M’ c CN' be €°-smooth CR submanifolds. Assume
that M is minimal and Levi-nondegenerate and that M' is of D’Angelo finite type. Then
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every strictly noncharacteristic CR map h: M — M’ of class EN'=N+1 s €°°_smooth
on some dense open subset of M.

3. A smooth regularity result

In this section, we state and prove our main technical tool to be used later in the
paper. It provides a criterion that exhibits sufficient conditions ensuring that a CR map,
of class €1, is in fact ¢°°-smooth. We note that a (weaker) similar result was obtained
by the first author in [19], based in part on the work of Roberts [26]. However, for the
purpose of this paper, we really need the stronger form stated below.

Theorem 3.1. Let M C CVN be a €°-smooth generic submanifold, po € M, and let
h: (M,py) — C* be a germ of a €' CR mapping at py, g: (M,po) — CF be a
germ of a continuous CR mapping at pg. Let U x V x O be an open neighborhood of
(po, h(po), 9(po)) € CY x C4, x Ck, and R: U x V x O — C* be a €>-smooth mapping,
holomorphic in A € O. Assume that:

(i) R(z,2z,h(2,2),h(z,2),9(2,2)) =0 for z € M near pp.
(ii) Rk Ry (po, o, h(po,po), h(po,Po), 9(po, Po)) = L.
(iii) All components of h and g extend holomorphically to a common wedge with edge
M at Po-

Then h is €°°-smooth in a neighborhood of pg.

Even though the theorem is similar to the almost holomorphic implicit function theo-
rem in [19], we cannot directly apply that theorem. We also include a number of details
which are missing from the proof of the theorem in [19]. We split the proof into several
steps.

3.1. Smooth wedge coordinates

Let M C CV be a ¢>°-smooth generic submanifold of codimension d, py € M, and
let p be a Re-valued defining function of M near py. Recall that a wedge of edge M
at po is an open subset of CV of the form # = {z € U : p(z,z) € T'} for some open
neighborhood U of py in CV and some open convex cone I' with vertex the origin in R,
see e.g. [2]. In what follows, we write B! (z) for the ball of radius € > 0, centered at the
point z € R".

We start with the following known fact.

Proposition 3.2. Let M C CV be a generic €>°-smooth submanifold of CR dimension n
and codimension d. Let pg € M, # be a wedge with edge M at py. Then there exist a
wedge W' CC W with compact closure, €1,€e2,7 > 0 and smooth coordinates (n,s,t) =
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®~1(n,7,(,¢) € C" x R x R? for CN near py, where ®: B>"(0) x B24(0) — CV is a
smooth diffeomorphism, with the following properties, where we write o = s + it:

i) ©(0,0,0) = po, ®(n,s,0) C M;

ii) ®(B2" x B x (0,r)%) c @’

iii) For every o, 3 € N and every v,5 € N and every a € N there exist constants
Ca.8,v,6 and Cqo g .5,a such that for every continuous CR function ¢ on M extending
to a holomorphic function @ on # , we have that the function f = ¢ o ® satisfies the
following:

+IBI+]y[+18
’ala 1BI+1vI+18] £ ‘—(Ia\+|,3|+\"/|+|5\)

W(U’@SJ)‘ < Capr,s Supy.|@| ||t]

(n,s,1) € B2 x BE x (0,r)%, (3.1)

and

Plalts sl gf o
i o 15| < o sl I
J

(n,s,t) € B2 x BE x (0,7)%, 1 <j <d. (3.2)

Proof. We assume that py = 0. We consider a smooth defining function of M near 0 of
the form Im ¢ = ¢(n, 7, Re (), where CY = Ch x (Cg, and furthermore V(0) = 0 (so that
TSM = {¢ = 0}). Thus, for some neighborhoods Uy, Us of 0 in C™ and RY respectively,
the map

U:Cp xRY S (n,s) = (n, s +ip(n, 7, 9))

parametrizes M near 0 for (n, s) € Uy x Us. We choose an almost holomorphic extension
of ¥ to Uy x Uy x R%, again denoted by ¥, in the s-variable (see for this e.g. [23]). After
possibly shrinking U; and Us a bit, we can assume that for a € N there exist constants
C, > 0 such that this new ¥: U; x Uy x R? is a smooth map which satisfies:

W(n,1,5,0) = (n,s +ip(n, 7, s)) € M;
ov u ) (3.3)
’T(n,n,s,t)‘ <C It|l*, j=1,...,d, ne Us,s €U,
(%j
Note that since Vp(0) = 0, we have that ¥/(0) = id; hence, again after possibly shrink-
ing U; and Us a bit, we can assume that U: U; x U X Uy — U (U; x Uy x Ug) is a
diffeomorphism from U; x Us X Ug onto a neighborhood of 0.

Now consider a wedge # with edge M near 0. This means that in a small neighborhood
of 0, we can assume that we can write # (in our chosen coordinates) as C' x R¢ x T,
for some open, convex cone I' C R%. Let us also choose an arbitrary ¢ € ToCN with
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¢ € W It follows that W—1(#) has the property that we can find a (closed) convex cone
I’ ¢ R4\ {0}, with IYU{0} = CH{uy, ..., uq} for some vectors uy, ..., uq in R%, linearly
equivalent to R%, such that for some small balls B2"(0) ¢ C", BZ (0) C R, and some
7 > 0 we have B2"(0) x B4 (0) x I'x € U~1(#), where Iz = {t € I": [|t|| < 7#}. Now
consider the complex linear transformation U: C? — C? defined by U(cy,...,04) =
25:1 ojuj. By choice of I'", we have U(iR%) = {0} x I"". By choosing an appropriate 5
and r we can assume that U(BZ (0) +14(0,r)?) C BE (0) x I';.
We define the map ®: B?"(0) x BZ (0) x (—r,r)% — CV,

®(n,1,s,t) =V(n,n,Us, Ut).

Note that since IV C I" was a closed cone, and 7 can be chosen as small as needed, we
can find a wedge #' CC # and a constant C' > 0 such that

1
o It < d(¥(n,5,1),077) < Ct]l - (3-4)

Also note that since U(s + it) = Us + iUt is complex linear, the estimates (3.3) hold
also for the corresponding derivatives of ® (where we might to use different constants
Cy, a € N, of course):

®(n,1,5,0) = (n,Us +ip(n,7,Us)) € M;

ov , _ o .
50| S Gl =L n € B0 € BLO) V€N
J

(3.5)

If a continuous CR function ¢: M — C extends holomorphically to # near 0, we
know by a result of Rosay [25] that the extension, which we are still going to denote
by @, is actually continuous up to the edge M on any finer wedge than the given 7.
Therefore, we can apply Cauchy’s inequalities to the domain #: since ¢ is continuous
up to the edge, and holomorphic in #', we have that

a|a|+|/3\¢ - alp! supW,|cﬁ|
anec? Y| = (Kd((n, C), 007 )T

with a constant K just depending on the metric used.

Combining this inequality with (3.4), applying the chain rule, and using the fact that
U is smooth, we can therefore find, for any «, 8 € N”, and every 7,8 € N?, a constant
Ca,,~,5 (independent of ¢) such that (3.1) holds.

Furthermore, if we appeal to (3.5), a similar argument shows that (3.2) holds. O

3.2. Edge of the wedge theory

In this subsection, we discuss the necessary smooth edge of the wedge theory. We
consider H = B2(0) x BZ (0) x{0}¢ € Cp xRExR¢, and Hy = B2'(0) x BZ (0) x (0, 7)4,
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H_ = B2"(0)x B¢ (0)x (—r,0)%. We use, as before, the complex variables o = s+it € C*.
We define 20 (H+) to be the set of all functions f € ¥°°(H,) which have the following
property: For every a, 3 € N", every v,8 € N and every a € N there exist constants
Ca,8,7,60 Ca,8,7,6,0» and b € N such that

dlel+1BlI+Iv+ol
OnonBsTtd
’3|a+|ﬁ+lv|+5| of

W%(Uaﬁasaﬂ‘ < Capirysalltl®, (nst) € Hy.

_ —b
(77,7778%)‘ < Ca,ﬁﬂ/ﬁ ||t|| ) (777 S,t)H+,
(3.6)

The analogous definition is given for A (H_). It is well known, see e.g. [2,3], that every
function f in A(H4) has a boundary value distribution defined for x € 2(H) by

t—0

(bv f,x) = lim / F(z5,0x(2, ) dm,
tERiCn < Rd

The edge of the wedge theorem that we are going to use is the following.

Theorem 3.3. Assume that U € 2'(H) is both a boundary value from above and from
below, i.e. there exist fy € Ao(Hy) and f- € Ao (H_) such that bv fL =bv f_ =U.
Then U € €°°(H).

A proof of Theorem 3.3 can be found in e.g. [19].

There are a number of interesting properties for the sets 2, (H4 ). The most important
of them is probably the inclusion €>°(H) C oo (Hy) which follows from the existence
of an almost analytic extension of a smooth function in the s variables : If U € € (H),
then there exists a function U € € (C" x R? x R?) with U|y = U and such that %
vanishes to infinite order on H for j =1,...,d (see [23]).

Also, if X is a partial differential operator in the (7, s)-variables with smooth coeffi-
cients, and X denotes the extension given by almost analytic extension of the coefficients
of X, then X f € o (Hz) for f € Ao (Hs) and X by f = bv X f.

3.3. A priori reqularity for O-bounded extensions

Our goal in this section is to recall a Holder regularity result for extensions of Holder
continuous functions which are d-bounded and whose (first order) derivatives are of a
certain growth (later to be applied to extensions of continuous CR functions).

We first introduce some notation: a continuous function f: Q — C is Holder contin-
uous on a set  C RP with Holder exponent o € (0, 1] if there exists a constant C' such
that

[f(z) = f)l < Cllz —ylI*.
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The space of all Holder continuous functions on € with Holder exponent « is denoted
by €%(Q2). If Q is compact, it becomes a Banach space if endowed with the norm

1 lloe = Iflloe + 11f 1l

where

) o @ 5@
11l = max S @), 1/l = max S

Let H C C} x R? be open, and write (for some r > 0)
Hy=Hx(0,r)¢, H_=Hx(-r0)% Hy,H C HxRY

The following result follows from inspecting the proof of Coupet’s paper [7] including his
proposition 1, and is stated in the context we need to refer to:

Proposition 3.4. Let H CC H ,0 < a < 1. Set 3 = Tia and write o = s+it € C?. There
exists a constant K = K (o, H) such that if h € €'(H,) is continuous up to H x {0}
with

Y(n,s,t) € Hy,

oh
o <n,ﬁ,s,t>] <O, hlio € 6O (H),
80]‘

V0 .) € Ha V(17350 < o (075,01 < e Wy (75.0)] < o
for some constant C >0 and j=1,...,d, k=1,...,n, then

he @ (ML), with Bl < K(C+ [Blizollg.):
where Hy = H x (0,7)¢ for arbitrary 7 < r.

8.4. Proof of Theorem 3.1

Proof. For the proof of the theorem, we need to extend R almost analytically in (most) of
its variables. This will allow us to consider h and h (mostly) as independent variables. We
will from now on choose coordinates for M as in Proposition 3.2, adapted to the wedge
# to which we assume that h and ¢ extend. In these coordinates, h and ¢ extending
continuously to functions hy (1,7, s,t), 9+ (1,7, 5, ) € Aso(H4) where H, = B?" x BE x
(0,7)% and H = B2" x BZ. The plan is to use the smooth identity

R(q,q,n(q,q), "Mq,9),9(q,7)) =0

for ¢ in some neighborhood of py in M, to express h in a second way through an “almost
reflection identity”, which will show that it also extends continuously to a function
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h_ € A (H_). An application of Theorem 3.3 then implies the smoothness of h near
Po.

We write w = x + iy with x,y € RN/, and for simplicity assume that h(pg) = 0 and
g(po) = 0. We write R as a map in the following way: R(n, 7, s, x,y,A) is defined on
a set of the form B2"(0) x BE (0) x Uy x Uz x O, where Uy C R and O c CF are
neighborhoods of the origin. We can extend R almost analytically in s, x, and y, to a
smooth map defined on B2"(0) x BZ (0) x R x U x RY x Us x Ré\{/ x O. We write
complex coordinates ¢ = s+ it, x = v +iz’, and v = y + iy’. The extended map will be

denoted by R(n,7,s,t,x,2',y,y',A) = R(n, 7, s,t, X, X, v, 0, A). It relates to R by

R(n’ ﬁ’ 87 07 x? 0? y, 07 A) = R(n’ 77’ S’ x? y’ A)
and satisfies that

0 = J = 9 -~
—R,j=1,...,d, —R, and —R, /=1,... N’
aa_] )j ) bt 8XZ 7a‘n a’[}l ) b ) b

all vanish to infinite order along ¢ = 0, ' = ¢’ = 0 (actually, locally uniformly in A).
We introduce new complex coordinates (Z,¢) € CV' x CN' by

Z+C Z—C

Let us set

2+C 2-C 2-¢
2 7 2% 20 )

b

X _ ~ Z
R(n’ f]’ S’ t? Z? Z? C’ C? A‘) = R (777 77]7 S7t’ —2"_<

Note that 2(n, 7, 5,0, h(n. . s), h(n. 7, 5), h(n, 7, 5), h(n, 0, 5), 901,77, 8)) = O for (1, ) € H
and that since (Z, () are complex coordinates, the derivatives

vanish to infinite order along t = 0, ¢ = Z; to be more exact, we can assume (after
possibly shrinking the neighborhoods a bit near the origin) that for any a € N there
exists a constant C' = C,, depending also on the chosen neighborhood, such that

d A N’ A N’ N
OR OR R ~ .
7 = || < Calltll+ ]2~ 3.7
Y5 | Loz | X ag | = o o+ 12 - <) 67)

Let us now compute the (real) Jacobian of R with respect to Z (at 0), that is, the
Jacobian with respect to all of the underlying real variables of Z. For this, we note that
for each £, £ =1,...,N’, we have
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N 1 - 1 - 1
RZ[. (0) = 5 RXe (0) 2_ R (0) = 5 (Rwe (0) ZRW (0)) sz (0)7
—— \_~\,_/
=R,,(0) =Ry, (0)
and that
=~ 1T 1 = = =
Rz, (O) = _sz (O) 5 Ro, (O) = R)Zz (O) + Rg, (O) =0

Hence the Jacobian matrix of R with respect to all of the underlying real variables
constituting the complex variables Z, evaluated at the origin, has the determinant

N AR oR OR
IR (o= |72 2O 1o O | m o 20
0(Z,7) 8R(0) 2% (0) 0 %0

We can thus apply the (smooth) implicit function theorem and from it see that there
exists a unique smooth function ®, defined in a neighborhood U x Uy x U3 x Uy C
Cr x C4x CN' xCFof 0, taking values in some open neighborhood V of 0 € (CN/, such
that

R, 7,8,t,2,2,(,C,A) =0 Z =®(n,7,5,1,(,(,A)

for (7770',Z,<7A) € Ul X UQ X ‘7 X Ug X U4.
Differentiating with respect to ¢ and (, using the usual matrix notation, we see that
fOI' Z = ¢(777 ,F]) S, ta Ca 57 A)

Using these equalities, (3.7), and the fact that detRz does not vanish at any point, we
see that for every o, 3 € N*, ~,8 € N%, ¢,v € NN/ every pu € N¥ and every a € N there
exists a constant C = Caﬁfyésuua>OSuChthathI'j—1 ,dand £ =1,...,N’'
and(n,aCA)elengU3XU4

)

Ha|a+|/ﬂ|+w|+é+|s+|u o

OnenPs1tsceCv A 0a;
Ha|a+|/@|+"/|+5+|5+| I 9®

P 1t eCv A ¢,

(nn,stccAHw el + |, 7,58, ¢, A) = )"

<nn,st<<AH<O 8] + [|@(n, 7, 5,8, ¢, A) —€|)°

(3.8)

where Ul, Ug, Ug, Us may have possibly been shrunk.
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We recall that, shrinking €, €5 if necessary, for (1, s) € H,

B (3,77,5,0.h(0, 7, 8), B, 1,5), B, ), h(n. 7, ). 90, 7. 9)) ) = 0,

from which we conclude that

h(n,n,s) = ®(n,1,s,5,h(n,n,5),h(n,s),9(n,n,s)), (n,s) € H.

We recall that we write hy(n,7,s,t), and g4(n,7,s,t) for the almost analytic extensions
of h and g to H4, which exist by assumption.
We now set

h— (T]a T_]a S, t) = (I)(n7 T_}a S, t? h+ (n) 7_]’ S, _t)a h+(777 77]7 S, _t)7 9-&—(7)’ ﬁv S, _t))a
(7778) € Hat € (77’, O)d,

and claim that h_ lies in . (H_) for some (possibly smaller) neighborhood H C H of
0 in C" x R% and some 0 < 7 < .

One can check that the slow growth condition for h_(n,7,s,t) is satisfied on H_,
because ® is smooth, and h, h,, and g, are all of slow growth on H. by assumption.
We therefore only have to check that for any a, 3 € N, any 7,6 € N%, and any a € N,
there exists a constant Cy g .~,6,a such that

Jlal+1B1+1vI+18l g,
IenPs1td 9o

(1,7, 8,8)| < Coaprysalltl®, (z,st)€H_, j=1,...,d. (3.9)

So we first compute the derivative with respect to ; = s; — it;. Recall that

ah+(777777 S, 7t) 8h-i-

o5, = %, (n,m,s,—t),

and compute (we drop the arguments):

Oh_ Ohy Oh

g+
=d, + @ ot + 0
503 Tl 95, + + A s

o %6 (3.10)

Using similar arguments as in showing that h_ is of slow growth, one sees that the
second and the fourth summand satisfy the estimate (3.9). Indeed, if o, 3 € N™, 3,7 € N4,
and a are given, then we can write

plelBI+IIHl /BRI gl B+l ag+
B sitd 9o, P std NoaG;

as (finite) sum of terms, each of which is a product of three types of factors: First,
some derivative of @, evaluated at (1,7, s, t, hy (0,7, s, —t), h- (1,7, s, —t), g+ (1, 7, 8, —t)),
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which stays uniformly bounded over H_; second, some derivatives of h., h, and g, each

of which are of slow growth; and third, some derivative of either %hTf or %. Since by
J J

(3.2) each of these vanishes to infinite order at t = 0 , so does this finite sum.

In order to deal with the first and the third summand, we first need some preparation:
Since h(n, 7, s) is €1, by the result of Rosay [25] already mentioned above, h, is actually
%' up to the edge; therefore, (3.10) and (3.2) imply that there exists a constant C' > 0

with ‘%(n,f],s,t)’ < C for (n,m,s,t) € H_, j=1,...,d, and that h_ € €(H_ U H).
Also choose C' so large that we have that

_ C oh_ , _ C Oh_, _
(77777)S7t)’<_ ’—(nanasat)‘<Ma ’—(77’77757t)’<

‘3’1_—
el | one Iy

9s; £

Recalling that for (n,s) € H

h(n,1,s) = ® (n,ﬁ, 5,0, hy(n,7,5,0), hy(n,7,s,0),9(n,1n,s, 0)) =h_(n,n,s,0),

we thus see that h_(n,7, s, t) satisfies the assumptions of Proposition 3.4 for any o < 1.

Therefore, h_, when restricted to any set of the form H_ = H x (7#,0)% as in that

corollary, is €% (PI ) for every By < % Fix any such Sy for the remainder of the proof.
For (n,s,t) € H_, we can therefore estimate

b (0,77, 5, —t) — he (0,77, 5,8)]| < C[|t]] .

We now return to the terms of interest. We claim that both

CD?T (77777» S,t, h+(777ﬁa S, _t)’ h+(naﬁv S, _t)vng(nvﬁa S, _t)) ’
‘I)E (777 ’f_}, S, t7 h’-‘r (77, T_]a S, _t)v h+(777 777 S, _t)7 Q—s-(ﬂa ﬁv S, _t))

are flat along ¢t = 0 on H_ that is, we will check that for j =1,...,d, £=1,..., N’ and
given a, B € N, 7,5 € N%, and a € N there exists a constant Cy 5.5, > 0 such that for
(n,s) € H_

Hlal+1B1+1vI+16]
onenPsrd
< Co s It

glal+181+1vI+lé|
Onnfsrtd

(b&j (777777 S7ta h+(777f]7 S, _t)7 h-&—(’h ﬁa 5, —t)a9+(777777 S, _t)) H

(3.11)

(I)& (777 1,8,1, h+(77> 1,5, _t), h+(na 7,8, _t)v 9+(77, 1,5, _t)) ‘

< Capiysalltl®
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Write A = |a| 4 |8] + |7| + |d]. First choose a constant C' > 0 and b € N such that for
ever &, 3 € N* and every 7,6 € N% with |a| + 5] + 5| + |5] < A we have

Q&I+ BI+1F1+9] _
h+(77»77a S, _t) S b

oo sTtd [
(3.12)
Hlal+IBI+1A1+13] : ) c ( Ve H
) 7) S, _t = T 7 399 S —_
I TR

By (3.8) we can choose a K > 0 such that for j=1,...,dand £ =1,..., N,

(1)5]- (777 77; g, 5-7 (7 5) A)

OIGI+IBI+IAI+151+|€+| 7]
OIS CECTAR

_ _ . atAb
< K (|t +||®m,5,0,5,¢,¢0) =C])) ™,

|5|a+|5+w|+8+|é|+|ﬂ|

8775‘7755%5{5@7Af‘ fg(TLﬁaO—v&,CaCaA)

_ _ . atAb
SK(”tH+||(I)(777ﬁ7035—7<7§aA)_<||) Fo )

holdsonU1><U2><U3><U4foralloz,B€N" 7,6eN E,\ V€ NN/,andﬂeNksuch
that

j&] + 18] + 131 + 18] + [€] + |7] < A.
We thus see that for (,s,t) € H_ and £ =1,..., N’

9IaI+IBI+IA+181+ €|+ 7|

(I)@ (777 ’F’a S, t7 h’-‘r (77, ﬁa S, _t)v h+(777 777 S, _t)7 9—&-(7]’ ﬁv S, _t))

O T3 (2 (P A
S K(Ht” + H‘I)<77,7_77075»h+(777777 S, ) h+<77 77a 9 ) g+(77 777 ) t))
_ a+Ab
—hy(n,0,s,—t)|]) % (3.13)
_ _ a+Ab
= K ([[t]l + |h—(n, 7, s, t) = ho-(n, 7, s, 1)) 7o
a«g(l)éb

< K (Jlel +C 1))
< K e

and with the same argument, for j = 1,...,d and (1,s,t) € H_

H 9\&|+1BI+171+18]+1&l+7|

877d7755'~yt5<5<_5/\’1 (DEJ- (777 8, ta h-i- (77? 1,8, _t)a h+(na 8, _t)v 9+ (77) 1,8, _t)) H

- Ab
< K[|t T,
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for the same range of @, 3 € N*, 7,6 e N4, &, 0 € NN/, and i € N¥ as above.
If we now consider the term
lal+IBl+IvI+8]

Wq)@ (77»777 87t7 h+(na 77’ S, _t)7 h+(77777» S, —t)79+(777 ’Fla S, _t)> B

then by the chain rule, we can write it as a sum of M € N terms (where M is a
combinatorial constant involving the multiindices «, 3,7, ) each of which is a product
of a derivative of the form

OIaI+IBI+ A1 +15]+1él+|7|

O CEC A

(I)(f (77777, Svta h+(777ﬁv S, _t)v h+(na ﬁv S, _t)ang(nvﬁa S, _t))

with at most A factors of derivatives of the form

lal+1B1+11+13] HIGI+IBI+I7]+15]

h+(n7ﬁ787 _t)v h+(n7ﬁ737 _t)a

P st il st
9l&l+IB1+171+13] ( )
T A ~_7 ~ & 3758, —t).

gy AU
Using this observation together with (3.12) and (3.13) we see that for £ =1,..., N’

Blod+181+vI+13] S ) .
H (I)fe (777 1,8, tv h+(na m, S, _t)7 h+(777 1,8, —t)>9+(777 1,8, _t)) H

O sTtd
a\" 3.14
S MK||t||a+Ab . ( . )
[
< MEKCH e,

and thus, (3.11) holds for P;. As the same argument applies to @5, j = 1,...,d,
we get that h_ lies in QLOO(H_) as claimed. The final conclusion follows by applying
Theorem 3.3. O

4. Numerical invariants for a CR map and associated open subsets decomposition
4.1. Admissible rings of functions, numerical invariants and some basic properties

Here we introduce a new sequence of invariants attached to a CR map that relates to
its smoothness properties. If X is a real manifold, ¢ € X and ¢ € Z, U {co}, we denote
by €*(X, o) the ring of germs of €*-smooth functions at o and by €*(X) the ring of
¢ *-functions over X.

In this section we assume that M C CV is a ¥*°-smooth generic submanifold of CR
dimension n, and h: M — C{X, is a continuous CR map. We denote by %5R(M, D),
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¢ € Zy U{oo}, the ring of germs of €*-smooth CR functions at a point p € M. For a
given ¢ € €'(M,p), we denote by L) = (L1, ..., L,1) where Ly,..., L, is a given
choice of a basis of €>°-smooth CR vector fields near p. The reader should note that,
wherever we use this notation in what follows, the conditions involved will not depend
on the choice of the basis of CR vector fields.

It will be convenient to introduce the following:

Definition 4.1. Let M and h be as above, 4 € Zy, p € M, and j be an integer satisfying
0<j<p

a) We denote by 7/ the set of all pairs (g, R) with g = (g1,...,gx) € (€47’ (M,p))*

for some integer k and R(z,z,w,w,A) € €(M x CN" x CF, (p, h(p), g(p))), which
have the property that R is holomorphic in A and which satisfy

R (€.€.h(6.8).h(€.9).9(6.8) ) =0

for £ € M near p.
b) If h is assumed to be €~ 7-smooth, we denote by .7} the subring of €#~7 (M, p)
consisting of those functions 1 that may written in the form

(&) = R (&€ (€, ),h(6,).9(:.8) )

for £ € M near p where g = (¢1,...,9x) € (‘ﬁg;j(M,p))k for some integer k, and

R(z, zZ,w,w,A) € €°(M x CN" x CF, (p, h(p), g(p))) is holomorphic in A.
¢) For (g, R) € )+, we define

Ry :=Ry (£7gvh(§vg)a h(gu 7)7g(£1

|
N—

)
= (Ruy (€618, 1(6.8).9(6:8) ) - Ruy, (665 O, h(EE).9(6.9)))

for £ € M near p.

Remark 4.2. Note that if ¢ € 3‘}{’“ then there is a neighborhood of p in M such that for
any z in that neighborhood, (the germ at z of) ¢ € .FJ*.

We note that for any p € M, the space

7M. p) = { R (.5 h(0.9) 10, 5), 900 B) ) : (9, R) € a7} < '
is a vector space. We define, for p € M and any integer 0 < j <

S} (M, p) := dime 2§ (M, p) (4.1)
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For every p € M and each u € Z,, we have

25 (M,p) C 2{(M,p) C --- C 2!(M,p),

and hence
SEM,p) < SH(M,p) < ... < SH(M,p).

Remark 4.3. We note that even though tYG’L (M, p) was defined using specific coordinates
in C', it is not hard to see that 5’]-“ (M, p) is actually independent of the specific choice

of (local) holomorphic coordinates in CV' near h(p). The same is true for the numbers
rj(p) defined by (2.2).

We do need to be careful as the sequence LS”j“(M ,p) might be strictly increasing up
to a certain j, then stabilize, and then can start to strictly increase again. Stabilization,
however, is crucial for what follows.

For p € M, we set

Vik = (94(M,p))*

= {V e CV' V- Ru(p, 5, h(p, D), M(p. ). 9(p, D)) = 0, (g, R) € %j’”} :

75
P

(4.2)

Since §'(M, p) is increasing in j, we have that
Vit C VETbIE C e C VR and dim VIF = N’ — .7F(M, p).
In the following remark, we define the “holomorphic” derivatives of elements of 95 Lo
Remark 4.4. Let 4 € Z,, p € M, and j be an integer satisfying 0 < j < pu.
(i) For ¢ € ﬁ}z’“ and V € V{;“, one can define V - 4,, (at p) in a unique way.

Indeed, if ¢ € Z)* can be written in two different ways, using (g*, R') and (g%, R?),
so that

(& E) = B (&6, 1(6,6),h(E,8), 97(6,8) ) = B (& & h(&,€), M,

) 9°(6,6) )

for &€ € M near p, where each ¢' € ((ﬁg}_{j (M, p))*¥ for some integer k;, and R' €
E>°(M x CN' x le\iv (p, h(p),g*(p))) is holomorphic in its last argument, i = 1,2,
then we have for g = (g, ¢%) and R defined by

R (E75aw7w7A1a A?) = Rl (575,11),721, Al) - R2 (f,f_,w,u_),Ag)

that (R, g) € edpjv“. Then for every V € V{;", we have V - R,, = 0 and so
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V-RL =V -R2 (atp). (4.3)
It follows that for every V € V{;", the natural definition
V by :=V -RL (at p) (4.4)

is well defined, since (4.3) shows that the right hand side of (4.4) is independent of
a particular choice of representative (g°, R) for 1.

(ii) For any polynomial P(t,t) = >, pPiath e Zir[t, 1], t € C", and any V € Vi#,
we define

V- Py(tt) =Y (V- PyP)et?,
o,

which is well defined by (i).

Lemma 4.5. Let M C CV be a €°°-smooth generic minimal submanifold, of CR dimen-
sion n, and p € M. Let u,j be integers satisfying 0 < j < p and let h: M — CY be a
CR map of class €*7. Let K be a €>-smooth CR vector field on M defined near p.

(i) Let ¢ € ﬁg’” and assume that both ¥ and K are defined on a neighborhood Up of p.
Then K1) € fg“‘l’“, and for every z € U, (the germ at z) of K1) belongs to 93‘_"1’”.
Furthermore, if V: U, — CN" is a CR map of class €1 and satisfies V(z) € Vi1
for z € Uy, then V - (K1) is defined all over U, and one has

V- (K¢)w =K(V -1y), on U,
(ii) Let (g,R) € «/)*. Then there exists (G5, RK) e I such, that KR, = }A%f:f

In applications of Lemma 4.5, the place of K will be taken up by entries of a local
basis L1, ..., Ly, of CR vector fields on M near p. In order to simplify notation, we will
in that case write RY =: RJ.

Proof. Let ¢ € .Z]*. By definition there exist g € (€4 (M, p))* for some integer k
and R € €°°(M x CN' x C¥, (p, h(p), g(p))), holomorphic in its last argument (denoted
by A in what follows) such that

Y(z,2) =R (z,i,h(z,é),h(z,é) g(z,i)) , 2z € M near p.

Hence for z € M near p,

(K¢)(2,2) = Rz(2, 2, M2, 2), h(z, %), 9 (2, 7)) - K(Z)
+ Ra(z, 2, h(2, 2), ),9(2,2)) -
+ Ra(z,2,h(2,2),h(z,2),9(z,2)) -

h(z,z
z
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Since g and h are CR maps of class €#~/, their components all extend holomorphically
to a (common) wedge of edge M at p by Tumanov’s theorem [28] and the extensions
are of class €*~7 up to the edge (on any strictly finer wedge), see e.g. [25,2]. Keeping
the same notation for the maps g, h and for their extension on some appropriate finer
wedge, we then may write

N 3y oy o
ng:Zaj(z,Z)—g(z,E), Kh:za](Z,Z)—(z,Z)
j=1 8Zj = azj-

for z € M near p, where the a; are ¥ functions defined on U,. Using the notation

dg = (g—g, e 6‘99 ) and similarly for h, we can therefore write
zZ1 ZN

(Kv)(2,2) = B (2,2, h(22), 52, 2), 92 2), (0R) (=, ), (99) (2, ) )

with R € ¢ (M x CN' x Ck+NN'+kN (p,h(p),g(p),ah(p),ag(p))), and holomorphic

in its last three arguments. Hence Ly € .ZJT1# and as observed in Remark 4.2, for
z € Uy, the germ at z of L1 belongs to .ZJ T+,

Next, suppose that we are given a neighborhood U, of p in M, as in Lemma 4.5, and
U, >z V(z) € VITLE of class €' and CR. Then we have on U,

since V' is CR. This completes the proof of part (i) of the lemma. Part (ii) can be proven
as well by using the same type of arguments as in (i). The proof of the lemma is therefore
complete. O

4.2. Open subset decomposition associated to the numerical invariants
For k,/ e N,/ < N and v € Nwith k <v < N' — £+ k — 1, we define

., ={zeM: fjﬂjN/*€+k(M7§) = fjﬂjN/’”k(M,z) for € near z, k< j<v+1, and
(< AV 2) << SN 2) = SN TR, 2)
(4.5)
U i, = {2 € Mo FN R €) = N =R (M, 2) for €
near z, k<j <N —/f+k, and (4.6)

<IN TR, 2) < o< SYTHE (M, 2) = N
We also define, for k,/ e N, k <v < N' —{l+k,and £ <m < N,

@i’ff = {z € Qf;ﬂ/ : ,S”Z,N,_“k(M, z) = m} . (4.7
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Note that by construction, for each k,¢ € N with £ < N’ and every v with k < v <
N’ — £ + k we have

N’

U o =9, (4.8)

m=/{

and that each @f;? is open in Qf;yl, and also open in M. Let us finally note that the
definition (4.6) implies that

ﬁi:%'—@rk =), form < N'. (4.9)
5. Relating the smoothness of a CR map to the open subset decomposition

For M and h as in §4 we denote by M;* the open subset of M consisting of those
points p € M such that h is ¥°°-smooth in a neighborhood of p. The relevance of the
introduction of the open subsets ?227: in §4.2 to the study of the smoothness properties
of the map h and the CR geometry of h(M) is explained by our next two results.

Proposition 5.1. Let M C CV be a €°°-smooth generic minimal submanifold, and
h: M — CN" be a CR map of class €. Let £,k e N with{ < N', k<v <N —/{+k,
and let the sets Qi’y be defined as above. Then UIILZHIC Q’,;Jj C Mpr.

Proof. Let z € Ufi;”k @if/ Hence there is k¥ < v < N’ — ¢ 4+ k such that
SN =t+E(M, z) = N'. Hence we can find (g, RY),..., (g, RN") € &/»N'~tt% such that
for £ € M near z

Rj(f,g,h(€7g)7h(§, )79(57 )) 207 ]: 17"'7N/7

and

Rk{R (z,2,h(z,2),h(2,2),9(2,2)),1 <j < N'} = N

Since M is minimal, all components of h and g extend holomorphically to a common
wedge of edge M at z by Tumanov’s theorem [28]. Observing that h is of class €'
and g of class € "—t+k=v and hence at least continuous, we may apply Theorem 3.1 to
conclude that h is €*°-smooth in a neighborhood of z. The proof of Proposition 5.1 is
complete. O

Proposition 5.2. Let M C CN be a €*-smooth generic minimal submanifold and
h: M — CN' be a CR map of class €*. Let k,¢,m,v e N withk <v <N —{(+Fk—1
and ¢ < m < N'. If h is of class €N~k on Qi’;’j, then for every p € Qi’ff, there

exists a neighborhood U, of p in ﬁi’ff, and for every & € Uy, an (N’ —m)-dimensional
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formal holomorphic submanifold T'¢ through h(§) that is tangent to h(M) to infinite or-
der at h(§). Furthermore, the family of formal holomorphic submanifolds (I'¢)¢cu, can be
parametrized in such a way that the dependence on & € U, is CR and of class GN' kv,

The proof of Proposition 5.2 is more involved than that of the previous proposition and
is mainly inspired by some arguments originating from our previous work on convergence
of formal maps [21].

Throughout the rest of §5, we fix k,¢{,m,v € Nwith k <v < N —/+k—1 and
{<m< N

For 2 € ﬁi’f:, we have by definition dim V2N ~¢+% = N’ —m. However, locally around
any point p € ﬁi?} we can actually give a basis of vectors spanning V%%V "~k for z close
to p which depend on z in a CR manner. The next proposition gives an exact statement.

Proposition 5.3. Under the assumptions of Proposition 5.2, for every p € ﬁi’f:}, there

exists a mneighborhood W, C ﬁi? of p and CR maps VI: W, — cN’ of class
%N/_“‘k_”, j = 1,...,N' — m, whose components belong to ﬁ;’NL“‘k, such that
{(VU(z),...,VN'=4(2)} forms a basis of VON' = for every z € W,

For the proof of Proposition 5.3, we shall need the following lemma.

Lemma 5.4. Let M C CV be a €>-smooth generic submanifold of CR dimension n,
p € M, and %, be a subring of €7 (M,p), for some T € Z., satisfying the following
condition: for every ¢ € Zp, if Y(p) # 0 then 1/ € #p,. Let N' > 1,1 <§ < N’, and
AL, ..., A% be germs of p of CN' -valued mappings with components in RKyp. Assume that:

(i) The rank of the N’ x & matriz A := (A',..., A%) is equal to & at p;
(i) For any smooth CR wector field L of M near p, the rank of the N' x 26 matriz
(A, LA) is constantly equal to & in a neighborhood of p.

Then there exist N' — 0 germs at p of CN -valued mappings, with components in %, N
CEp(M,p), denoted by Vi ..., VN'=0 such that for 1 < j < N’ =6 and 1 < ~v <94, we
have
N
VICAY =) VIA] =0 in &, (5.1)
i=1

and such that V1(p,D), ..., VNi—s(p,p) are linearly independent.

The proof of Lemma 5.4 can be obtained by elementary linear algebra by following
e.g. the steps of [20, Lemma 4.5] and will therefore be left to the reader.

Proof of Proposition 5.3. Let p € (Ali?f We may choose (g, RY), ..., (g, R™) € %”’N,_“k
such that
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RK{ R, (p, p, h(p, D), h(p, D), 9(p, ), 1 < j < m} = m. (5.2)

We shall apply Lemma 5.4 to the subring %, 1= ZuN =4k of @' ~¢+k=v (M, p) and to

Al(2,2) = Rl (2,2, h(2,2), h(2,2),9(2,2), 1<j<m.

One can check that for every v € Z4N =k with ¢ (p) # 0, 1/¢ € FLN' =44k Further-
more, (5.2) shows that condition (i) in Lemma 5.4 is already satisfied.

In order to apply Lemma 5.4, we now check that condition (ii) is also satisfied. For
this, choose a basis L,, 1 < r < n, of €>-smooth CR vector fields for M near p. Then by
Lemma 4.5 (ii), for every 1 < j <m, 1 <r < n, there exists (¢, R9"") € %”H’NL”’“
such that L,A7 = ﬁjwr Hence for all j,r as above, we have a collection (g, R’) and
(gj’r,ﬁj’T) all belonging to %”“’NL”’“. Since p € ﬁf;’zl, the rank of the family of
vectors in CV' given by R&,ﬁ{;r, for j,r as above is constant and equal to m in a
neighborhood of p. Since this latter rank coincides with that of the family of vectors
A L, AT, 1<j<m,1<r <n,the claim is proved. To conclude, we now just have to
apply Lemma 5.4, recall that dimVZvN/_“‘k = N’ —m for all z € M near p and note
that for z in some sufficiently small neighborhood of p in M, we have

YNtk {v eC .V R (2,2h(z2),h(22),9(z,2) =0, j=1,... ,e}.
The proof of Proposition 5.3 is complete now. 0O

In order to prove Proposition 5.2, we shall now follow and adapt the approach devel-
oped in [21]. We first make the following simple useful observation which follows from
our previous construction.

Lemma 5.5. Under the assumptions of Proposition 5.2, for every p € ﬁf;’:f, let

(V17...,VN/_m) and W), be the basis and the neighborhood constructed in the proof
of Proposition 5.3. Then for every z € W), we have VZ’N/_Z‘H“ = VZ“’N/_“’“. Further-
more, for every & € Wy, for j = 1,...,N' —m, and for every (g,R) € %’/H’N ik

defined on a neighborhood Us C W), of £, we have

VI(2) - Ry(z,2,h(2,2), h(z, 2) ) =0, zeU..

Q

—

n
N

We can now state and prove the last step towards the completion of the proof of
Proposition 5.2. This next result can be thought of as a (¢°°—)smooth version of [21,
Theorem 4.1].

Proposition 5.6. Let M C CN be a €*°-smooth generic minimal submanifold and
h: M — CN' be a CR map of class €. Let k,{,m,v e Nwithk<v < N — {0+ k-1
and ¢ < m < N'. Assume that h is of class GN' kv op QQT and for every p € QLm

kv’
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let ¥ = (VY,...,VN'=™) and W), be given by Proposition 5.3. Fort = (t1,...,IN/—m) €
(CN/*’”, we sett- YV = vazfm t;Vt. For every d € Z., define a family of homogeneous
polynomial maps of degree d in (3‘\;”1\[ RN inductively by setting

1
DY t):=t-v,  D¥(t):= d—+1(t -Y)-DE(t), d>1. (5.3)
In addition set D(t) := Yoo, Dt) € (ﬁ;’Nl_“‘k[[t]])N/ and write D(t) =

Y aenn'—m dat®. Then, shrinking W, if necessary, the following holds:

(a) for each a € NN'=m 4. is well defined on W, and is of class EN' kv and CR
on Wp.

(b) for every & € Wy, t = D(&t) = h(§) + X qenny'—m da(§)tY defines an (N’ —
m)-dimensional formal holomorphic submanifold through h(§), denoted by Te.

(c) for every & € Wy, T'¢ is tangent to h(M) to infinite order at h(§).

Proof of Proposition 5.6. a) The fact that all the d,’s, for a € NN'=m are well defined
and of class €N ~¢+F—v on W, follows from the fact that the V*’s belong to ﬁ#N/_“‘k,
are well defined on W), and from the construction given in (5.3). It remains to check that
the do’s are CR over W),. Choose a basis of € >°-smooth CR vector fields Ly,s=1,...,n,
for M defined all over W,. We show by induction on d that Ls(D%(t)) =0,s=1,...,n,
where we consider D?(t) as a polynomial map with coefficients in €1 (W,,).

For d = 1, in view of (5.3) and Proposition 5.3, D!(t) is polynomial map with coeffi-
cients that are CR over W,. Assume now that D(t) has all its coefficients CR over W,,.
This means that for s = 1,...,n, Ls(D%(t)) = 0 over W,,. By Lemma 4.5 (i), Ls(D%(t))
is a homogeneous polynomial in ¢ with coefficients in Z 1N =+ and defined all over
W,. Furthermore, since V4N’ =6k — yr+LN'=l+k for » ¢ T, (see Lemma 5.5), we have,
for every t € CN'=™ a CR map of class €' given by W), 3 z — t - ¥ (z) € VY HLN =Ltk
Hence, using again Lemma 4.5 (i), we get

Ly ((d+1)D™ (1) = Ls((t - #) - Dy(1)) = (t-7) - (LsDU(t)w o0 W

Since Ls(D4(t)) = 0 over W, we have (¢-#)-(LsD%(t)),, = 0 and hence Ls(D*1(t)) =0
for s = 1,...,n which completes the proof of (a).

Regarding part (b), we use the fact that the vectors V1(€),..., VN =™(¢) are of rank
N’ —m at every £ € W), shrinking W), if necessary, by Proposition 5.3. Hence

VEE) ... VYT
oD .
E(f,o): : E
Vi€ .o v

is of maximal rank N’ —m for £ € W),.
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We prove part (c) by showing that for every & € W, and for every germ
p: (CN' h(€)) = R of a ¥®-smooth function that vanishes on h(M) near h(€) the
identity

p (&) + D(&:1).A(E) + D(E1) ~ 0

holds in the ring of formal power series R[t,¢]. In the previous statement, we have
identified p with its formal power series expansion at h(£). From now on we fix £ € W,
and p as above. We also assume that p is defined on some neighborhood X¢ of h(§)
in CN" and that Vi is an open neighborhood of ¢ (in M) such that h(Vg) C X and
Ve C W)

We need the following lemma, analogous to [21, Lemma 4.2], whose proof will therefore
be omitted.

Lemma 5.7. Let £ € Wy, p, Ve and D be as above. For z € V¢, write the formal power
series erpansion

p (1) + D0 FE F DED) ~ 3 ﬁ ROz, D) € R[LE] (5.4)
a,beZ

where each R*® is homogeneous of degree a in t and of degree b in t. Then for any
a,b € Zy, there exists a universal polynomial %, in all its arguments such that

R (z:t,8) = Uy l(pw5w5(h(z)7h(z)))|,§|§Z? (s! D*(2:1))s<a, (1! DT(Z;t))r<b‘| - (55)

Furthermore, for a,b € Z., writing %ap = %ap((Mp,s5)|81<as ST+ 80, T1,. .., Tp),
[0]<b

Ags€C, S;,T;j € CN', and Rt for ROTLE (24, 1), we have

RotLb — Z(Z +1)! 8;/;’b (pw/su—,s (h(z), h(Z)))wgm (s! D*(2;t))s<a, (1 D (%; t))rgb]
i=1 v [6]<b
- D" (z;0)
a%a,b s P —Z < s S( 4 < P ? <
+ l%@ 81\%“ [(pu1511) (h( )7 h( )))Ilgl\ggv( 'D ( at))S,a’( 'D ( 7t))rb]

|| <b
x D' (z1) - (puran (h(2), B(2)) )
(5.6)
In view of Lemma 5.7, we may now complete the proof of Proposition 5.6 (c¢) by

showing that for £ € Wy, p as above, and for every z € V¢, R%b(z;t,t) = 0 for every
a,b € Z, by induction on e := b+ a and hence in particular at z = £. First observe



B. Lamel, N. Mir / Advances in Mathematics 335 (2018) 696—73/ 725

that R%(z;t,%) = p(h(z),h(z)) and hence is identically zero for z € V. Let e € Zy
and suppose that R*®(z;t,£) = 0 for z € Ve and a + b < e. We are going to show that
Rot1b(z:t,t) = R¥YH1(2;¢,¢) = 0 for 2 € Vg and a + b < e. By Lemma 5.7 we have for
a+b<eand z € Vg

RO (z;4,0) = Uay (pwﬁwV(h(z)a%))llﬂEga(S!DS(Z§t))Z§aa(T!DT(Z5t))r§b = 0.

(5.7)

Since for every integer d, Dd(z t) is polynomial in ¢ with coefficients that are at the same

time CR and belong to % ”N ~#+F (¢f. Proposition 5.6 (a) proved above), we may see

5.7) as a polynomial 1dent1t in (¢,t), with coefficients in .. N'—t+k . Hence it follows
poly Yy s ¢
from Lemma 5.5 that

D'(zt) - RGP (=t D) = (t-7() - BP0 =0, 2 € Ve (5.8)

But in view of (5.7), we have that for z € V¢ the left-hand side .Z of (5.8) satisfies

£ = Z ;! 8%ab [ pwﬁw (Z)))||§|iza(S'DS(Zat))s§a7(T'DT(th))TSb]
a%” [ P (). FED) s (40" 30 (r!Dr(z;t»Tgb] D'(z:t)
M<a <
| <b

: (pwmh( ) (=)
[(pwﬁwfs(h(z),wn 10 (1 D" (33))s<as (11 D7 t‘)>rgb]

16]<b
D’+1(z,t)
o, __ . _
A P (pupas ((2), h(2))) 51<as (8! D (ZQt))sﬁav(T!DT(Z§t))r§b] D*(z;t)
MR al<b
[n]<b

(5.9)

In the last equality, we have used the definition given in (5.3). Now in view of Lemma 5.7,
the last quantity we found for . in (5.9) happens to coincide with R7+1:*(z;¢,%). Hence
Rj“’k(z; t,t)=0for z € Ve and j + £k < e. Furthermore, since p is real-valued, we have
RF+L3(z;t, 1) = RPF1(z; , t,1). Hence the induction step is complete, which finishes the
proof of Proposition 5.6 (c). O
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6. Density and elementary rank properties

Let us now again consider a € >°-smooth CR submanifold M c CV and a fixed subset
M’ c CV'. Recall that we defined for a CR map h: M — CV' of class at least €™ and
every 0 < k < m the following quantities in (2.1)—(2.2):

r(p) = dimespan{ Ly ... Lpu(h(2). B) 0 € Inan) (),
Li... L €T,(M),0<j <k},
r, = max {e € Z4 : 1,(p) > e for p on some dense subset of M} .

If h(M) C M’, we may also define:

T, m (p) == dime span{ Ly ... Ljpw(h(p), k(D)) : p € Iar (h(p)),
Ly ..., L; € Ty(M),0 < j <k},
rim i=max {e € Zy : r pv(p) > e for p on some dense subset of M} .

In what follows, we will use the following obvious fact: when h(M) C M’, for every
p € M, ri(p) > ri.a(p) and hence 15, > ry ar.

The goal of this section is to discuss some elementary bounds on these integers 7y
when one puts various geometric properties on the pair (M, h(M)). The first bound
involves rg.

Lemma 6.1. Let M C CV be a €>°-smooth CR submanifold and h: M — CN be a
continuous CR map. If there exists a €°°-smooth CR submanifold M' C CN' such that
h(M) C M’ then ro > N’ —n’ where n’ = dimcg M’. In particular, if M’ is mazimally
real, then ro = N'.

Proof. Pick p € M. Then by [2, Theorem 1.8.1], there exist holomorphic coordinates
(x, (¢, 7)) € C" x CN'=7'=d" 5 C4 near h(p), vanishing at h(p), such that M’ is given
by the zero set of ¥*°-smooth functions of the form:

C=0(x,7,X,;7), Im 7= ®(x, x,ReT). (6.1)

Here # and ® are defined and % °°-smooth near the origin in Cv'+d and CV x R,
0(0) = 0, ®(0) = d®(0) = 0 and # being CR on the generic submanifold M’ = {(x,7) :
Im 7 = ®(y, x,Re7)} € C¥ 19 In the same vein as what mentioned in Remark 4.3,
the integers r; a7, j € N, are independent of the choice of holomorphic coordinates in
CN'. We therefore use w = (x,¢,7) as coordinates near h(p) and the smooth defining
functions (6.1) p = (p1,...,pnN'—ns) to see that p, has rank at least N’ — n’. Since
pi € v (h(p)), 7 =1,...,N" —n/, we have ro p(p) > N’ —n’ for every p € M and
hence ro > N' —n/. O
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The next result provides a bound for r;.

Lemma 6.2. Let M C CV be a €>°-smooth CR submanifold and h: M — CN" be a CR
map of class €. Suppose that there exists a € -smooth Levi-nondegenerate submanifold
M’ c CN" such that h(M) C M'. If h is immersive (on a dense open subset of M), then
71 > N' —n' +n where n = dimgg M, n' = dimcgr M.

The content of this Lemma is a well-known fact that can be found in other variants
in the existing literature (see e.g. [22]). We give a self-contained proof of the statement
we need here.

Proof. Pick a point p € M where h is immersive. We will use a defining function of
M’ as in the proof of Lemma 6.1, where we can (because of the assumption of Levi-
nondegeneracy) achieve the additional property that if we write ® = (®1,..., (I)d,), then
the matrices

have no common kernel when evaluated at 0, and also assuming that ®,, vanishes at 0.
Denote the components of h in the (x, ¢, 7)-variables by h = (f, F, g). When we compute
r1,m7, we have in particular amongst the p,,(0) with p € £y (0) the vectors

. 11 .
(cbg((()),o,o,...,<2i2@{{”(0)>,...,0>, (0,0,...,1,...,0,...,0), j=1,...,d.

Since the last N’ — n/ slots in these give rise to linearly independent vectors in CV —n
as already noted in the computation for (i), we just need to consider the E@g;( f.f,Re g)
for all CR vector fields L on M. Choose a basis L1, ..., L, of the CR vector fields on M
near p. Since h is immersive, L1 f, ..., L, f, is of rank n at p. We claim that the vectors

- _ - -1 o
Lj(I)’;(f,f,Reg):<I>f<’)-(Ljf+§(I>fﬁsng, j=1,....n, k=1,...,d

have rank at least m when evaluated at p. Since we have normalized ¢ so that
D, S(f, f,Re 9)lp =0, it is enough to check that the

‘I’fmzijfv j=1...n, k=1,....d

are of rank at least n at p. We decompose y = (x*, x2) € C"xC" ~" and correspondingly
f=(f'f%) eC”xC" ", and write the matrix

i
s
Il

7N
N
R Sy
) —
NN

(V] [ V]
~
) —
N~

3 3
R Sy
) =
~

I

N
N
|
N —
~
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After a complex linear change of coordinates in the y, we may assume that L f? (p,p) =0,
and L ' =I,xn is the identity matrix. When we now consider

OF Lf = (®F (Lf' +@F .Lf?)
and evaluate at p, we obtain
oF L (f(p. D), f(p. D). Re g(p, ) Lf(p,p) = % L1 (f(p. D), f(p. D), Re g(p,D)).

We note that the vectors

1 Hl 1 1

X1,X1 X1:X2 X1,Xn X1:Xn!

1 1 1 1

Xn/>X1 (an/?)zQ (I)Xnuin X/ >Xn'!

2 2 2 2

(I)X1,>Z1 (I)Xh)h (I)xmzn q)Xh)Zn/

2 2 2 2
Ul = Xn’sX1 5 U2 - Xn’sX2 g e U'n, - Xn/sXn DI UTL' = ®Xn’7)2n’

a ol d d

X1,X1 X1,X2 X1,Xn X1,Xn/

& & a s

Xn’ X1 Xn/ X2 Xn’ s Xn Xn/sXn!

. . . ! .
are not only linearly independent in C™?: If we consider the space D = {w =
’ r g1 . ’ ! 1 g

(wh...,w?) € C"¥:wi € C",wt = --- = w?} as a subspace of C"?¢ then
{fweD:w-Uy=-=w- Uy =0} = {0} since the matrices ®] . are hermitian
and were assumed to have no common kernel (by Levi-nondegeneracy of M'). Therefore,
for £ < n/, dimc{w € D:w-U; = ... =w-Uy = 0} < n' — ¢, and those vectors w’s
which annihilate Uy, ..., U, belong to an at most n’ — n-dimensional subspace of D. It
follows that the rank of the @;)m for j=1,...,d and £ = 1,...,n is at least n at p.

This proves that 71 p/(p) > N’ —n’ +n and hence that 71 > N’ —n’ +n as desired. O

For the statement of the next lemma, we need to define the following quantities for
k S Z+Z

M (p) := dim¢ span { Li...Lip.(p,p) : p € Ir(p), L1,...,L; €TH,(M),0<j < k},

rpl i=max {e € Zy : 13’ (p) > e for p on some dense subset of M} .

(6.2)

Lemma 6.3. Let M C CN be a €>°-smooth finitely nondegenerate CR submanifold of
CR codimension d and h: M — CN' be a CR map of class €. Suppose that there
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exists a smooth CR submanifold M’ ¢ CN' with h(M) ¢ M', with dimgr M’ = n'. If
h is of class €**! for some k € Z, and strictly noncharacteristic at p, then ry(p) >
N' —n' —d+rM(p) > rM(p). In particular, if M is at most (-finitely nondegenerate
for some £ < ko on an open dense subset of M and if h is of class €*T and strictly
noncharacteristic (on some open dense subset of M ), then ri, > N.

Proof. We may replace M without loss of generality by a generic submanifold, so that
we assume that M € CV, where N = n+d and n = dimcp M.

Pick a point p € M where h is strictly noncharacteristic. As in the proof of Lemma 6.1,
we may choose coordinates (x,(,7) such that M’ near h(p) is locally defined by (6.1),
and as in the proof of Lemma 6.2, we write h = (f, F, g). Consider the generic manifold
M ccy X C? defined by Im7 = ® (, X, Re 7); it is locally CR-diffeomorphic to M.
We write h = (f, g) and obtain a smooth map h: M — M’ defined in a neighborhood
of p. Denoting, for j < k + 1, fj’M,(p) the integers associated to the map fz, one easily
checks that

rir(p) = N —n' —d + 7 . (p). (6.3)
Note that since h is strictly noncharacteristic, and M’ and M’ are CR diffeomorphic, h
is also strictly noncharacteristic.

This means that the pullbacks A*6” of the characteristic forms

0¥ =9(Imt, — D" (x,x,Re7)|y, v=1,...,d

span T°M (near p). After possibly reordering, we can assume that h*6Y, ... h*6% span.
We are next going to consider the generic submanifold M’ C C* x C¥ 4 x C? defined
by

P, x,77)=Im1, —®" (x,x,Re7) =0, v=1,...,d

Of course, h can also be considered as a map into the (larger) manifold M c crHe,
Hence we see that 7, v, (p) > BRVL (p) +d —d, for 0 < j < k+ 1; taken together with
(6.3), we see that

ria () = N —n' —d+7; 5.(p), j<k+1 (6.4)

By construction, 71, viewed as a map from M into M’, is also strictly noncharacteristic.

We are now going to check that 7 i (p) > rM(p) thereby finishing the proof of the
Lemma. We first extend each of the components Bj of h (which are CR functions of class
¢*+1 by assumption) to €*F1-functions on C such that each of the derivatives %,
for 1 < ¢ < N, vanish to order k on M near p. The equations

~ ~

5l(2.7) = pt (h(z), i}(z)) =0,...,7%z272) = p? (h(z), ﬁ(z)) —0
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are then defining equations for M of class €**! (near p) since h is strictly noncharac-
teristic at p. We have that

~

Pi(2.2) = oy (), 5E)) To(z2) + Ok +1),

where the O(k 4 1)-term vanishes to order (at least) k on M. Therefore, an application
of at most k CR vector fields L1, ..., L, for some a < k, on M gives an expression of
the form

y=1 1<i1<...<iy<a

Taking all these equations together (for all possible choices of Li,...,Loand a < k), we
infer that, as claimed, 7} y/ (p) > rM (p). Summing up everything we have proved so far,
we get the desired result. 0O

We conclude this section by the following useful and elementary property of the open
subsets constructed in §4.

Proposition 6.4. Let M C CN be a €>°-smooth generic submanifold, h: M — cN
a continuous CR map, and fir L,k € N such that 0 < ¢ < N'. If the open subset
M} :={z€ M: le_“'k(M z) > £} is dense in M, then the open subset of M given
by U 7€+k Q k. is dense in M, where the open subsets Qf | are given by (4.5) and (4.6).

WV
Proof. Since by assumption M} ¥ is dense in M, we only need to prove that U _Hk (Q‘Z
Mz ) is dense in Me . For every v with k < v < N’ — £+ k, consider the open subbet of
M} given by

M, :={ze M} : SN~k ¢) = SN =R (M, 2) for € near z}.

As each mapping MF FEER A N'—t+k (M, z) is integer valued and lower semi-continuous,
each M, is dense in M} and hence so is their intersection ﬂ _ ka M,,. We now observe
that since for z € Me ! < YDN “HE(M,z) < N’ for all v with k <v < N’ —( + k, we

have that

N’ —l+k N'—l+k
ﬂ M, C U (Qf , N M)
v=k v=k

which proves the proposition. O
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7. Proof of Theorems 2.2 and 1.1, Corollaries 1.3, 2.3, 2.4, 2.5, 2.6 and 2.9
7.1. Proof of Theorem 2.2

Since any smooth CR submanifold in C¥ is locally smoothly CR diffeomorphic to a
generic submanifold in a lower dimensional complex space, see e.g. [2], we may assume
without loss of generality that M itself is generic in C. We first note that by definition,
if b is of class €N ¢t then for &€ € M, we have YkN/_Hk(M, &) > r(€) since, by
Lemma 4.5, all of the L; --- Lo(h(2), h(2)) € engg’Nl_Hk for Ly,...,L; € T¢(M) and
0 € Zhon(h(€)), 0 < j < k. Since we assume that rp > £, we have that £ < rp <
ykfv/_“k(M, €) for ¢ on some dense open subset of M. Hence the set M} C M from
Proposition 6.4 is actually dense, and we obtain from that Proposition and (4.8) that

N'—0+k N’
0 = U U ﬁi? cM
v=k m=¢ 7

is dense in M. If h is nowhere > on some nonempty subset M; of M, then by Propo-
sition 5.1 and (4.9), we have that

N'—t+k N/—IA N’'—¢+k—1 N’'—1 N
My=MNO = M; N U U Qi’j: = U U (Qi’zlﬂMl) (71)
v=k m=4~ v=k m=~(

is dense in M7 and the conclusion of Theorem 2.2 follows now immediately from Propo-
sition 5.2.

7.2. Proof of Theorem 1.1

First note that since M is strongly pseudoconvex the integer ! defined in (6.2) must
be equal to n + 1. Because both M and M’ are generic of codimension one in their
respective complex space, we can use Remark 2.8 to see that we may apply Lemma 6.3,
which tells us that r; > n+1 (because h is at least of class €’?). We can therefore apply
Theorem 2.2 with £k =1 and £ = n + 1 and get that there exists a dense open subset w
of Q such that h(w) C &,y C En. The inclusion h(Q) C Eyr now follows since the set
&y is a closed subset of M’ (see [8,9]).

7.8. Proof of Corollary 1.3

Corollary 1.3 is a direct consequence of Theorem 1.2, since in such a situation, the
set of strongly pseudoconvex points in M is open and dense in M and the mapping h
is automatically CR transversal at every point of M (see [2, Proposition 9.10.5] whose
proof applies in our setting as well).
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7.4. Proof of Corollary 2.3

Corollary 2.3 is an immediate consequence of Theorem 2.2 with k =0, { = N' —n/
and Lemma 6.1.

7.5. Proof of Corollary 2.

Corollary 2.4 is an immediate consequence of Theorem 2.2 with k =1, = N'—n'+n
and Lemma 6.2.

7.6. Proof of Corollary 2.5

Corollary 2.5 is a consequence of Theorem 2.2, Lemma 6.3 and the following result,
whose proof can be obtained by adapting the arguments of [22, Proposition 3.1].

Proposition 7.1. Let M C C*t' and M’ C C"*! be (connected) €>-smooth real hy-
persurfaces with M strongly pseudoconver and M' Levi-nondegenerate of signature £,
n' >n > 1. Assume that there exists a point p € M and a germ at p of CR transversal
map h: (M,p) — M’ of class €* satisfying the following: there exists a neighborhood
V C M ofp, and for every & € V', a smooth complex curve Y¢ containing h(§), depend-
ing in a €' manner on & € V, such that the order of contact of T¢ with M’ at h(€) is
greater or equal to 3. Then necessarilyn <n’' — ¢ <n’.

7.7. Proof of Corollary 2.6

Corollary 2.6 is a consequence of Theorem 2.2, Lemma 6.1 and the following result.

Proposition 7.2. Let M C CN be a €°°- smooth minimal CR submanifold and M’ C cN
the tube over the light cone given by (2.3). Assume that there exists a point p € M and
a germ at p of a continuous CR map h: (M,p) — M’ satisfying the following: there
exists a neighborhood V. C M of p, and for every & € V, a smooth complex curve T¢
containing h(§), depending on a continuous and CR fashion on & € V', such that the
order of contact of Te with M' at h(§) is greater or equal to 3. Then there exists a
germ at p of a continuous CR function g and real constants oj,m;, 1 < j < N’ —1 with
Zj\il—l oF =1, such that for & near p

h(€) = (a1g(&) +inn, ..., an—19(E) +inni—1, g(£)).

The proof of Proposition 7.2 consists of following the steps of the proof of [21, Proposi-
tion 6.6] and [22, Lemma 2.3] and using the well-known fact that a continuous real-valued
CR function on a smooth minimal CR submanifold of C" is necessarily constant. We
leave the details to the reader.
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7.8. Proof of Corollary 2.9
We apply Lemma 6.3 in conjunction with Theorem 2.2 with k = o and ¢{ = N.
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