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Abstract. We discuss the convergence/divergence problem for formal holomorphic
mappings sending real-analytic CR submanifolds into real-analytic sets both lying in com-
plex Euclidean spaces of arbitrary dimension. In particular, we survey the recent devel-
opments on this problem for minimal as well as nonminimal source submanifolds. We
conclude by describing the results known up to date on comparing the notions of formal,
biholomorphic and CR equivalence.

1. Introduction. It is usually a difficult task to trace back the exact
place (or time) of birth of a field of research in mathematics. However, as far
as CR geometry is concerned, the opposite is the case: Its origin clearly goes
back to Poincaré’s pioneering 1907 paper [49], where he initiated the study of
the moduli space of real submanifolds in complex Euclidean spaces under the
action of biholomorphic transformations. Poincaré discovered the striking
fact that real hypersurfaces in complex Euclidean spaces CN of dimension
N ≥ 2 have nontrivial local invariants under biholomorphic mappings: to be
more precise, he showed (and we will recall his argument in §2.4.2) that if S
and S′ are real-analytic hypersurfaces in C2, or more generally in CN , N ≥ 2,
and p ∈ S, p′ ∈ S′, then there are (in fact countably many) obstructions to
the existence of a germ of biholomorphism H : (CN , p)→ (CN , p′) satisfying
H(S) ⊂ S′. This fact highlights two important aspects of several complex
variables and CR geometry. On the one hand, it shows the difference between
one-dimensional complex analysis and several complex variables, as real-
analytic curves in the complex domain are all locally equivalent to a piece of
the real line. On the other hand, it also emphasizes the difference between
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real submanifolds and complex submanifolds, the latter being all locally
biholomorphically equivalent to complex linear subspaces.

Poincaré’s discovery was the starting point of the systematic study of the
(local) biholomorphic equivalence problem for real hypersurfaces in complex
spaces, starting with É. Cartan’s work on strictly pseudoconvex hypersur-
faces [11, 10], and brought to the conclusion for Levi-nondegenerate hyper-
surfaces in CN , N ≥ 2, by the work of Tanaka [54, 53] and Chern and
Moser [12]. In their seminal paper [12] Chern–Moser solved the equivalence
problem for real-analytic Levi-nondegenerate hypersurfaces in CN , N ≥ 2,
by two independent approaches. One of these, the normal form approach,
consists of solving the problem at the level of formal power series and then
deriving the convergence of the formal objects. Looking at formal obstruc-
tions and then establishing the necessary convergence results is a natural
line of thought that has been applied in many other classification problems
in mathematics such as e.g. the conjugacy problem for germs of planar bi-
holomorphisms, or the normalization of singular holomorphic vector fields,
etc., to name but a few. In the context of CR geometry, such an approach
has led to the study of some remarkable properties of formal holomorphic
mappings between real-analytic submanifolds in complex space.

We are going to give a more thorough discussion of guiding examples
below in §3.1, but in order to whet the reader’s appetite, let us indicate two
basic situations already here. First, there are ample examples of divergent
formal holomorphic maps sending the real hyperplane Imw = 0 in C2 into
itself, as any divergent formal power series ϕ(z, w) gives rise to such a map
Hϕ(z, w) = (z + ϕ(z, w), w). However, if one considers (invertible) formal
holomorphic maps mapping the real hypersurface Imw = |z|2 into itself, one
can show that any such map is a linear fractional map.

It turned out over the years that formal holomorphic transformations have
an uncanny tendency to exhibit unexpected convergence properties, so that
a systematic study of such properties in their own right was initiated in the
1990s. One of the facets of this theory is that for real-analytic manifolds with-
out so-called CR singularities, that is, whose CR structure is determined by a
bundle, there are very natural geometric obstructions to convergence of formal
holomorphic maps (which actually explain the examples already given).

In this survey, we will encounter many of the stepping points of this
story, in the case of real analytic CR manifolds. For real manifolds having
CR singularities, the convergence problem for formal holomorphic trans-
formations has its own story too. In the pioneering work of Moser–Web-
ster [48], convergence of formal holomorphic invertible transformations for
so-called elliptic two-dimensional Bishop surfaces was established and diver-
gence was shown to hold in some hyperbolic cases. The convergence prop-
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erties of the maps in such a setting appear to be intimately related to the
dynamical properties of an associated pair of involutions, and hence present
completely different features compared to the CR case. Since the main focus
of the present paper is on the CR category, we refer the interested reader
to e.g. [48, 28, 23, 24, 26, 29, 30], and in particular to the recent survey of
Huang [27], for a complete account of the CR singular case.

Our discussion will not only tackle the convergence problem for formal
biholomorphic mappings but also for general formal mappings whose source
and target manifolds are allowed to lie in complex Euclidean spaces of ar-
bitrary and possibly different dimensions. The path we have chosen is to
describe the most recent convergence as well as divergence results, high-
lighting some ideas and tools as well as some connections with questions
related to other fields such as algebraic and analytic geometry or singular
differential equations. We do have the advantage of hindsight: over the years,
very natural and neat geometric obstructions to the convergence of formal
maps between real-analytic CR submanifolds have been identified, and a
rather complete picture has emerged by now. We will also highlight some
remaining open questions.

The paper is organized as follows. We first recall some basic facts about
formal and convergent power series in §2. We then fully discuss the conver-
gence/divergence problem for arbitrary formal maps in §3, mostly driven
by our recent work [40]. §4 addresses recent divergence results for invertible
formal maps in C2 by Kossovskiy and Shafikov. §5 provides some elements
of the proof of some of the results highlighted in §3. In the last section, we
tackle the closely related question of comparing different notions of local
equivalence for real-analytic CR manifolds.

2. Formal and convergent power series

2.1. Basic definitions: Formal power series maps. In this part, we
shall introduce elementary notions about formal power series starting with
formal holomorphic power series, depending on an N -dimensional complex
variable z, and then introduce in the picture those power series depending
on Re z and Im z and not necessarily holomorphic, that one can view as
power series in z and z̄.

We define a formal (holomorphic) power series f(z) of the complex vari-
ables z = (z1, . . . , zN ) at the point p ∈ CN as an expression of the form

f(z) =
∑
α∈NN

fα(z − p)α, fα ∈ C.

Even though one cannot evaluate such series at actual values z ∈ CN , we
define f(p) = f0. The collection of all formal power series centred at p is
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denoted by CJz − pK. For a nonzero power series f ∈ CJz − pK, its order
at p is defined to be ordp f = min{|α| : fα 6= 0}. By convention we set
ordp 0 = ∞. If we consider, for α = (α1, . . . , αN ) ∈ NN , the monomial
(z − p)α = (z1 − p1)α1 . . . (zN − pN )αN as a basis vector, we obtain a topo-
logical vector space structure on the space of all formal power series, with
the topology defined by the metric

d(f, g) = 2− ord(f−g).

With this topology, CJz− pK becomes a Fréchet space. It becomes a Fréchet
algebra when one defines the product of the basis monomials in the usual
way as (z − p)α(z − p)β = (z − p)α+β. This algebra is local, with maximal
ideal defined by m = {f ∈ CJz − pK : ordp f ≥ 1}. An explicit (and rather
efficient) way to compute the multiplicative inverse of f ∈ CJz − pK with
f(p) 6= 0 is given by the geometric series

f(z)−1 = (f(p)− f̃(z))−1 =
1

f(p)

∞∑
j=0

(
f̃(z)

f(p)

)j
.

A formal (holomorphic) power series map H : (CN , p) → CN ′ is an N ′-
tuple H = (H1, . . . ,HN ′) ∈ CJz − pKN ′ . If H(p) = (H1(p), . . . ,HN ′(p)) =
p′ ∈ CN ′ , we write H : (CN , p) → (CN ′ , p′). The set of all such maps
is in the obvious way a (Fréchet) module over CJz − pK, and we define
ordpH = minj ordpHj . Given formal maps H : (CN , p) → (CN ′ , p′) and

G : (CN ′ , p′)→ (Cm, q), their composition G ◦H : (CN , p)→ (Cm, q) is well
defined as the formal power series map

G ◦H(z) =
∑
β∈NN′

Gβ(H(z)− p′)β.

(Note that the right hand side is well defined as a power series because
H(p) = p′.) In addition to H(p), for a formal power series map as above
we also define H ′(p) to be the linear map H ′(p) : CN → CN ′ given by
H ′(p)(u) =

∑
|α|=1Hαu

α. One has (G ◦H)′(p) = G′(p) ◦H ′(p).
In particular, we note that the composition of two formal power series

maps H : (CN , p)→ (CN , p) and G : (CN , p)→ (CN , p) again gives rise to a
formal map H ◦G : (CN , p)→ (CN , p). The neutral element with respect to
composition is id(z) = (p1+(z1−p1), . . . , pN+(zN−pN )). Let us now assume
for simplicity that p = 0. If H has an inverse map, i.e. if there exists a map G
which satisfies G ◦H = H ◦G = id, then necessarily H ′(0) is invertible. On
the other hand, this condition is also sufficient, as the formal inverse mapping
theorem says. A simple proof is as follows: If we want to solve H ◦ G = id
for G, after expanding into homogeneous terms Gk, we see that the Gk
are inductively determined by H ′(0)Gk(z) = pk(z,G1, . . . , Gk−1) for some
polynomial map pk depending only on H. An important consequence of the
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formal inverse function theorem is the formal implicit function theorem: If
A(z, w) ∈ (CJz, wK)k where w = (w1, . . . , wk), A(0, 0) = 0, and the k × k
matrix Aw(0, 0) is invertible, then there exists a formal (holomorphic) map
ϕ : (Ck, 0) → (Ck, 0) such that A(z, ϕ(z)) = 0. Indeed, the formal map
Ã(z, w) = (z,A(z, w)) has an invertible derivative at (0, 0), and so there
exists a formal map B(z, w) = (B1(z, w), B2(z, w)) such that A ◦ B = id,
i.e. B1(z, w) = z and A(z,B2(z, w)) = w. Hence, ϕ(z) := B2(z, 0) solves the
implicit function problem.

We define the rank (or generic rank) rkH of a formal power series map
H(z) ∈ CJz − pKN ′ as the rank of the Jacobian matrix

H ′(z) =


∂H1
∂z1

(z) . . . ∂H1
∂zN

(z)
...

...
∂HN′
∂z1

(z) . . .
∂HN′
∂zN

(z)


over the field of fractions of CJz − pK, or equivalently the largest number k
such that a minor of size k of H ′(z) is nonvanishing (as a formal power series
in CJz − pK).

More generally, we also define the rank of a matrix-valued formal power
series map A(z), denoted rkA, as the rank of the matrix A over the field of
fractions of CJz − pK, or equivalently as the largest number k such that a
minor of size k of A(z) is nonvanishing (as a formal power series in CJz−pK).

The space of k-jets of formal maps (CN , p)→ (CN ′ , p′) is the quotient

Jk((CN , p), (CN
′
, p′)) = CJz − pKN ′/mk+1CJz − pKN ′ .

The natural map

jkp : CJz − pKN ′ → CJz − pKN ′/mk+1CJz − pKN ′

is called the k-jet map. The k-jet of the formal map H : (CN , p)→ (CN ′ , p′)
can be identified with the polynomial map

jkpH(z) =
∑
|α|≤k

Hα(z − p)α.

All of the usual algebraic operations descend to the quotient. The composi-
tion of k-jets is defined by the k-jet of the composition of any representatives:
If Λ1 = jkpH ∈ Jk((CN , p), (CN

′
, p′)) and Λ2 = jkp′G ∈ Jk((CN

′
, p′), (Cm, q)),

then jkp (G ◦H) is independent of the choice of representatives G and H for

Λ1 and Λ2, respectively, and we define Λ2 ◦ Λ1 = jkp (G ◦H).

Many of the conditions that we will encounter deal with mappings of
real objects embedded in complex spaces. Hence we will also be dealing
with nonholomorphic or real-valued formal power series. We therefore re-
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call the basic related notions and the interplay between holomorphic and
nonholomorphic power series.

Denote by CJz−p, z − pK the ring of complex-valued formal power series
whose underlying indeterminates are Re(z − p) and Im(z − p). This ring
comes with a natural involution,

b : CJz − p, z − pK→ CJz − p, z − pK, (b%)(z, z̄) = %̄(z̄, z),

where for %(z, z̄) =
∑

α,β %α,βz
αz̄β we denote by

%̄(z, z̄) =
∑
α,β

%̄α,βz
αz̄β

the series with conjugate coefficients.

We say that an ideal I ⊂ CJz − p, z − pK is real if bI ⊂ I. If I is a
real ideal, we call I a real manifold ideal or say that I defines a formal real
submanifold (M,p) ⊂ (CN , p) of real codimension d when I can be generated
by d elements %1, . . . , %d ∈ I whose differentials at p are independent.

The ring

CJMK = CJz − p, z − pK/I
is called the formal coordinate ring of M ; its field of fractions is denoted by
C((M)) and called the formal function field of M . The image of CJz − pK in
CJMK is denoted by CRJMK, and its elements are called formal CR functions
(onM); its field of fractions is denoted by CR((M)) and its elements are called
formal CR meromorphic functions (on M).

2.2. Basic definitions: Convergent power series maps. We say
that a formal holomorphic power series map H : (CN , p) → (CN ′ , q), given
by

H(z) =
∑
α∈NN

Hα(z − p)α, Hα ∈ CN
′
,

is convergent if for one (and hence any) fixed norm ‖ · ‖ on CN ′ , there exist
constants C,K > 0 such that ‖Hα‖ ≤ CK |α|. The space of all convergent
power series at p is denoted by C{z − p}. If f ∈ C{z − p}, then there exists
a neighbourhood U of p such that the series f(z) converges uniformly (and
absolutely) on compact subsets of U . Formal power series which are not
convergent are said to be divergent.

The space C{z− p} can be given an especially nice topological structure
which exhibits it as a so-called DFS-space. One way to realize such a space is
as an inductive limit of Fréchet spaces where the inclusion maps are compact.
In our case, we first define for each r > 0 the space

C{z − p}r =
{
f ∈ C{z − p} : lim sup

|α|→∞
|fα|r|α| <∞

}
,
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and endow it with the seminorms %s(f) = sup{s|α||fα| : α ∈ NN} for s < r in
order to make it a Fréchet space. For r < r′, the inclusion map C{z−p}r′ →
C{z−p}r is compact. One can also obtain the same inductive limit topology
as a limit of Banach spaces (for example, one can use the spaces H∞(∆r)
of bounded holomorphic functions on the polydisk ∆r).

All of the operations that we defined for formal power series in §2.1
become continuous when restricted to the space of convergent power series
or the space of convergent power series maps. In particular, the space
(C{z−p})N of convergent power series is a topological algebra, and the open
subset

B = {H ∈ (C{z − p})N : H(p) = p, detH ′(p) 6= 0}
is a topological Lie group.

The topologies of these spaces have a number of useful properties. They
are sequential (i.e. one can test for example continuity along sequences);
and a linear map between spaces of this type is continuous if and only if
it maps steps of the inductive limit boundedly into steps. To be precise, if
E = lim−→Ej , where the Ej are Banach spaces, and Ej ↪→ Ej+1 is compact,
then one has the following facts:

(1) A sequence xj converges to x in E if and only if there exists a k such
that {xj : j ∈ N} ∪ {x} ⊂ Ek and xj → x (as j → ∞) in Ek (i.e. E is
sequentially retractive).

(2) B ⊂ E is bounded if and only if there exists a k such that B ⊂ Ek and
B is bounded in Ek.

(3) Every bounded set B ⊂ E is relatively compact in E (i.e. E is a Montel
space).

(4) f : E → Y , where Y is some topological space, is continuous if and only
if f |Ek

is continuous for all k.

This means that even though the topology of germ spaces might look a bit
complicated at first, in applications, they are flexible tools also from the
functional-analytic point of view. We will, however, not use this viewpoint
in this survey, and refer the reader for a rather complete discussion of
this topic in the context of spaces of power series to the Ph.D. thesis of
Woblistin [58].

2.3. Mapping properties of formal maps. We next define what it
means for a formal map to map a subset of CN into a subset of CN ′ .

Definition 2.1. Let X ⊂ CN , X ′ ⊂ CN ′ be subsets, p ∈ X and
H : (CN , p) → CN ′ a formal holomorphic map. We say that H maps X
into X ′ and write H(X) ⊂ X ′ if for every integer k there exists a real-
analytic map Hk(z, z̄) ∈ C{z − p, z − p} with jkpHk = jkpH which satisfies

Hk(Uk ∩X) ⊂ X ′ for some neighbourhood Uk of p in CN .
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IfX andX ′ are not just arbitrary subsets, but actually real-analytic, then
there is at least one other reasonable definition. For this, we will identify a
germ (X, p) of a real-analytic set X ⊂ CN with its ideal I ⊂ C{z−p, z − p},
consisting of all germs (at p) of real-analytic functions %which satisfy %|X ≡ 0
(near p). We write Î = CJz−p, z − pKI for the ideal generated by I in the ring
of formal power series. Given a formal mapH : (CN , p)→ (CN ′ , q), we denote
byH∗ the natural ring homomorphismH∗ : CJw−q, w − qK→ CJz−p, z − pK
defined by (H∗%′)(z, z̄) = %′(H(z), H(z)).

We now have the alternate

Definition 2.2. A formal (holomorphic) map H : (CN , p) → (CN ′ , q)
sends a germ of a real-analytic set (X, p) ⊂ (CNz , p) into (X ′, q) ⊂ (CN ′w , q)
if for the associated ideals I and I ′ we have H∗I ′ ⊂ Î.

The equivalence of the two seemingly different inclusion relations for
real-analytic sets can be shown by using Artin’s theorem over the field of
real numbers (whose complex version is stated below, see Theorem 2.3), and
another approximation theorem due to Wavrik [56]. The details are as follows.

First, assume thatH satisfies Definition 2.2, i.e.H∗I ′ ⊂ Î, and also assume
for simplicity p = 0. We write I = (%1(z, z̄), . . . , %d(z, z̄)) and may assume
that M ′ is given near H(0) by the zero set of a real-analytic function %′. Then

by assumption %′(H(z), H(z)) =
∑d

j=1 fj(z, z̄) %j(z, z̄) for some formal power
series mapping (f1, . . . , fd) := f . This means that (X,S) = (H(z), f(z, z̄))
is a formal solution of the system of real-analytic equations

Φ(z, z̄,X, X̄, S) = %′(X, X̄)−
d∑
j=1

Sj%j(z, z̄) = 0.

By Artin’s approximation theorem in the real category [1], for every nonneg-
ative integer k there exists a convergent (real-analytic) solution (Hk, gk) ∈
(C{z, z̄})N ′+d which satisfies jk0H

k = jk0H. Hence for every k and for z ∈ X
sufficiently close to p, we have %′(Hk(z, z̄), Hk(z, z̄)) = 0, i.e. Hk(z) ∈ X ′.

On the other hand, consider a formal mapH which satisfies Definition 2.1
for two real-analytic sets X, X ′. We again assume that p = 0 and write
I = (%1(z, z̄), . . . , %d(z, z̄)) and pick any ρ′ ∈ I ′. We claim that there actually
exist fj ∈ CJz, z̄K, j = 1, . . . , d, such that

%′(H(z), H(z)) =

d∑
j=1

fj(z, z̄)%j(z, z̄).

We write m̂ for the maximal ideal in CJz, z̄K and consider the system of
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formal real equations

Ψ(z, z̄, S) = %′(H(z), H(z))−
d∑
j=1

Sj %j(z, z̄) = 0,

with (S1, . . . , Sd) being the unknown. Since H satisfies Definition 2.1, for ev-
ery k ∈ N there exists a real-analytic map (Hk(z, z̄), gk(z, z̄))∈(C{z, z̄})N ′+d
such that j0H

k = jk0H and %′(Hk(z, z̄), Hk(z, z̄)) =
∑d

j=1 g
k
j (z, z̄) %j(z, z̄),

which shows that Ψ(z, z̄, gk(z, z̄)) ∈ m̂k+1. We may now apply Wavrik’s the-
orem [56] to conclude that there exists an actual formal solution mapping
f(z, z̄) satisfying Ψ(z, z̄, f(z, z̄)) = 0. This proves that H∗I ′ ⊂ Î, as required.

2.4. Standard simple instances where formal maps arise. As out-
lined in §1, formal maps are indispensable tools in the study of many types
of analytic problems. Whenever one is looking for the solution of a problem
involving analytic objects (i.e. objects defined by power series), one of the
natural things to do is to try to figure out which type of relations the coeffi-
cients of these power series fulfill. This typically involves finding some kind
of iterative scheme to determine the coefficients of a formal power series.

2.4.1. The Poincaré–Dulac normal form. Let us first illustrate this ap-
proach with the Poincaré–Dulac theorem, which provides a (formal) normal
form for holomorphic vector fields. Consider such a vector field

X =

N∑
j=1

Xj(z)
∂

∂zj

as a mapX(z) = Mz+X2(z)+· · · ,where the decomposition is into termsXj

which are homogeneous of degree j in z. Let us assume for this discussion
that M = diag(λ1, . . . , λN ) is actually diagonal. The action of a germ of a
(formal) biholomorphism H(z) = z +H2(z) + · · · on X is given by

(H,X) 7→ Y (z) = (H∗X)(z) = (H ′(z))−1X(H(z)).

Therefore one checks that the homogeneous terms Y (z) = Mz+Y 2(z) + · · ·
can be calculated by

Y k(z) = MHk(z)− (Hk)′(z)Mz + · · · , k ≥ 2,

with the dots denoting terms which only depend on Hj for j < k. The role of
the operator Nk : Hk 7→MHk(z)− (Hk)′(z)Mz is twofold: a normalization
of the terms in Y k is only possible up to a complement of its range, and
unique up to its kernel. This is why resonances play a special role: Resonant
monomials are those of the form zα, where α = (α1, . . . , αN ) with |α| ≥ 2,
for which λj =

∑
` α`λ` for some j; and a basis for a complementary space of

the image of Nk is given by certain (vector) multiples of resonant monomials.
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The Poincaré–Dulac normal form states that there exists a formal bi-
holomorphism H such that Y = H∗X = Mz + R, where R consists of
resonant monomials only. The Poincaré–Dulac normal form is necessarily
convergent if 0 ∈ C is not in the convex hull of {λ1, . . . , λN}; such a collec-
tion of eigenvalues is said to belong to the Poincaré domain. A collection of
eigenvalues not belonging to the Poincaré domain leads to subtle problems.
But in any case, the existence of resonances is an obstruction to lineariz-
ing a vector field, which is found by using a formal map. For more on the
Poincaré–Dulac normal form, we refer the reader to e.g. [31]; and to [41]
for some modern developments on normal forms for vector fields which are
perturbations of not necessarily linear ones.

2.4.2. Poincaré’s “problème local”. Let us now discuss another problem
involving formal maps more related to the subject of CR geometry. In [49],
Poincaré asked whether it is possible to find a biholomorphic map H(z)
taking a real hypersurface (in C2) into another such. Assuming that both real
hypersurfaces, M ⊂ CN and M ′ ⊂ CN , are real-analytic passing through 0,
Poincaré’s question can be formulated as follows: For fixed %(z, z̄), %′(z, z̄) ∈
C{z, z̄}, satisfying d%(0) 6= 0 and d%′(0) 6= 0, can we solve the equation

(2.1) A(z, z̄) %′(H(z), H̄(z̄)) = %(z, z̄)

for some A ∈ CJz, z̄K and H ∈ (CJzK)N , H(0) = 0? To be precise, in addition
to having a nonvanishing differential, % and %′ satisfy the reality relations
% = %̄ and %′ = %̄′, and so will A. We also write

H(z) =
∑
α

Hαz
α, A(z, z̄) =

∑
α,β

Aα,βz
αz̄β,

%(z, z̄) =
∑
α,β

%α,βz
αz̄β, %′(z, z̄) =

∑
α,β

%′α,βz
αz̄β.

In order to analyze (2.1), we use a procedure commonly referred to as
complexification or polarization, which in our case just means that we treat z
and z̄ as independent variables (which they are). With this in mind, consider
the left hand side of the equation above: we can write

A(z, z̄)%′(H(z), H̄(z̄)) =
∑
α,β

Pα,β(j
|α|
0 H, j

|β|
0 H̄, j

|α|+|β|−1
0 A)zαz̄β

=
∞∑
k=0

Pk(z, z̄),

with Pα,β as well as Pk polynomial in their variables, with Pk homoge-
neous of degree k in z and z̄. We think of %′α,β as fixed, about Hα and
Aα,β as independent variables, and about %α,β as dependent variables. We
claim that there are many more dependent than independent variables in
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the sense that we count the number of variables appearing in the equations
jk0A(z, z̄)%′(H(z), H̄(z̄)) = jk0%(z, z̄) for large k. The reader who is not inter-
ested in the combinatorial details can safely skip the discussion, but still is
encouraged to read on even if unfamiliar with the argument, as it reveals a
fundamental difference between the case N = 1 and N > 1: the obstructions
we count actually disappear if N = 1.

One checks that Pα,β depends on at most

2N

max(|α|,|β|)∑
j=1

(
j +N − 1

N − 1

)
+

|α|+|β|−1∑
j=0

(
j + 2N − 1

2N − 1

)
real variables, and therefore (P1, . . . , Pk) depends on at most

2N
k∑
j=1

(
j +N − 1

N − 1

)
+
k−1∑
j=0

(
j + 2N − 1

2N − 1

)
real variables. However (at least as long as N > 1) the number of real
variables appearing on the right hand side of our equation above, %α,β for
|α|+ |β| ≤ k with the reality condition %α,β = %β,α, is given by

k∑
j=0

(
j + 2N − 1

2N − 1

)
.

The difference between the number of dependent variables and of indepen-
dent variables is therefore (at least approximately) equal to(

k + 2N − 1

2N − 1

)
− 2N

k∑
j=1

(
j +N − 1

N − 1

)
.

The first term, for large k, is asymptotic to (k+2N−1)2N−1

(2N−1)! ; the second term

does not exceed

2N

k∑
j=1

(j +N − 1)N−1

(N − 1)!
= O(kN ).

Thus only in the case 2N − 1 = N , i.e. N = 1, should one expect that there
are no obstructions to the solution of Poincaré’s problème local. (We will later
see that this is actually the case, see §3.1). We note that these heuristical
arguments, essentially going back to Poincaré, can also be used to provide
a (rigorous) proof that generic real hypersurfaces are not embeddable into
any sphere in higher dimension. For this, see Forstnerič [18, 20].

2.5. Convergence and approximation of formal power series so-
lutions of analytic systems. In this section, we are going to recall two
important theorems, of Artin and Gabrielov. Both are powerful tools in
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proving that formal power series solutions of certain analytic systems are
convergent or can be approximated (in a suitable manner) by convergent
solutions.

We start with (the complex version of) Artin’s approximation theorem. In
order to set up notation, assume that A(z, w)∈(C{z1, . . . , zN , w1, . . . , wk})`.
A formal solution ŵ(z) ∈ (CJzK)k of the system of equations A(z, w) = 0 is a
k-tuple ŵ(z) = (ŵ1(z), . . . , ŵk(z)) of formal power series such that ŵ(0) = 0
and A(z, ŵ(z)) = 0.

Theorem 2.3 (Artin’s approximation theorem [1]). Let A ∈ (C{z, w})`,
and ŵ ∈ CJzKk a formal solution of A(z, w) = 0 satisfying ŵ(0) = 0. Then
for every m ∈ N there exists a convergent solution w(z) ∈ (C{z, w})` of
A(z, w) = 0 with jm0 w = jm0 ŵ.

A particular instance where one can use Artin’s theorem to derive a con-
vergence result for formal power series is given in the following application:

Corollary 2.4. Let A ∈ (C{z, w})`, and assume that ŵ ∈ (CJzK)` is a
formal solution of A(z, w) = 0 satisfying detAw(z, ŵ(z)) 6≡ 0 and ŵ(0) = 0.
Then ŵ ∈ (C{z})`.

Proof. This follows from Artin’s theorem because under the assumption
that detAw(z, ŵ(z)) 6≡ 0, we can actually find an integer k such that if a
formal power series map w(z) satisfies A(z, w(z)) = 0 and jk0w = jk0 ŵ then
it must be the case that w(z) = ŵ(z). To see this claim, write

A(z,X)−A(z, Y ) =

1�

0

∂

∂t

(
A(z, tX + (1− t)Y )

)
dt = B(z,X, Y )(X − Y ).

Since B(z,X,X) = Aw(z,X), we see that detB(z, ŵ(z), ŵ(z)) 6≡ 0 and
therefore detB(z, w(z), ŵ(z)) 6≡ 0 if jk0w = jk0 ŵ for large enough k.

The reader should note that if instead of detAw(z, ŵ(z)) 6≡ 0 one as-
sumes detAw(0, 0) 6= 0, then the conclusion of the corollary follows as a
straightforward application of the implicit function theorem. Hence Corol-
lary 2.4 should be thought of as a convergence result for formal power series
mappings satisfying singular systems of analytic equations.

The other theorem we would like to mention is Gabrielov’s theorem
on the analyticity of formal relations between analytic functions. One can
think about it as a sort of dual version to Artin’s theorem, in particular,
it allows testing of convergence along arbitrary convergent generically sub-
mersive maps.

Theorem 2.5 (Gabrielov’s theorem on formal relations [22], see also [16]).
Assume that A(z) ∈ (C{z})k, A(0) = 0, is a generic submersion, i.e. A′(z)
is of full row rank on an open and dense subset of some neighborhood of
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0 ∈ CN . If ϕ(w) ∈ CJwK with ϕ(0) = 0 satisfies ϕ(A(z)) ∈ C{z}, then
ϕ(w) ∈ C{w}.

3. Convergence and divergence of formal CR transformations.
We now start discussing the main question that is at the heart of the present
survey. Given a real-analytic submanifold M ⊂ CN , a real-analytic subman-
ifold (or subset) M ′ ⊂ CN ′ and any fixed point p ∈M , our aim is to describe
the main results known up to date regarding the convergence or divergence
of formal holomorphic mappings H : (CN , p) → CN ′ sending M into M ′.
As mentioned in the introduction, our focus in this paper will be on real
submanifolds M that are CR (see below for the definition). We first discuss
some basic and very simple mapping situations, then go on to describe some
necessary and sufficient conditions for convergence in a general setting. The
main convergence results in the subject, recently proved in [40], are then
highlighted together with their ramifications. In the next section, we give a
sketch of the proof of such statements.

3.1. Basic mapping examples. In order to put later general consider-
ations into context, let us briefly review a number of basic guiding examples
when it comes to the convergence or divergence of formal maps between
real-analytic submanifolds.

The first example one might think about is the case of the real line
R ⊂ C. In this case, a formal map H : (C, 0)→ C sends R into itself if and
only if the power series identity

H(z)− H̄(z̄) = A(z, z̄)(z − z̄)
holds for some formal power series A ∈ RJz, z̄K. If we write H(z) =

∑
j Hjz

j

and evaluate the above equation at t = z = z̄, we see that the previous
identity holds if and only if Hj = H̄j for all j, or equivalently, if and only
if H ∈ RJzK. In particular, there are plenty of such formal maps H which
diverge.

This observation actually generalizes right away to the case of real-
analytic arcs Γ, Γ̃ ⊂ C. If p ∈ Γ , then there exists a neighborhood U of
p and a biholomorphic map ϕ : U → V = ϕ(U) such that ϕ(Γ ∩U) = R∩V
and ϕ(p) = 0. Similarly, if q ∈ Γ̃ , then we can find a biholomorphic map ϕ̃
identifying a neighborhood of q with R. Therefore, H : (C, p)→ (C, q) sends
Γ to Γ̃ if and only if ϕ̃ ◦H ◦ ϕ−1 is a formal map taking (R, 0) to itself, if
and only if ϕ̃ ◦H ◦ ϕ−1 ∈ RJzK.

We can also generalize this observation to arbitrary totally real subman-
ifolds M ⊂ CN .

Definition 3.1. We say that a real-analytic submanifold M ⊂ CN is
totally real if for each p ∈ M there exist holomorphic coordinates z in CN
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in which p = 0 and for which the defining equation of M can be written as
z = ϕ(z̄) for some ϕ ∈ (C{z̄})N .

If we perform an additional coordinate change, we can actually assume
that z = (z1, z2), with z1 ∈ CN−e and z2 ∈ Ce, and that in these coordinates
the defining equations of M are z1 = 0, Im z2 = 0. If e = N , then we say
that M is maximally (totally) real.

Analogously to the case M = R, the reader can check that the formal ho-
lomorphic self-maps of a totally real manifold M , given in these coordinates,
are of the form

H(z1, z2) = (z1f(z1, z2), z1g(z1, z2) + h(z2))

with h(z2) ∈ (RJz2K)e. Again, there is no reason to expect convergence of any
such maps. More generally, one can consider arbitrary real-analytic target
sets M ′ instead of M itself: as long as they are not points, we are going to
find plenty of divergent maps by mapping our M divergently into a real arc
Γ ⊂M ′ (see §3.3 below).

However, if one moves away from the totally real setting and considers
for example real hypersurfaces, the simple examples yield rather different
answers. Let us for instance consider the Lewy hypersurface M ⊂ CN , given
by Im zN = |z1|2 + · · · + |zN−1|2 =: 〈z̃, z̃〉. If H : (CN , 0) → (CN , 0) is a
nonconstant formal holomorphic self-map of such a hypersurface, then one
can show that H is actually of the form

H(z̃, zN )=

(
rU

z̃ + az

1− 2i〈z̃, a〉−(〈a, a〉+ it)zN
,

r2z

1− 2i〈z̃, a〉−(〈a, a〉+ it)zN

)
for some unitary matrix U , r ∈ R \ {0}, a ∈ CN−1, and t ∈ R. In particular,
the map H is convergent. This important special case actually generalizes,
using the Chern–Moser normal form [12], to arbitrary Levi-nondegenerate
hypersurfaces, i.e. hypersurfaces defined by a real-analytic equation in CNz̃,zN
of the form

(3.1) Im zN = (z̃)∗Az̃ +O(3)

with an invertible hermitian matrix A. We shall next discuss these exam-
ples in more detail and highlight several general necessary conditions for
convergence of formal maps.

3.2. Basic facts on CR submanifolds. Let M ⊂ CNz be a real-
analytic submanifold, of codimension d, and J : CN → CN the standard
complex structure map. The submanifold M is called CR if the distribution
of complex tangent spaces T cpM := TpM ∩ J(TpM) is of constant rank as
p varies in M , in which case the rank of such a distribution is called the
CR dimension of M and will be denoted by n. When n = 0, M is a totally
real submanifold (as discussed in §3.1). On the other hand, if dimRM = 2n,
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then M must be a complex submanifold (see e.g. [5, Proposition 1.3.14]).
If, in addition, M satisfies TpM + J(TpM) = TpCN for every p ∈ M , we
call M a generic submanifold. Note that this last condition is equivalent to
requiring that N = n+ d.

We also define T (1,0)M and T (0,1)M as the eigenspaces of +i and −i,
respectively, of the extension of J to the complexification of the tangent
bundle CTM . Equivalently, we can define T (1,0)M = CTM ∩ T (1,0)CN and
T (0,1)M = CTM ∩ T (0,1)CN .

Let us also recall that the Levi form ofM is the (vector-valued) hermitian
form

L : T (1,0)M × T (1,0)M → CTM/T (1,0)M ⊕ T (0,1)M

defined by

(3.2) Lp(Xp, Yp) = [X, Ȳ ]p mod T (1,0)M ⊕ T (0,1)M.

This definition is independent of the choice of the vectors fields X and Y
extending Xp and Yp in a neighborhood of p. If M is a hypersurface, then
the matrix A in (3.1) is a matrix representation of L0, and we say that M
is (strictly) pseudoconvex if the Levi form is nonnegative (resp. positive).
We say that M is Levi-nondegenerate if L is nondegenerate (as a hermitian
form).

For more on CR manifolds, the reader is referred to the monographs
[5, 8, 9].

3.3. Some general necessary conditions for convergence. Let
N,N ′ ∈ N and suppose now that M is a real-analytic CR submanifold,
M ′ ⊂ CN ′w is a real-analytic set and that p ∈ M . If H : (CN , p) → CN ′ is a
formal holomorphic map sending M into M ′, we write H : (M,p) → M ′

and say that H is a formal CR map. Our first main goal is to under-
stand under which optimal conditions on M and M ′ every formal CR map
H : (M,p) → M ′ converges at every point p ∈ M . We will then study
the convergence problem for a fixed (or for a family of) CR map(s) and
show how the geometric behavior of the map interplays with its conver-
gence/divergence properties.

In order to guarantee that any formal CR map H as above must be
convergent, genericity of M is a basic condition to assume. Indeed, if M is
not generic, then for every p ∈M , the germ of M at p is biholomorphically

equivalent to a germ (at 0) of a manifold of the form M̃ ×{0} ⊂ CN−k×Ck

for some real-analytic generic submanifold M̃ in CN−k and some integer
1 ≤ k ≤ N ′ − 1 (see [5, Corollary 1.8.10]). The reader may then see that it
is easy to construct plenty of divergent formal CR maps (M,p)→M ′.

We shall therefore assume, from now on, that M is a generic real-analytic
submanifold.
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If we seek for geometric conditions implying divergence/convergence of
formal CR maps, the first natural condition that arises is the presence of
analytic discs in the target set M ′. Indeed, suppose that M ′ contains some
analytic disc Γ . We parametrize Γ by a nonconstant holomorphic map
γ : U → Γ ⊂ CN ′ , defined on some connected open neighborhood of 0 in the
complex domain. Pick an arbitrary point p ∈ M and let h = h(z) be any
divergent formal holomorphic power series, vanishing at p. Then γ◦h clearly
defines a formal CR map from M into M ′. Because h cannot be constant,
we must have γ′(h(z)) 6≡ 0. Since h is divergent, it follows from Corollary 2.4
that γ ◦h must be divergent too. We summarize this first observation in the
following statement:

Fact 3.2. Suppose that M ⊂ CN is a generic real-analytic submanifold
and that M ′ ⊂ CN ′ is a real-analytic set. If M ′ contains some analytic
disc, then, for every point p ∈ M , there exists a divergent formal CR map
H : (M,p)→M ′.

A second natural condition, on the manifold M this time, under which
one can easily construct divergent maps is when M is nowhere minimal.
Nowhere minimality of M means that each point p ∈M is nonminimal (in
the sense of Tumanov), i.e. that there exists a real-analytic CR subman-
ifold Sp, passing through p, of the same CR dimension as that of M but
with dimR Sp < dimRM (see [55]). On the other hand, if M is somewhere
minimal and is furthermore connected, then one may show that it must be
minimal at each point of some Zariski open subset of M (see [5]). Another
possible, and useful for our purpose here, characterization of nowhere min-
imality is to say that near a generic point p ∈ M , there exists a germ of
a nonconstant holomorphic function at p whose restriction to (a neighbor-
hood of) p in M is real-valued (see [5, Lemma 13.3.2]). Let p be such a point
and consider such a germ h of a holomorphic function, which may, without
loss of generality, be assumed to satisfy h(p) = 0. Pick any divergent power
series β(t) ∈ RJtK such that β sends R into M ′ (there are plenty of such
maps, as already observed in §3.1). Then β ◦ h clearly defines a formal CR
map from (M,p) into M ′ and must be divergent. Indeed, if not, we could
write β ◦ h(z) = d(z) for some convergent (holomorphic) power series d(z),
and since h is not constant, it would follow from Theorem 2.5 that β has
to be convergent, a contradiction. Hence we may summarize this second
observation in the following statement:

Fact 3.3. Suppose that M ⊂ CN is a generic real-analytic submanifold

and that M ′ ⊂ CN ′ is a real-analytic set. If M is nowhere minimal, then, for
a generic point p ∈ M , there exists a divergent formal CR map H : (M,p)
→M ′.
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3.4. Sufficiency of the conditions. Putting Facts 3.2 and 3.3 to-
gether, one naturally wonders whether the assumptions of somewhere mini-
mality of M and nonexistence of analytic discs in M ′ are sufficient conditions
to guarantee the convergence of all formal maps sending M into M ′, i.e.:

Problem 3.4. Let M ⊂ CN be a generic real-analytic connected sub-
manifold and M ′ ⊂ CN ′ be a real-analytic set. Assume M is somewhere
minimal and that M ′ does not contain any analytic disc. Is it true that, for
every point p ∈M , all formal CR maps H : (M,p)→M ′ are convergent?

In her survey [50], Rothschild conjectured that the answer to Problem 3.4
is affirmative for any (everywhere) minimal source manifold M . Such a con-
jecture has been verified to be true only in a very limited number of spe-
cial cases. Baouendi, Ebenfelt and Rothschild [3] solved the case where M
and M ′ are real hypersurfaces in the same complex space (i.e. N = N ′) with
the additional assumption that M does not contain any complex-analytic
disc. Meylan, Zaitsev and the second author [42] settled the case where M ′

is a real-algebraic subset of CN ′ . Lately, in [39], the authors answered in
the affirmative the case where M ′ is a strongly pseudoconvex CR manifold
(which automatically does not contain any analytic disc). The final solution
to Rothschild’s conjecture, and hence solution to Problem 3.4 for everywhere
minimal generic submanifolds M , has been very recently obtained by the
authors in [40].

Theorem 3.5 ([40]). Let M ⊂ CN be a generic real-analytic submanifold
and M ′ ⊂ CN ′ be a real-analytic set. Assume M is minimal and that M ′

does not contain any analytic disc. Then, for every point p ∈M , all formal
CR maps H : (M,p)→M ′ are convergent.

As already mentioned, a connected generic (real-analytic) submanifoldM
that is somewhere minimal must be minimal at all points of some Zariski
open subset Ω of M . Hence Theorem 3.5 also implies a positive solution to
Problem 3.4 for all formal CR maps H : (M,p) → M ′ at all points p ∈ Ω
in such a Zariski open subset. The remaining open question is whether the
same conclusion remains valid for all points p ∈M \Ω.

3.5. Finer results involving the behavior of the map. Theorem 3.5
provides (almost) optimal conditions on a given pair (M,M ′) as above to
guarantee that all formal CR maps H : (M,p) → M ′ must converge for
every p ∈M . If we assume additional conditions on the mappings, then one
may drastically relax the geometric condition of nonexistence of an analytic
disc in the target set M ′. To illustrate this, we need to recall the notion of
infinite type points in a real-analytic set in the sense of D’Angelo [13, 15].
A point p′ in the real-analytic set M ′ is of infinite D’Angelo type if there
exists an analytic disc contained in M ′ passing through p′. In what follows,
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we denote by EM ′ the collection of all points p′ ∈ M ′ that are of infinite
D’Angelo type, which is a closed subset of M ′ by [14, 15].

Going back to the convergence problem and recalling the discussion lead-
ing to Fact 3.2, if M ′ contains an analytic disc Γ , then one easily constructs
divergent formal CR maps H : (M,p) → M ′ for every p ∈ M . Further-
more, the construction is done in such a way that the maps always sat-
isfy H(M) ⊂ Γ and therefore the formal inclusion H(M) ⊂ EM ′ , as given
in Definition 2.1, holds. One may wonder whether mapping (formally) the
manifold M into the set EM ′ of D’Angelo infinite type points might be the
only way to produce divergent maps. The next result from [40] shows that
this is indeed the case, and in particular implies Theorem 3.5:

Theorem 3.6 ([40]). Let M ⊂ CN be a (connected) generic real-analytic
minimal submanifold and M ′ ⊂ CN ′ be a real-analytic set. Then for ev-
ery p ∈ M , every divergent formal CR map H : (M,p) → M ′ must satisfy
H(M) ⊂ EM ′.

Another remarkable feature of Theorem 3.6 is that it does not hold if
one only assumes that M is somewhere minimal because of the following
result due to Kossovskiy and Shafikov:

Theorem 3.7 ([38]). There exists a connected real-analytic Levi-nonflat
hypersurface M ⊂ C2 and p ∈ M such that there are divergent invertible
formal CR maps H : (M,p)→ (M,p).

Let us point out here that Levi-nonflatness of M is equivalent, for real
hypersurfaces, to somewhere minimality (see e.g. [5]). As the reader may
notice, Theorem 3.6 is much stronger than Theorem 3.5. An earlier version
of Theorem 3.6, valid only for real-algebraic targets M ′, was obtained by
Meylan, Zaitsev and the second author [42].

Theorem 3.6 provides a sufficient condition for a given mapping H to
be convergent even in the presence of analytic discs in M ′. On the other
hand, if M ′ = EM ′ , which happens in a number of interesting cases such
as e.g. when M ′ is any everywhere Levi-degenerate real hypersurface (see
e.g. [21]), Theorem 3.6 does not and cannot provide any conclusion regard-
ing the convergence/divergence properties of formal CR maps unless further
geometric assumptions are made on the mappings under consideration. The
next result establishes a general necessary condition for the divergence of
a formal CR map; it is a most appropriate tool when one wants to study
the divergence/convergence properties for a given fixed map, or, for suitably
prescribed classes of formal CR maps, typically stable under small deforma-
tions (such as e.g. classes of maps defined through rank conditions).

In order to describe the necessary condition, we need to define the fol-
lowing important notion:
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Definition 3.8. Let M ⊂ CN be a generic real-analytic submanifold,
M ′⊂CN ′ be a real-analytic set and p∈M . Given a positive integer k, a k-ap-
proximate formal (holomorphic) deformation of (M,M ′) at p is a formal
holomorphic map Bk : (CNz ×Crt , (p, 0))→ CN ′ for some integer r ≥ 1, with
Bk(p, 0) ∈M ′, satisfying the following conditions:

(i) rk ∂Bk

∂t (z, 0) = r;

(ii) for every germ of a real-analytic function % : (CN ′ , Bk(p, 0)) → R, van-
ishing on M ′ near Bk(p, 0),

%(Bk(z, t), Bk(z, t))|z∈M = O(|t|k+1).

If, in addition, H : (M,p)→M ′ is a formal CR map, we say that H admits
a k-approximate formal deformation if there exists a k-approximate formal
deformation Bk of (M,M ′) at p as above satisfying Bk(z, 0) = H(z). In that
case, we also say that H admits Bk as a k-approximate formal deformation.

Note that if Bk is a k-approximate formal deformation, we may assume,
after truncating Bk up to order k with respect to t, that Bk ∈ (CJz−pK[t])N ′ .
One may therefore view such an object as a holomorphic family of formal
holomorphic maps (Bk

t )t∈Ck , deforming the map Bk
0 and mapping approxi-

mately M into M ′.

The next theorem shows that any divergent formal CR map H : (M,p)
→M ′ necessarily generates approximate formal deformations of any order.
As we shall see, such a statement has strong implications on the geometry
of the set M ′.

Theorem 3.9 ([40]). Let M ⊂ CN be a generic real-analytic min-
imal submanifold, p ∈ M , and M ′ ⊂ CN ′ be a real-analytic subset. If
H : (M,p) → M ′ is a divergent formal CR map, then there exists an in-
teger r ∈ {1, . . . , N ′}, and for every k ∈ N, a formal holomorphic map
Bk : (CN × Cr, (p, 0)) → CN ′ such that H admits Bk as a k-approximate
formal deformation.

One may get a pretty good idea of the impact of the existence of such
approximate formal deformations on the CR geometry of M ′ by looking
at the picture if all mappings under consideration, i.e. H and Bk, were
convergent. For every k ∈ N, a mapping Bk as in Theorem 3.9 gives rise to
a family (Γz)z∈Mk

of r-dimensional complex submanifolds, where Mk is some
dense open subset of a neighborhood of p in M , depending in a CR manner
on z ∈ Mk, such that each submanifold Γz passes through H(z) and has
order of contact at least k with M ′ at H(z). Of course, the picture we indeed
have in Theorem 3.9 is the formal analog of the one just described above,
and some nontrivial obstacles have to be overcome in order to get a good
geometric picture. In particular, it can be shown that Theorem 3.6 follows
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from Theorem 3.9, but for this one needs to prove that from the formal
picture described it is possible to find some families of complex-analytic
subvarieties entirely contained in the target set M ′ and suitably related to
the mapping. For more details on this we refer to §5.2 and [40]. Moreover, and
this is one of the main points of the present discussion, Theorem 3.9 may be
applied to situations where Theorem 3.6 happens to be inconclusive, yielding
at the same time a number of optimal convergence results for suitable classes
of formal CR maps, some of which will be described below.

3.5.1. The invertible case. As a first instance, consider the class of for-
mal CR maps of rank N between real-analytic generic submanifolds M,M ′

in the same complex space, i.e. N = N ′. In that situation, it can be
shown that if H is any formal CR map in the above class, then H has
a 1-approximate formal deformation if and only if M is holomorphically de-
generate in the sense of Stanton (see [51, 5]). Hence, applying Theorem 3.9
to this specific context, one recovers the following convergence result:

Corollary 3.10 ([6, 52]). Let M,M ′ ⊂ CN be (connected) generic real-
analytic submanifolds with M minimal and holomorphically nondegenerate.
Then for every p ∈ M , every formal CR map H : (M,p) → M ′ of rank N
is convergent.

The geometric conditions imposed on the manifolds in Corollary 3.10 are
essentially optimal. Indeed, Baouendi, Ebenfelt and Rothschild [4] recog-
nized the necessity of the holomorphic nondegeneracy assumption in Corol-
lary 3.10 by observing that for any holomorphically degenerate (connected)
generic real-analytic submanifold M ⊂ CN , and every p ∈ M , there always
exist divergent formal CR invertible self-maps H : (M,p) → (M,p). Fur-
thermore, Theorem 3.7 implies that the minimality assumption on M in
Corollary 3.10 cannot be replaced by the weaker assumption of somewhere
minimality.

At this point, we should mention that, historically, the convergence prob-
lem for invertible (or full rank) formal CR maps is the one that has been
studied the most. In their work on the biholomorphic equivalence problem
for Levi-nondegenerate hypersurfaces [12], Chern–Moser were the first to
show that any formal CR invertible mapping between Levi-nondegenerate
hypersurfaces must necessarily converge. The result was later extended to
more general classes of hypersurfaces and manifolds by Baouendi, Eben-
felt and Rothschild [4, 3], and the second author [43, 44], culminating with
Corollary 3.10. This result provided a complete solution to the convergence
problem for formal CR invertible maps between minimal generic submani-
folds. The remaining question according to [6] was to decide whether Corol-
lary 3.10 holds for (connected) generic submanifolds that are merely some-
where minimal. The question has been open for some time, even for real
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hypersurfaces in C2. Juhlin [32] and Juhlin and the first author [33] proved
the convergence of the maps between some classes of Levi-nonflat hypersur-
faces in C2. However, the final solution to this question was obtained only
recently by Kossovskiy and Shafikov [38] who proved Theorem 3.7, thereby
answering the question in the negative. Looking further into [38], the reader
will notice that the hypersurfaces constructed there are not algebraic. Here
we recall that a real hypersurface is algebraic if it is locally defined by the
vanishing of a real polynomial. This leads us to:

Conjecture 3.11.Let M,M ′⊂CN be (connected) generic real-algebraic
submanifolds with M somewhere minimal and holomorphically nondegener-
ate. Then for every p ∈M , every formal CR invertible map H : (M,p)→M ′

is convergent.

To our knowledge, Conjecture 3.11 is open even for real hypersurfaces
M,M ′ in CN with N ≥ 3, but has been proved very recently by Kossovskiy,
Stolovitch and the first author [37] in dimension N = 2 (see §6 for further
discussion on this).

3.5.2. Levi-nondegenerate hypersurfaces with positive signature. We note
that the class of holomorphically nondegenerate generic submanifolds con-
tains plenty of examples of hypersurfaces that are everywhere Levi-degen-
erate, including, for instance, boundaries of bounded symmetric domains
(see e.g. [34, 59]). Since such hypersurfaces must be entirely foliated by
complex-analytic submanifolds (see [21]), Theorem 3.6 is of no help in the
convergence problem for such manifolds. In addition, this foliation prop-
erty by complex manifolds may also hold even for Levi-nondegenerate real-
analytic hypersurfaces: an example is given by the hyperquadric in C3 of
positive signature given by

Im z3 = |z1|2 − |z2|2,
which is foliated by the complex lines

ζ 7→
(
a1 + ζ, a2 + eiθζ, s+ i(|a1|2 − |a2|2) + 2iζ(ā1 + eiθā2)

)
,

a1, a2 ∈ C, s, θ ∈ R.
In the setting of formal maps between Levi-nondegenerate hypersurfaces

with a possible foliation by complex varieties, we will now discuss how The-
orem 3.9 can be used to prove convergence. For this, we shall consider the
class of so-called formal CR transversal mappings between real hypersur-
faces. If M,M ′ are real hypersurfaces in CN ,CN ′ respectively, and p ∈ M ,
a formal CR map H : (M,p)→M ′ is called CR transversal if

T 1,0
H(p)M

′ + dH(T 1,0
p (CN )) = T 1,0

H(p)C
N ′ .

Note that H being CR transversal also means that its normal component has
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a nonvanishing derivative along the normal direction (to M) at p. If, further-
more, one assumes M (resp. M ′) to be connected and Levi-nondegenerate,
the minimum and maximum number among the positive and negative eigen-
values of the Levi form are the same at each point of M (resp. M ′) and are
called the signature and cosignature of M (resp. M ′).

Corollary 3.12 ([40]). Let M ⊂ CN and M ′ ⊂ CN ′ be (connected) real-
analytic Levi-nondegenerate hypersurfaces, of signature ` and `′ respectively.
Assume that M and M ′ have either the same signature (i.e. ` = `′) or
cosignature (i.e. N − ` = N ′ − `′). Then, for every p ∈ M , any formal CR
transversal mapping H : (M,p)→M ′ is convergent.

The corollary follows as an application of Theorem 3.9 by showing that
if M and M ′ have either the same signature or the same cosignature, then
no CR transversal map admits a 2-approximate formal deformation [40,
Proposition 6.4]. Furthermore, the assumption on the signature of the hy-
persurfaces is optimal to yield convergence (see [40, Remarks 6.5 and 6.6]).

For further applications of Theorem 3.9 going beyond those of Theo-
rem 3.6, we again refer the reader to [40].

4. Convergence and divergence of formal invertible CR maps
in the nonminimal case. As we already mentioned above, the minimality
assumption made in the convergence Theorem 3.6 is actually necessary in
view of the examples provided by Theorem 3.7. Kossovskiy and Shafikov [38]
proved that there exist Levi-nonflat hypersurfaces M in C2 (actually, their
examples are strictly pseudoconvex away from the nonminimal locus) which
allow for divergent formal automorphisms H : (M,p) → (M,p), where p is
a (necessarily) nonminimal point. These examples came as a bit of surprise,
as the only nonminimal cases which had been settled before (by Juhlin [32]
and Juhlin and the first author [33]) were positive: Formal automorphisms
of so-called 1-nonminimal real hypersurfaces actually do converge. This di-
vergence phenomenon was established in [38] by developing a new effective
method to study formal invertible mappings between nonminimal hypersur-
faces in C2. The method was further extended by Kossovskiy and Lamel [36]
to study smooth mappings between such hypersurfaces as well. Yet a closer
look at the technique that produced these examples explains this difference
very nicely.

Let us therefore discuss some of the background. We will restrict our-
selves to the case of a nonminimal real-analytic (Levi-nonflat) hypersurface
M ⊂ C2. Locally, the set of nonminimal points in M forms a complex hy-
persurface X ⊂M .

If one looks at a (small) neighborhood U of a point p ∈M , it is possible
to define the family of Segre varieties Sq ⊂ U , for q ∈ U , as follows:
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Sq := {z ∈ U : ρ(z, q̄) = 0},
where ρ is any real-analytic defining function of M ∩ U , defined all over U
(and where, in the definition of Sq, ρ has been complexified). Segre varieties
were introduced in 1977 by Webster [57] and have since been extremely
useful in studying the mapping problems (see e.g. [19]). The Segre varieties
form a (finite-dimensional) family of complex submanifolds of U . An impor-
tant result going back to Baouendi, Ebenfelt, and Rothschild [2, 5] states
that the minimality of M at p is equivalent to the fact that one of the Segre
sets Skp , defined inductively by

S1
p = Sp, Skp =

⋃
q∈Sk−1

p

Sq, k ≥ 2,

covers an open neighborhood of p. This process actually stops at the first
step if M is nonminimal at p: It turns out that for any point p in the
nonminimal locus X, one has Sp = X ∩ U . Thus, Skp = X ∩ U for all k ≥ 1.
Therefore, the Segre iteration does not work in the nonminimal setting.

In order to overcome this problem, one studies rather how the Segre
varieties “degenerate” as one approaches the locus of nonminimal points.
Indeed, from a heuristic point of view, one can think about the Segre varieties
as solutions to a complete system of PDEs, and about the degeneration
mentioned above as a singularity in this complete system of PDEs; let us
describe this briefly, in the setting of a real-analytic hypersurface M ⊂ C2 as
already done above. The reader is referred to [38, 36] for references on this
classical construction and the details of the corresponding construction in
the nonminimal setting. If %(z, w, z̄, w̄) is the defining function of M ⊂ C2

z,w

near say the origin, then for (a, b) close to 0, the Segre variety S(ā,b̄) is
given by {(z, w) ≈ 0 : %(z, w, a, b) = 0}. If we assume that %w(0, 0) 6= 0,
we can solve this equation for w and obtain a function w(z, a, b) satisfying
%(z, w(z, a, b), a, b) = 0. We now claim that the Levi-nondegeneracy of M
at 0 implies that we can solve for (a, b) as functions of w(z) and w′(z). Indeed,
consider the derivative (in z) of the equation %(z, w(z), a, b) = 0, i.e. %z +
%ww

′ = 0. The derivatives with respect to a and b of those two equations are(
%z̄ %w̄

%z,z̄ + %w,z̄w
′ %z,w̄ + %w,w̄w

′

)
.

Assuming furthermore that T c0M = {w = 0}, we have w(z, 0, 0) = 0, and so
w(0) = w′(0) = 0; thus the matrix above has nonzero determinant for small
(w,w′, a, b) by Levi-nondegeneracy of M (which implies that (%z̄, %w̄) and
(%z,z̄, %z,w̄) are linearly independent as vectors in C2).

It thus turns out that if M is Levi-nondegenerate at 0, then the Segre
varieties Sq for q near 0 are the graphs of the solutions of the second order
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system of ordinary differential equations

w′′ = −%z2 + 2%z,ww
′ + w′2%w2

%2
w

,

which is obtained by differentiating the identity %(z, w(z, a, b), a, b) = 0 twice
with respect to z and replacing (a, b) by the functions of w and w′ obtained
above. If p ∈ X and M is Levi-nondegenerate at points q ∈M \X (near p),
to be precise, if its defining function can be written in the form

Imw = (Rew)m(|z|2 +O(z2z̄, z̄2z)) +O((Rew)m+1)

for some local holomorphic coordinate system (z, w) and for some integer m,
then the varieties Sq are the graphs of the solutions of a second order singular
ordinary differential equation of the form

w′′ = wmΦ

(
z, w,

w′

wm

)
.

The order m of the singularity of this second order equation is precisely
the integer m appearing in the defining equation of the hypersurface. As is
well known classically, m can alter the behavior of the solutions of an ODE
drastically: if m = 1, the singularity is Fuchsian, and in particular regular;
if m > 1, the singularity is (usually) irregular. Formal solutions of regular
singular equations converge, while typically, solutions of irregular singular
equations diverge.

The correspondence between the Segre varieties of our nonminimal real-
analytic hypersurface and the singular ordinary differential equation does
not stop with the fact that one can associate a differential equation to a
hypersurface: it actually also encompasses (formal) CR invertible maps of
the hypersurface, which give rise to (formal) invertible maps taking (formal)
solutions to solutions of the singular ODE. Kossovskiy and Shafikov used this
correspondence in the other way, by characterizing which ODEs actually give
rise to a real hypersurface. They then constructed a family of singular ODEs
which satisfy this criterion and which have divergent formal automorphisms.
They proceeded to show that those automorphisms give rise to divergent
self-maps of the associated real hypersurfaces.

It is not clear at the present stage when one should expect the existence
of divergent formal CR invertible maps between nonminimal hypersurfaces.
Kossovskiy and the first author [35, Section 4.3] have shown that if the un-
derlying singular ODEs are regular singular (in particular, if they are Fuch-
sian), then one should expect convergence. In the irregular singular case, even
though one might expect that, in analogy with the singular ODEs, divergence
is more common than convergence, such results are hard to come by.

We should note that not only do formal automorphisms of nonminimal
hypersurfaces not necessarily converge, but also there exist C∞ CR automor-
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phisms whose Taylor series not necessarily converge, again by [36]. Actually,
in C2, there is a rather complete picture of what formal biholomorphisms
of nonminimal hypersurfaces are, as will be explained in §6: each gives rise
to a C∞ CR diffeomorphism. Thus, in the nonminimal setting, even though
one cannot expect a formal map to converge, there are circumstances under
which we can still give “real” meaning as alluded to in the introduction to
a formal map as arising from an associated actual map.

5. Elements of the proof of Theorems 3.9 and 3.6. We briefly
sketch here the main ideas of the proof of Theorems 3.9 and 3.6.

5.1. Constructing k-approximate deformations. The rough general
idea of constructing approximate formal deformations of any order for any
given divergent formal CR map is the following. For every germ at p of a
generic real-analytic submanifoldM ⊂ CN and for every formal holomorphic
map H : (CN , p) → CN ′ , we introduce a new numerical invariant attached
to (M,H), called the divergence rank of H. This invariant measures the lack
of convergence of H when M is minimal (at p). A fundamental point in the
definition of the divergence rank is to look at the collection of all identities of a
certain type satisfied byH, including the one coming from the basic mapping
identity H(M) ⊂M ′. Then, using the properties of the divergence rank, we
identify the “directions” in which one may deform H. Such directions can be
chosen to be formally meromorphic and then from these we may construct
the desired approximate formal deformations of any order.

More precisely, we are given (M,H) as above and equip CN with coor-
dinates z = (z1, . . . , zN ), and CN ′ with coordinates w = (w1, . . . , wN ′). We
write

H = H(z) =
(
H1(z), . . . ,HN ′(z)

)
∈ (CJz − pK)N ′ .

Let AH be the set of all pairs (∆,S) of power series maps such that ∆ =
∆(z) ∈ (CJz − pK)m for some m and

(5.1) S = S(z, z̄, λ, w) ∈ C{z − p, z̄ − p̄, λ−∆(p), w −H(p)},

where λ ∈ Cm. For every (∆,S) ∈ AH , we set

S∆ := S(z, z̄,∆(z), H(z))|M ∈ CJMK,

S∆wj
:=

∂S

∂wj
(z, z̄,∆(z), H(z))|M ∈ CJMK, j = 1, . . . , N ′,

S∆w := (S∆w1
, . . . , S∆wN′

) ∈ (CJMK)N
′
.

Consider the subring SH(M) ⊂ CJMK consisting of those power series of
the form S∆ for some (∆,S) ∈ AH , and let KM

H denote the quotient field
of SH(M).
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Now denote by A 0
H(M) the subset of AH consisting of all pairs (∆,S)

satisfying S∆ = 0 and define

rank A 0
H(M) := dimKM

H
span{S∆w : (∆,S) ∈ A 0

H(M)},

where the dimension is computed over the field KM
H , and where every S∆w is

considered as a vector in (SH(M))N
′ ⊂ (KM

H )N
′
.

Definition 5.1. Let M and H be as above. We define the divergence
rank of H by

divrkM H = N ′ − rank A 0
H(M).

The following shows that the divergence rank measures the lack of con-
vergence of H.

Proposition 5.2. Let M ⊂ CN be a generic real-analytic submanifold,
p ∈M and let H : (CN , p)→ CN ′ be a formal holomorphic map. Then:

(a) divrkM H ≤ δ, where δ is the number of divergent components of H.
(b) If M is minimal at p, then divrkMH = 0 if and only if H is convergent.

The inequality in (a) may be strict. The proof of the left to right impli-
cation in (b) is the main nontrivial part in the above proposition. It relies
on the following convergence result for formal power series mappings satis-
fying some singular analytic systems of equations with formal parameters
appearing in a very specific way.

Proposition 5.3 ([39, Proposition 3.1]). Let M ⊂ CN be a real-analytic
generic submanifold through the origin and let Θ=(Θ1, . . . , ΘN ′) be a conv-
ergent power series mapping with components in C{z, z̄, λ, w} where z ∈ CN ,
w ∈ CN ′, λ ∈ Cr, N ′, N, r ≥ 1. Let h : (CN , 0) → CN ′, g : (CN , 0) → Cr be
formal holomorphic power series mappings, vanishing at 0, satisfying

Θ(z, z̄, g(z), h(z))|M = 0, det
∂Θ

∂w
(z, z̄, g(z), h(z))

∣∣∣∣
M

6≡ 0.

If M is minimal at 0, then h is a convergent holomorphic map.

The proof of Proposition 5.3 involves a number of ingredients, including
the Segre sets characterization of minimality due to Baouendi, Ebenfelt and
Rothschild [2, 5] and Artin’s approximation theorem [1]. Furthermore, the
minimality assumption in Proposition 5.3 is crucial since there exist germs of
real-analytic nonminimal hypersurfaces (M,p) in CN and divergent formal
holomorphic maps H : (CN , p) → CN such that divrkM H = 0 (see [40] for
details).

Next, define the following vector subspace of (KM
H )N

′
:

V M
H := {V = (V1, . . . , VN ′)∈(KM

H )N
′
: V · S∆w = 0, ∀(∆,S) ∈ A 0

H(M)}(5.2)

= Ann{S∆w : (∆,S) ∈ A 0
H(M)},
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where V ·S∆w =
∑N ′

j=1 VjS
∆
wj

. Then V M
H will indicate the directions in which

the map H will be formally deformed. The key result regarding this subspace
is given by the following:

Proposition 5.4. Let M ⊂ CN be a generic real-analytic submanifold,
p ∈ M and H : (CN , p) → CN ′ be a formal holomorphic map. For A 0

H(M),
V M
H , divrkM H defined as above we have

(5.3) dimKM
H

V M
H = divrkM H,

and there exists a basis of V M
H that consists of ` CR vectors in (KM

H )N
′

which are linearly independent over KM
H with ` := divrkM H.

Given η ∈ kMH , by definition, there exist (∆,S), (∆,T ) ∈ AH(M) with
(∆,T ) 6∈ A 0

H(M) such that η = S∆/T∆. We define the gradient of η with
respect to w by setting ηw := (S/T )∆w . This definition of ηw depends on
the choice of a representative for η. However, in what follows, all expres-
sions involving a gradient with respect to w of any element in kMH will
be independent of such choices. In the same vein, given a polynomial map
P (t, t̄) =

∑
α,β∈Nk Pα,βt

αt̄β ∈ (KM
H [t, t̄])c, t = (t1, . . . , tk), k, c ≥ 1, we define,

for V ∈ V M
H ,

V · Pw(t, t̄) :=
∑

α,β∈Nk

V · Pα,β;wt
αt̄β ∈ (KM

H [t, t̄])c,

where we write Pα,β;w = (Pα,β)w.
The crucial step of the proof is to construct a formal deformation of a

(divergent) map with formal meromorphic coefficients. This is done through
the following construction of “exponential map type”.

Theorem 5.5. Let M ⊂ CN be a generic real-analytic submanifold
and p ∈ M . Let H : (CN , p) → CN ′ be a formal holomorphic map with
r = divrkMH ∈ {1, . . . , N ′}, and let V = (V 1, . . . , V r) be a basis, contain-
ing only CR vectors, of V M

H over KM
H (as given by Proposition 5.4). For

t = (t1, . . . , tr) ∈ Cr, set t · V =
∑r

i=1 tiV
i and define, for every ` ∈ Z+,

a homogeneous polynomial map D of degree ` in (KM
H [t])N

′
inductively as

follows:

(5.4) D1(t) := t · V, D`+1(t) =
1

`+ 1
(t · V) ·D`

w(t),

and set D(t) =
∑∞

`=1D
`(t) ∈ (KM

H JtK)N ′. Then:

(i) D(t) ∈ (CR((M))JtK)N ′.
(ii) If % ∈ C{w −H(p), w̄ −H(p)} satisfies %(H(z), H(z))|M = 0 then

%(H +D(t), H +D(t)) = 0 in C((M))Jt, t̄ K.

The proof of Theorem 5.5 relies on the following items:
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(a) the appropriate (and in fact unique) choice of D;
(b) the property that each V i belongs to V M

H , i.e. that V i ·S∆w = 0 for every
(∆,S) ∈ A 0

H(M);

(c) the fact that for each V i its conjugate V i still lies in KM
H (since V i is

CR too);
(d) an appropriate use of the chain rule.

Once Theorem 5.5 is proven, it is not difficult to deduce Theorem 3.9, by
simply truncating D to any fixed order k and clearing denominators.

5.2. Generating complex-analytic submanifolds from approxi-
mate deformations of any order. In order to deduce Theorem 3.6 from
Theorem 3.9, one needs to infer from the formal conclusion provided by The-
orem 3.9 the existence of families of complex-analytic submanifolds entirely
contained in M ′ and closely related to the formal map H. This is done by
establishing the following result:

Corollary 5.6. Let M ⊂ CN be a generic real-analytic minimal sub-
manifold, M ′ ⊂ CN ′ be a real-analytic set and p ∈ M . If H : (M,p) → M ′

is a divergent formal CR map, there exists an integer r ∈ {1, . . . , N ′} and,
for any positive integer k, a neighborhood Uk of p in CN and a real-analytic
map hk : Uk → CN ′ such that:

(a) hk(M ∩ Uk) ⊂M ′ and hk agrees with H at p up to order k.
(b) hk(M ∩ Uk) ⊂ EM ′ for every positive integer k.

We immediately see that Theorem 3.6 follows from Corollary 5.6. In
order to derive the latter, three main ingredients are used: the closedness of
the set EM ′ (proved by D’Angelo [14, 15]), Artin’s approximation theorem [1]
to pass from formal maps to convergent ones, and the following parameter
version of a strong approximation theorem due to Hickel and Rond [25].

Theorem 5.7.Let R1, . . . , Rm∈C{u− q, ū− q̄, t, t̄, ζ, ζ̄}, where u∈Cn1,
t ∈ Cn2, ζ ∈ Cn3 and q ∈ Cn1 is fixed. Then there exists an open neighbor-
hood V of q in Cn1 and a function L : N→ N such that the following holds:
For every u ∈ V , if S(t) ∈ (C{t})n3 satisfies S(0) = 0 and

Rj(u, ū, t, t̄, S(t), S(t)) = O(|t|L (k)+1), j = 1, . . . ,m,

for some k ∈ N, then there exists S̃(t) ∈ (C{t})n3 such that

Rj(u, ū, t, t̄, S̃(t), S̃(t)) = 0, j = 1, . . . ,m,

and S(t)− S̃(t) = O(|t|k+1).

Theorem 5.7, in conjunction with Artin’s approximation, allows us,
roughly speaking, to derive, from the existence of families of formal holomor-
phic manifolds tangent to M ′ along H(M) to any prescribed fixed order,
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the existence of families of complex-analytic submanifolds entirely contained
in M ′ (with suitable properties related to the map H as in Corollary 5.6).

6. Various notions of equivalence for CR manifolds. Two germs
(M,p) and (M ′, p′) of real-analytic generic submanifolds of the same di-
mension in CN are called biholomorphically equivalent if there exists a local
biholomorphim h : U → CN ′ defined in a neighborhood U of p with h(p) = p′

such that h(U ∩M) ⊂ M ′. In this case we shall write (M,p) ∼ω (M ′, p′).
The germs are called formally equivalent if there exists a formal CR invert-
ible map H : (M,p) → (M ′, p′), in which case we write (M,p) ∼f (M ′, p′).
Obviously, if (M,p) ∼ω (M ′, p′) then (M,p) ∼f (M ′, p′). Whether the con-
verse also holds is not obvious and an important question in its own right.
Indeed, an affirmative answer for a given class of submanifolds M and M ′

is an important step in solving the biholomorphic equivalence problem be-
tween them since the problem may then be reduced to an existence question
for formal power series where convergence issues can be avoided. At this
point, we should mention that the problem that we have just raised is also
meaningful in the context of general real-analytic submanifolds in CN , but
in what follows we shall focus on CR manifolds. For submanifolds with CR
singularities, the interested reader is referred to the surveys [26, 29, 27] for
a further discussion of this matter.

Given (M,p) and (M ′, p′) as above, if every formal CR invertibleH : (M,p)
→ (M ′, p′) is automatically convergent, then the convergent power series map-
ping obtained defines a local biholomorphism between (M,p) and (M ′, p′),
and therefore (M,p) ∼ω (M ′, p′). Hence, the convergence results discussed
in the previous section (for formal CR invertible maps) immediately show
that (M,p) ∼f (M ′, p′) ⇒ (M,p) ∼ω (M ′, p′) for all germs of generic sub-
manifolds M,M ′ that are minimal and holomorphically nondegenerate (by
applying Corollary 3.10).

However, the reader should note that two germs of generic subman-
ifolds could be formally equivalent through a divergent map and still be
biholomorphically equivalent. In fact, even if (M,p) = (M ′, p′) is simply any
holomorphically degenerate generic submanifold, one knows from §3.5.1 that
(M,p) admits divergent invertible formal CR self-maps, while obviously it
is biholomorphically equivalent to itself. Hence, understanding the implica-
tion

(M,p) ∼f (M ′, p′) =⇒ (M,p) ∼ω (M ′, p′)

goes far beyond determining whether all formal CR invertible maps between
such germs converge. It rather asks whether the existence of a formal CR in-
vertible map between such germs forces the existence of a (possibly different)
(holomorphic) convergent power series mapping between them.
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We now define a third notion of equivalence between germs (M,p) and
(M ′, p′) of generic submanifolds. We say that they are CR equivalent and
write (M,p) ∼CR (M ′, p′) if there exists a germ at p of a C∞ CR dif-
feomorphism g : (M,p) → (M ′, p′). It is well known that the power se-
ries expansion of any germ of such a C∞ map induces a formal CR map
G : (M,p) → (M ′, p′) (see [5]). Hence we have the following obvious impli-
cation:

(6.1) (M,p) ∼CR (M ′, p′) =⇒ (M,p) ∼f (M ′, p′),

while the converse is still far from being understood. We may now sum-
marize in the following diagram the obvious implications between the three
(a priori) distinct notions of equivalence already introduced:

(M,p) ∼ω (M ′, p′) (M,p) ∼CR (M ′, p′)

(M,p) ∼f (M ′, p′)

Regarding the other implications, Baouendi, Rothschild and Zaitsev [7]
have shown that they also hold at a generic point p of any real-analytic
generic submanifold M . More precisely, they proved the following:

Theorem 6.1 ([7]).For every real-analytic generic submanifold M⊂CN ,
there exists a Zariski open subset Ω of M such that, for every p ∈ Ω, if there
exists a real-analytic generic submanifold M ′ ⊂ CN such that (M,p) ∼f
(M ′, p′) for some point p′ ∈M ′, then necessarily (M,p) ∼ω (M ′, p′).

In what follows, we rather seek to characterize those generic submani-
folds for which the reverse implications hold (or do not hold) for arbitrary
points p, p′. Regarding the implication “formal implies biholomorphic”, the
following positive result was proved by Baouendi, Rothschild and the second
author:

Theorem 6.2 ([6]). Two germs of generic real-analytic minimal subman-
ifolds in CN are formally equivalent if and only if they are biholomorphically
equivalent.

For some time, it has been thought that Theorem 6.2 could be true for
arbitrary generic submanifolds (without the minimality assumption), until
finally Kossovskiy and Shafikov came up with a negative answer to such a
guess by showing the following:

Theorem 6.3 ([38]). There exist germs (M,p) and (M ′, p′) of real-
analytic (Levi-nonflat) hypersurfaces in C2 that are formally equivalent but
not biholomorphically equivalent.
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Theorem 6.3 shows more: the minimality assumption in Theorem 6.2
cannot be replaced by somewhere minimality (for connected submanifolds).

Regarding the implication (M,p) ∼CR (M ′, p′) ⇒ (M,p) ∼ω (M ′, p′),
it obviously holds for generic real-analytic minimal submanifolds as a con-
sequence of (6.1) and Theorem 6.2. In the nonmimal case, Kossovskiy and
the first author were able to show that a similar phenomenon to that of
Theorem 6.3 holds in the C∞ category as well, namely:

Theorem 6.4 ([36]). There exist germs (M,p) and (M ′, p′) of real-
analytic (Levi-nonflat) hypersurfaces in C2 that are CR equivalent but not
biholomorphically equivalent.

A noteworthy consequence of Theorem 6.4 is that it also provides a nega-
tive answer to a conjecture of Ebenfelt–Huang [17] regarding the analyticity
of C∞ CR diffeomorphisms between Levi-nonflat real-analytic hypersurfaces
in C2.

Of course, one could deduce Theorem 6.4 from Theorem 6.3 if one knew
that the notions of CR equivalence and formal equivalence were equivalent.
However, this question, which amounts to establishing a Borel type result for
CR maps is also far from being solved, except in complex dimension 2 which
has recently been settled by Kossovskiy, Stolovitch and the first author:

Theorem 6.5 ([37]). Two germs of real-analytic hypersurfaces in C2 are
formally equivalent if and only if they are CR equivalent.

To summarize the previous discussion, the notions of formal, CR and
biholomorphic equivalence always coincide for minimal real-analytic generic
submanifolds in CN . For nonminimal generic submanifolds, they do not
coincide in general. However, the notions of formal and CR equivalence are
equivalent for real hypersurfaces in C2. We therefore make the following:

Conjecture 6.6.Two germs of real-analytic generic submanifolds in CN
are formally equivalent if and only if they are CR equivalent.

Regarding Theorems 6.2 and 6.3, the reader should not think that these
results are the last word on the subject. In fact, looking more closely into
the geometric structure of the examples from [38], one sees that the real hy-
persurfaces constructed are Levi-nonflat and that the points where formal
equivalence does not imply biholomorphic equivalence happen to be non-
minimal points (as discussed in §4). Furthermore, away from those points,
the notions of formal equivalence and biholomorphic equivalence coincide
(by Theorem 6.2). The nonminimal points on a real-analytic Levi-nonflat
hypersurface in C2 correspond, geometrically, to singularities of the foliation
of the hypersurface by so-called CR orbits, which we now discuss.

For any generic real-analytic and connected submanifold M ⊂ CN , recall
that T cM denotes the complex tangent bundle of M . For every p ∈M , there
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exists a unique germ of a real-analytic CR submanifold Σp through p with
the property that every point q ∈ Σp can be reached from p by following
a piecewise differentiable curve in M whose tangent vectors are in T cM
(see [5, 8]). We call this germ the (local) CR orbit of M at p. Note that
M is minimal at p precisely when this CR orbit is a neighborhood of p
in M . Furthermore, the dimension of Σp coincides with the dimension of
the Lie algebra generated by the sections of T cM , evaluated at p. Since
M is real-analytic, by analytic continuation, dimpΣp = e is constant and
maximal outside a proper real-analytic subvariety V of M . When V = ∅, we
say that M is of constant orbit dimension. Hence from the definition, M \V
is of constant orbit dimension, i.e. is foliated by real-analytic CR manifolds
(of the same dimension), the local CR orbits. On the other hand, the points
in V are those points where the CR orbits are of lower dimension and, in
the case of a Levi-nonflat hypersurface in C2, those points coincide with the
nonminimal points of M . In view of Theorem 6.3, it is natural to believe
that such a set V in any generic submanifold might be the locus where
one may find points where formal equivalence fails to imply biholomorphic
equivalence. We therefore formulate the following:

Conjecture 6.7. Two germs of real-analytic generic submanifolds of
constant orbit dimension in CN are formally equivalent if and only if they
are biholomorphically equivalent.

This conjecture is known to be true in the following two main instances.
Firstly, it is satisfied, again by Theorem 6.2, for all generic minimal submani-
folds of CN , which correspond to constant-orbit-dimension generic subman-
ifolds having CR orbits of the highest possible dimension (by definition).
The second class of submanifolds for which Conjecture 6.7 has been verifed
is that of real-algebraic generic submanifolds (of constant orbit dimension)
as a consequence of [45] (noticing that the main result of [45] applies in the
formal category as well by making use of [47, Proposition 2.4]). We note that
in this latter setting, from formal equivalence one gets a stronger conclu-
sion than that of biholomorphic equivalence, namely algebraic equivalence
(see [45, 46] for the details). Finally, the reader should observe that Conjec-
ture 6.7 also holds when N = 2 since any real-analytic hypersurface in C2

of constant orbit dimension is either (everywhere) minimal or Levi-flat.

The proofs of Theorems 6.3–6.5 heavily rely on the technique already
discussed in §4 based on the theory of singular complex ODEs associated to
nonminimal hypersurfaces in C2.

Let us conclude by mentioning the common general philosophy behind
Theorems 6.1 and 6.2. In order to produce, from a given formal CR invertible
map between two germs (M,p) and (M ′, p′), a convergent one, the strategy
is to prove a stronger statement, namely to produce a sequence of conver-
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gent holomorphic maps sending the germs into each other and furthermore
approximating the original formal map in the Krull topology. This is done
through nontrivial reductions of the original problem to a suitable applica-
tion of Artin’s approximation theorem [1] (or other deep variants of such a
result). We will not discuss the details here but refer the interested reader to
[7, 6] or [46] for a more complete account. When following the strategy just
described, one may even formulate more general questions than the ones
addressed at the beginning of this section. Indeed, it then becomes natural
to ask when it is possible to approximate any formal CR map between arbi-
trary real-analytic generic submanifolds (lying in complex spaces of possibly
different dimensions) by a sequence of convergent ones. Again, this type of
questions is fully discussed in [46].
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[18] F. Forstnerič, Embedding strictly pseudoconvex domains into balls, Trans. Amer.
Math. Soc. 295 (1986), 347–368.
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