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Abstract
This is a survey paper discussing the developments around the so-called finite jet determination problem for CR maps over
the past twenty years.
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1 Introduction

It has been exactly 20 years since the survey by Zaitsev [79]
and 15 years since the survey by Baouendi [10] of results
surrounding the so-called finite jet determination problem for
CRmaps, appeared. The problem asks to determine whether,
given CR manifolds M and M ′, there exists a number k such
that CR maps from M into M ′ are uniquely determined by
their k-jets at any fixed point in M .

The subject has seen remarkable developments in differ-
ent directions over the years, led to substantial achievements
mostly in the equidimensional case, and more recently, in
the positive codimensional case. There are fascinating and
quite challenging problems left open, some of which we col-
lect here. We hope that this article serves as a guide to the
state-of-the-art in the field and points the reader to a wealth
of references. We have strived to make our account as com-
plete as possible, but it seems impossible not to miss some
references; we apologize for any incompleteness.

Our survey starts with a short summary of the necessary
geometric tools in Sect. 2. We then proceed to a thorough
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discussion of the problem for CR diffeomorphisms of real-
analytic CR manifolds in Sect. 3. It is followed by the
corresponding discussion in the smooth category in Sect. 4,
and results for more general (equidimensional) maps in
Sect. 5. We then connect the local determination results with
the more global results coming from boundary versions of
H. Cartan’s uniqueness theorems in Sect. 6. The most recent
results in the subject addressing finite determination of maps
in positive codimension are finally discussed in Sect. 7.

2 Nondegeneracy conditions for CR
manifolds andmaps

We recall here some nondegeneracy conditions for CR man-
ifolds and CR maps which we will use throughout the paper.
More details may be found in the monographs [3,15,25].

Let M ⊂ C
N be a C∞-smooth CR submanifold of CR

dimension n andCRcodimension d, so that dim M = 2n+d.
When n + d = N , M is called generic. Denote by T M ,
T cM := T M ∩ iT M ⊂ T M , CT M = C ⊗ T M and
T 0,1M := T 0,1

C
N ∩ (CT M) ⊂ CT M respectively, its

real tangent bundle, complex tangent bundle, complexified
tangent bundle and CR bundle. We recall that T cM and
T 0,1M are canonically (anti)isomorphic as complex vector
bundles and that CT M contains T M as a maximally totally
real subspace. Nondegeneracy conditions are measurements
of the nonintegrability of the distribution T cM ⊂ T M , or
equivalently, of the distribution T 1,0M ⊕ T 0,1M ⊂ CT M
where T 1,0M = T 0,1M . A manifold M endowed with a
formally integrable (i.e. closed under brackets) subbundle
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T 0,1M ⊂ CT M is said to be an abstract CR manifold if
T 0,1M ∩ T 0,1M = {0}.

The first important notion attached to M is its Levi map
and is defined as follows. For every p ∈ M , the Levi map of
M is the (vector-valued) Hermitian form

Lp : T 0,1
p M × T 0,1

p M → CTpM�T 0,1
p M ⊕ T 1,0

p M

given by

Lp(X p,Yp) = 1

2i
[X , Ȳ ]p mod T 0,1

p M ⊕ T 1,0
p M . (2.1)

The definition of the Levi map Lp is independent of the
choice of the CR vector fields X and Y extending X p

and Yp in a neighbourhood of p. We say that M is Levi-
nondegenerate at p ∈ M , Lp(X p,Yp) = 0 for all Yp ∈
T 0,1
p M implies that X p = 0; we say that M is Levi-

nondegenerate if it isLevi-nondegenerate at eachof its points.
For each p ∈ M , the quadratic form associated to the

Levi mapLp is real-valued, and its image is contained in the
maximally real subspace

TpM�T c
p M

⊆ CTpM�T 0,1
p M ⊕ T 1,0

p M,

whose convex hull denoted by ϒp is called the Levi-cone of
M at p.

We denote by T 0M ⊂ T ∗M the characteristic bundle of
M . The fibre T 0

p M consists of the set of (real) forms annihi-
lating T c

p M ; we often think about T ∗M ⊂ CT ∗M , in which

case T 0
p M is the set of real forms annihilating T 0,1

p M and

T 1,0
p M . We let T ′M := (T 0,1M)⊥ ⊂ CT ∗M be the holo-

morphic cotangent bundle. ThemanifoldM is called strongly
pseudoconvex at p if there exists θp ∈ T 0

p M such that the
Hermitian form

T 0,1
p M × T 0,1

p M  (X p,Yp) �→ 1

2i
< θp, [X , Ȳ ]p >

is positive definite, and M is said to be strictly pseudoconvex
if it is strictly pseudoconvex at each of its points. Observe
that the previous concepts are also well defined for abstract
CR manifolds, or CR submanifolds of class C 2. When M is
generic, an equivalent condition to M being strongly pseu-
doconvex at p is that a neighbourhood of p in M is contained
in a strongly pseudoconvex real hypersurface of C

N .
A finer nondegeneracy condition, still definable in the

category of abstract C∞ CR manifolds and generalizing
Levi-nondegeneracy, is that of finite nondegeneracy as intro-
duced in [3,7]. For a point p ∈ M and an integer k,M is called
k-finitely nondegenerate (or k-nondegenerate) at a point p,

if the Lie derivatives

LK̄1
· · ·LK̄ j

ϑ(p),

j ≤ k, ϑ ∈ �(M, T 0M), K̄ν ∈ �(M, T 0,1M)

span T ′
pM (and k is the smallest number with that prop-

erty); here, �(M, T 0M) and �(M, T 0,1M) denote the set of
smooth sections of the respective bundles. M is called (at
most) k-nondegenerate if it is (at most) k-nondegenerate at
each of its points. Observe that M is 1-nondegenerate if and
only if it is Levi-nondegenerate (see [3] for more on this).

We note that a Levi-flat manifold (that is, one whose Levi
form is constantly 0) is automatically foliated by complex
manifolds, as the distribution T cM ⊂ T M is actually inte-
grable in that case, and the leaves are complex manifolds
by the Newlander-Nirenberg theorem. The “finest”, in some
sense, nondegeneracy notion is that of holomorphic non-
degeneracy, and it is designed as an obstruction to these
kinds of trivial foliations by complex manifolds. We will
only consider this notion for real-analytic CR submanifolds,
as introduced by Stanton [74]. A (connected) real-analytic
CR manifold M ⊂ C

N is holomorphically degenerate if for
some (and equivalently, every) point p ∈ M , there exist a
germ at p of a (1, 0) holomorphic vector field that is tangent
to M near p. It can be shown that a (connected) real-analytic
CR submanifold M is holomorphically nondegenerate if and
only if it is finitely nondegenerate on a Zariski open subset.
We refer to [3] for details on this matter.

If M ⊂ C
N and M ′ ⊂ C

N ′
are two C∞-smooth CR

submanifolds, a C 1-smooth map h : M → M ′ is called CR
if h∗(T 0,1

p M) ⊂ T 0,1
h(p)M

′ for every p ∈ M . A CR map h is
called CR transversal at p ∈ M if

T (1,0)
h(p) M ′ + T (0,1)

h(p) M ′ + h∗(CTpM) = CTh(p)M
′.

When M and M ′ have the same dimension and same CR
dimension, a C k-smooth CR diffeomorphism h : M → M ′,
k ≥ 1, is a CR map of class C k , that is a diffeomorphism;
note that h−1 is then automatically CR.

For real-analytic CR manifolds M and M ′ of the same
dimension we will denote byB(M, M ′) the sheaf of biholo-
morphic maps sending M into M ′, andBp(M, M ′) its stalk
at p. We note that this coincides with the real-analytic CR
diffeomorphisms from M into M ′.

We come now to two different notions of finite type. The
first one is that of finite type in sense of Bloom-Graham
[24]. Given a point p ∈ M , we say that M is of finite type
if the Lie algebra generated by the CR vector fields (i.e. the
smooth sections of T 0,1M) and their conjugates spanCTpM .
When M is furthermore real-analytic, this finite type condi-
tion is equivalent to the well-known condition of minimality
(see [3]). A sufficient condition for M to be of finite type at
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a point p is that its Levi-cone ϒp has non-empty interior;
this latter condition is also necessary when M is a quadric
generic submanifold. But, in general, these two notions are
not equivalent (see e.g. [43]).

On the other hand, following [31,32], we say that M is
of D’Angelo finite type at a point p ∈ M if the order of
contact of (possibly singular) holomorphic curves with M
at p is bounded. For a quantitative version of this definition
we refer the reader to [31] for real hypersurfaces, or [65]
where a definition is provided for arbitrary sets (that are not
necessarily manifolds).

Let us conclude with some notation regarding jet spaces,
that will be frequently used in the paper. Given a positive
integer k and two (real) manifolds X and Y , and x ∈ X , we
denote by J kx (X ,Y ) the jet space at x of order k of smooth
mappings from X to Y . For a smooth map h : X → Y , we
denote by j kx h the k-jet of h at x . When Y = X , we simply
write J kx (X) for J kx (X , X). For more details about jet spaces,
see [44]. In particular, we emphasize that one can think about
jets as polynomial maps, and that with that identification in
mind, the jet of a holomorphic function (map) is just the
truncation of its Taylor series at the point in question.

3 CR diffeomorphisms of real-analytic CR
manifolds

In the present section, we shall only be considering real-
analytic CR submanifolds embedded in C

N with N ≥ 2. In
what follows, M, M ′ will denote real-analytic CR submani-
folds of C

N of the same dimension and same CR dimension.
LetFω(M, M ′) be the sheaf of real-analytic CR maps from
M into M ′ and B(M, M ′) be the subsheaf of Fω(M, M ′)
whose stalk at any point p ∈ M , denoted by Bp(M, M ′),
consists of those germs of (real-analytic) local CR diffeo-
morphisms (M, p) → M ′. When M ′ = M , we simply write
Bp(M) forBp(M, M).

3.1 The finite jet determination property

In order to set the stage, we are going to start with a classical
example.

Example 3.1 (The Heisenberg hypersurface) If one considers
the so-calledHeisenberg hypersurfaceHN ⊂ C

N
(z,w) = C

n
z ×

Cw defined by

Imw = ‖z‖2 ,

then every holomorphic map H : C
N → C

N with H(0) = 0
and det H ′(0) �= 0which has the property that H(HN ∩U ) ⊂

HN is necessarily of the form

H(z, w) = ( f (z, w), g(z, w))

=
(
rU

z + aw

1 − 2i〈z, a〉 − (t + i ‖a‖2)w ,

r2w

1 − 2i〈z, a〉 − (t + i ‖a‖2)w
)

for some unitary n × n matrix U , a ∈ C
n , r ∈ R+, and

t ∈ R. This formula even holds if one replaces C
N by a

complex Hilbert space, see [62]. One sees that

r = √
gw(0)

U = fz(0)√
gw(0)

a = fz(0)
−1 fw(0)

t = Re
gw2(0)

2gw(0)

so that every holomorphic map H as above is actually deter-
mined by its 2-jet j20 H . The formulas above actually give rise
to a jet parametrization,which reconstructs H from j20 H ; this
is stronger than unique determination, but in many instances,
a stepping stone for the proof of finite determination proper-
ties.

The earliest example of a general unique determination
property comes as a consequence of the work of Car-
tan for strictly pseudoconvex hypersurfaces in C

2, Tanaka
for strictly pseudoconvex hypersurfaces in C

N and Chern–
Moser for Levi-nondegenerate hypersurfaces in C

N [27,29,
75]. The results of these authors actually give a complete
solution of the biholomorphic equivalence problem in these
classes of hypersurfaces, which as a consequence yield the
following theorem.

Theorem 3.2 [27,29,75] Let M, M ′ ⊂ C
N be real-analytic

Levi-nondegenerate real hypersurfaces. Then, for any point
p ∈ M, the mapping j2p : Bp(M, M ′) → J 2p(M, M ′) is
injective.

Theorem 3.2 is a remarkable result exhibiting how a
nondegeneracy condition on the CR geometry of the hyper-
surfaces forces the 2-jet mapping to be injective. Let us give
an example to show that this is not always the case: the ele-
mentary example of a real hyperplane in C

N shows that for
a real hypersurface M ⊂ C

N , the mapping j kp : Bp(M) →
J kp(M) may fail to be injective for every p ∈ M and any
k ∈ Z+. After a linear change of coordinates, such a real
hyperplane is given by

M = {Z ∈ C
N : Im ZN = 0}.
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If x ∈ R and h : (Cζ , x) → C is a germ of a holomorphic

function, such that h(ζ ) = ∑
j≥2 a j

(ζ−x) j

j ! with all a j ∈ R,

and furthermore f : C
N−1
Z ′ → C

N−1 is a biholomorphism,
then the local holomorphic map

(Z ′, ZN ) �→ ( f (Z ′), ZN + h(ZN ))

restricts to a germ of a real-analytic CR automorphism
of M at any point p = (z01, . . . , z

0
N−1, x) ∈ M with

(z01, . . . , z
0
N−1) in the domain of f . Hence for every inte-

ger k ∈ Z+, the mapping j kp is not injective. We will later
see that this example actually fails the two important geo-
metric conditions: It is degenerate (actually, Levi-flat, and so
holomorphically degenerate) and everywhere nonminimal.

In view of this simple example and the breadth of the spec-
trum of possible conditions, a natural question that comes to
mind is to characterize those real-analytic CR manifolds sat-
isfying what we are going to call “the finite jet determination
property”. The formal definition is as follows:

Definition 3.3 Let M ⊂ C
N be a real-analytic CR sub-

manifold. We say that M has the finite jet determination
property at p ∈ M if there exists kp ∈ Z+ such that, for
every real-analytic CR manifold M ′ ⊂ C

N , the mapping

j
kp
p : Bp(M, M ′) → J

kp
p (M, M ′) is injective. We say that

M has the finite jet determination property if it has the finite
jet determination property for every point p ∈ M .

Let us first note the following simple observation:

Lemma 3.4 If M ⊂ C
N is a real-analytic CR submani-

fold, then M has the finite jet determination property at p
if and only if there exists kp ∈ Z+ such that the mapping

j
kp
p : Bp(M) → J

kp
p (M) is injective. The kp in this weaker

condition and the kp for the finite jet determination property
coincide.

Indeed, if the weaker condition is satisfied, and we have
two maps H1, H2 inBp(M, M ′)with j

kp
p H1 = j

kp
p H2, then

H1(p) = H2(p), so H−1
1 ◦ H2 ∈ Bp(M) is defined and has

j
kp
p (H−1

1 ◦ H2) = j
kp
p id , so H−1

1 ◦ H2 = id .
We also note that in the above definition we do not require

specific bounds kp for the jet order.Wewill discuss this point
later.

By Theorem 3.2, any Levi-nondegenerate real-analytic
real hypersurface satisfies the finite jet determination prop-
erty. At the end of the 90’s, Baouendi, Ebenfelt and Roth-
schild [4–6] and Zaitsev [78] initiated the systematic study
of the finite jet determination property for Levi-degenerate
real-analytic CR manifolds and searched for optimal condi-
tions on M for such a property to hold. There are essentially
two optimal geometric conditions which are important for
the finite jet determination property.

The first condition is that of holomorphic nondegeneracy,
as introduced in Sect. 2. A germ of a holomorphic vector field
X tangent to M actually generates a complex one-parameter
group of biholomorphisms by its flow map Z �→ et X Z ,
and for any holomorphic function ϕ, we therefore obtain a
biholomorphism Z �→ eϕ(Z)X Z which cannot be uniquely
determined from a finite jet. Actually a bit more concretely,
at points q where we have such an X with X(q) �= 0
(in particular, on a dense open subset of M), the germ of
(M, q) is locally biholomorphically equivalent to a germ of
a real-analytic CRmanifold of the form M̃×C for some real-
analytic CR submanifold M̃ ⊂ C

N−1. Similarly to what we
have highlighted in the real hyperplane case, one sees that
any map of the form (Z ′, ZN ) �→ (Z ′, ZN +ϕ(Z)) is a local
biholomorphism if ϕZN (0) �= −1, and so any manifold of
the above form M̃ × C does not have the finite jet deter-
mination property, proving the necessity of the holomorphic
nondegeneracy condition (these observations go back to [4]).

The second condition that is relevant in our problem is
that of finite type in the sense of Bloom-Graham [24], as
also defined in Sect. 2. When M is connected, it is easy to
see, by unique continuation, that if M is of finite type at
some point then it must be of finite type at all points of some
Zariski open subset of M . On the other hand, when M is
(connected and) nowhere of finite type, then near a generic
point p ∈ M ,M is foliated by itsCRorbits, whichmeans that
the germ (M, p) is biholomorphically equivalent to a germ
of a manifold of the form M̂ ×R (see [2,3,15]) for some real
submanifold M̂ ⊂ C

N−1. The fact that a real-analytic CR
submanifold, nowhere of finite type, does not satisfy the finite
jet determination property follows from adapting, again, the
arguments used above in the hyperplane case.

In view of these two necessary conditions, one can formu-
late the following conjecture (see [8]):

Conjecture 3.5 Let M ⊂ C
N be a connected real-analytic

CR submanifold that is holomorphically nondegenerate and
of finite type somewhere. Then M satisfies the finite jet deter-
mination property.

Conjecture 3.5 has been settled in many important cases
but is still open in full generality. Let us first discuss the
interesting case of real hypersurfaces. In that situation, a
(connected) real-analytic hypersurface that is holomorphi-
cally nondegenerate must automatically be somewhere of
finite type. Indeed, a real hypersurface that is nowhere of
finite type must be necessarily Levi-flat and hence holo-
morphically degenerate (see [2,3]). For real hypersurfaces,
Conjecture 3.5 has been settled by Juhlin [53].

Theorem 3.6 [53] A connected real-analytic hypersurface
M ⊂ C

N has the finite jet determination property if and
only if it is holomorphically nondegenerate.
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We should mention that in the two dimensional case
(N = 2), Theorem 3.6 was proved earlier by Ebenfelt,
Zaitsev and the first author [41]; that paper talked about Levi-
nonflat hypersurfaces, but holomorphic nondegeneracy of a
real hypersurface in C

2 is equivalent to Levi-nonflatness.
The proof of Theorem 3.6 splits into two distinct parts as

a consequence of the general structure of a holomorphically
nondegenerate real-analytic hypersurface. Indeed, for such a
manifold M , there is a Zariski open subset 
 such that M is
of finite type at every p ∈ 
 and of infinite type at every point
p ∈ M \ 
. To prove the injectivity of the k-jet mapping j kp ,
for some k, at points p ∈ M \
, Juhlin, building on previous
work byEbenfelt [37], reduces the problem to the finite deter-
minacy of solutions of singular ODEs proved in [41]. On the
other hand, the injectivity of the mapping j kp for p ∈ 
 (and
for sufficiently large k large) is known from a previous result
of Baouendi, Rothschild and the second author [8], valid for
CR submanifolds of arbitrary codimension.

Theorem 3.7 [8] If a real-analytic CR submanifold M ⊂ C
N

is holomorphically nondegenerate and of finite type, then it
has the finite jet determination property.

Adifferent proof of thisTheoremproviding a jet parametriza-
tion was later given by Juhlin and the first author [54].

For CR manifolds of arbitrary codimension, Theorem 3.7
is so far the most general result close to the solution of Con-
jecture 3.5. To complete such a solution, what remains to be
understood is whether the k-jet mapping j kp remains injective
(for some k) at every infinite type point p of a holomor-
phically nondegenerate CR submanifold (that is somewhere
of finite type). Besides the case of real hypersurfaces (see
above), the authors are not aware of any study in that direc-
tion for CR submanifolds of codimension ≥ 2.

3.2 Bounds for jet order

Once one knows that a given CR manifold has the finite jet
determination property, it is natural to ask whether one may
find specific or universal bounds regarding the jet order k
needed to have the injectivity of the k-jet mapping. For this
question, Lemma 3.4 yields that it is enough to study germs
of CR automorphisms of a given CR submanifold and look
at the k-jet mapping j kp : Bp(M) → J kp(M) for p ∈ M .

Let us first focus on the question for real hypersurfaces.
Recall from Theorem 3.2 that for any real-analytic Levi-
nondegenerate real hypersurface M ⊂ C

N , the 2-jet at any
fixed point uniquely determines local real-analytic CR auto-
morphisms of M . In view of Theorem 3.6, one may wonder
whether the mapping j2p is also injective at any point p of
a holomorphically nondegenerate real-analytic hypersurface
M ⊂ C

N ; and if not whether there exists some universal
integer � (say depending only on N ) such that injectivity of
the mapping j�p holds at each point p.

However, Kowalski [59] provided an example a real-
analytic hypersurface M0 ⊂ C

2, satisfying the above
conditions, showing that the answer to the first question
is negative. More precisely, the hypersurface M0 is Levi-
nonflat (i.e. holomorphically nondegenerate) and of infinite
type along some complex curve� ⊂ M0; and for some point
p ∈ �, the mapping j3p is injective while j2p is not. Build-
ing on [59], Zaitsev [79] even straightened the conclusion by
showing that the answer to the second question is negative
as well by proving the following:

Proposition 3.8 [79] For every positive integer k ≥ 2, there
exists a real-analytic Levi-nonflat real hypersurface Mk ⊂
C
2 and a point p ∈ Mk (of infinite type) such that the map-

ping jkp is not injective while the mapping jk+1
p is.

Example 3.9 Let us give a quick summary of the construction
of these types of counter examples (a very complete discus-
sion is found in the work [56] of Kolar and the first author).
We startwith theHeisenberg hypersurfaceH2 ⊂ C

2
(ζ,η) given

by Im η = |ζ |2 and note that the germs of biholomorphisms
Ht

Ht (ζ, η) =
(

ζ

1 − tη
,

η

1 − tη

)
, t ∈ R

are determined by their 2-jets. We then introduce the
weighted blowup B(z, w) = (zw2, w2k) and check that each
of the maps

Gt = B−1 ◦ Ht ◦ B(z, w) =
(

z
k
√
1 − tw2k

,
w

2k
√
1 − tw2k

)

is determined by its 2k + 1 jet but no lesser jet order will
suffice. The weighing of the jet order guarantees that Gt is
a germ of a biholomorphism mapping an infinite type real-
analytic hypersurface M2k ⊂ B−1(H2). Actually, the history
of the construction of these counter examples is interesting:
While Kowalski constructed his example from a complicated
series argument, Zaitsev had the insight that it came from a
blowup, and finally Kolar and the first author gave a complete
list of possible counter examples explaining why the two
different approaches of Kowalski and Zaitsev must yield a
similar result.

As the reader sees, in Example 3.9 we create higher jet
orders by introducing infinite type points via blowups. We
therefore restrict the optimal jet order question to holo-
morphically nondegenerate real hypersurfaces which are
everywhere of finite type. Interestingly, conclusions in the
case N = 2 distinguish themselves from the case N ≥ 3.
Recall that, in C

2, a real-analytic hypersurface of finite type
is automatically holomorphically nondegenerate. Ebenfelt,
Zaitsev and the first author [41] proved the following remark-
able result in C

2:
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Theorem 3.10 [41] Let M ⊂ C
2 be a real-analytic hyper-

surface of finite type. Then for every p ∈ M, the mapping
j2p : Bp(M) → J 2p(M) is injective.

The following is the basic construction which yields
higher jet orders in higher dimensions and shows that
Theorem 3.10 does not generalize to holomorphically non-
degenerate real-analytic hypersurfaces of finite type in C

N

for N ≥ 3.

Example 3.11 Consider theLevi-nondegenerate hyperquadric
H

3
1,1 of signature (1, 1) defined by

Im η = Re
(
ζ1ζ̄2

)
.

Theelements of the family of biholomorphisms Lt : (ζ1, ζ2, η) �→
(ζ1+i tζ2, ζ2, η), defined for t ∈ RmapH

3
1,1 into itself. Now

consider the modification map B : (z1, z2, w) �→ (z1, zk2, w)

and defineM = B−1(H3
1,1) (that is,M is defined by the equa-

tion Imw = Rez1 z̄k2). The family of maps Ht = B−1◦Lt ◦B
then yields the maps (z1, z2, w) �→ (z1 + i t zk2, z2, w) which
are determined by their k-jet at 0 but by no jet of lower order.
Note that the somewhat roundabout construction used in this
example yields a flexible way to generate many more exam-
ples of this kind.

One can modify Example 3.11 to show that it is even
possible to have arbitrarily high jet orders on a given fixed
real hypersurface (see [64]):

Example 3.12 By the Weierstrass theorem, we may choose
a nonzero entire function ψ : C → C such that, for every
integer n ∈ Z+, ψ( j)(n) = 0 for all 0 ≤ j ≤ n. Let M ⊂
C
3
(z1,z2,z3)

be the real-analytic hypersurface given by

Imz3 = Re
(
z1ψ(z2))

)
.

ThenM is holomorphically nondegenerate and (everywhere)
of finite type. The entire biholomorphism H(z1, z2, z3) =
(z1 + iψ(z2), z2, z3) restricts to a (global) real-analytic CR
diffeomorphism of M . For each integer n ∈ Z+, H agrees
with the identity mapping up to order n at the point (0, n, 0),
but H is not the identity mapping.

So Example 3.12 shows that given a fixed real-analytic
hypersurface M ⊂ C

N , holomorphically nondegenerate and
of finite type, with N ≥ 3, there does not exist, in general,
an integer �(M) such that the mapping j�(M)

p : Bp(M) →
J �(M)
p (M) is injective for each p ∈ M . Looking a bit

more closely to Example 3.12, we see that all chosen points
(0, n, 0) on M are of D’Angelo infinite type (see Sect. 2);
indeed, the complex lines z2 = n, w = 0 are entirely con-
tained in M . This motivates the following:

Question 3.13 Given a real-analytic hypersurface M ⊂ C
N

of D’Angelo finite type (i.e. containing no complex-analytic
subvariety of positive dimension), does there exists an integer
�(M) such that themapping j�(M)

p : Bp(M) → J �(M)
p (M) is

injective for each p ∈ M? If yes, does there exist a universal
bound �(N ) for �(M) valid for all such hypersurfaces and
depending only on N?

Theorem 3.10 obviously shows that the answer to both
parts of Question 3.13 is affirmative for N = 2. For N ≥ 3,
the solution to Question 3.13 is unknown to the authors; it is
even true that all of the known counter examples where �(M)

necessarily exceeds 2 are of D’Angelo infinite type. Further-
more, in some model cases, one can deduce upper bounds
on the jet order see e.g. [57,60]. However, for real-analytic
hypersurfaces that are compact (and hence ofD’Angelo finite
type as a consequence of [34]), the first part of the question
has been settled by the affirmative:

Theorem 3.14 [63] Let M ⊂ C
N be a compact real-analytic

hypersurface, N ≥ 2. Then there exists an integer � = �(M)

such that j�p : Bp(M) → J �
p(M) is injective for each p ∈ M.

We should mention that Theorem 3.14 is even valid for
compact real-analytic CR submanifolds (of arbitrary codi-
mension) that are of finite type. It would be interesting to
know whether one may find a universal bound � valid for all
compact real-analytic hypersurfaces in C

N . Example 3.12
shows that for a real-analytic holomorphically nondegener-
ate hypersurfaceM of finite type inC

N , the jet order required
to get injectivity of the jet mapping may not be uniformly
bounded over M . However, Juhlin and the first author have
shown that it can be chosen to be uniformly bounded on
compact subsets of M .

Theorem 3.15 [54] Let M ⊂ C
N be a (connected) real-

analytic holomorphically nondegenerate CR submanifold of
finite type. Then for every p ∈ M, there exists an integer �p

such that j
�p
p : Bp(M) → J

�p
p (M) is injective and such that

the mapping M  p �→ �p is bounded on compact subsets
of M.

Theorem 3.15 strengthens the result from [8] whose proof
do not give any information on the local boundedness of the
jet order. In view of Example 3.12, global boundedness of
the jet order fails to hold in the setting of Theorem 3.15.
Note that such an example involves a real-analytic hypersur-
face that is not real-algebraic. The authors are not aware of
any analogous example with a real-algebraic hypersurface.
In light of recent results in the mapping problems valid in the
real-algebraic category but not in the real-analytic one [7,58],
the following question might be worth being investigated:

Question 3.16 Given a connected real-algebraic, holomor-
phically nondegenerate hypersurface of finite type M ⊂ C

N ,
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does there exists an integer �(M) such that the mapping
j�(M)
p : Bp(M) → J �(M)

p (M) is injective for each p ∈ M?

Let us now turn to discussing the currently known bounds
for the jet determination problem for real-analytic CR sub-
manifolds of higher codimension. The first natural question
to tackle is to determine whether there is an analogous ver-
sion of Theorem 3.2 in arbitrary codimension. And in view
of Theorem 3.7, one may identify the class of real-analytic
Levi-nondegenerate CR submanifolds of finite type to be a
suitable class of CR submanifolds for which 2-jet determi-
nation of their CR automorphisms should be investigated. In
[12], Beloshapka announced that 2-jets were indeed enough
to uniquely determine CR automorphisms of real-analytic
Levi-nondegenerate CR submanifolds whose Levi-cone has
non-empty interior. Recall, as mentioned in §2, that the lat-
ter condition implies finite type. However, Gregorovič and
Meylan [45] provided counter examples to such a statement.
In fact, one of the results they prove is the following:

Theorem 3.17 [45] For every integer k ≥ 4, there exist an
integer N and a quadric generic submanifold Mk ⊂ C

N

through the origin, of codimension k, Levi-nondegenerate
and of finite type, such that the mapping j20 : B0(M) →
J 20 (M) is not injective (but such that j�0 : B0(M) → J �

0 (M)

is, for a suitable integer �).

It is even shown in [45] that for every integer n, there exist
an integer N and a quadric submanifold Mn ⊂ C

N , Levi-
nondegenerate and of finite type, such that jn0 : B0(M) →
Jn0 (M) is injective but not jn−1

0 . On the other hand, Blanc-
Centi and Meylan [22] have shown that 2-jet determination
holds for real-analytic CR automorphisms of real-analytic
(and even C∞-smooth, see Sect. 4) Levi-nondegenerate
generic submanifolds, of codimension two, whose Levi-
cone has non-empty interior. Very recently, Beloshapka [13]
proved that 2-jet determination holds for CR automorphisms
of (analogous) generic submanifolds of codimension three in
the real-analytic category. On the other hand, if one makes
stronger assumptions on themanifolds (like strict pseudocon-
vexity), it is possible to get 2-jet determination for their CR
automorphisms in any codimension. We will be discussing
such results in §4 since they apply as well to smooth auto-
morphisms of smooth generic submanifolds.

In view of the above discussion, one may wonder whether
there even exist useful bounds for the required jet order
on Levi-nondegenerate real-analytic CR submanifolds of
finite type. The following result, following from the work
of Baouendi, Ebenfelt, Rothschild [2] provides such a bound
in arbitrary codimension:

Theorem 3.18 [2] Let M ⊂ C
N be a real-analytic CR sub-

manifold that is Levi-nondegenerate and of finite type, of
CR codimension d. Then for every p ∈ M, the jet mapping
jd+1
p : Bp(M) → Jd+1

p (M) is injective.

It is shown in [2] that a more general result for finitely
nondegenerate CR submanifolds holds:

Theorem 3.19 [2] Let M ⊂ C
N be a real-analytic CR sub-

manifold that is k0-finitely nondegenerate and of finite type,
of CR codimension d. Then for every p ∈ M, the jet mapping
jk0(d+1)
p : Bp(M) → J k0(d+1)

p (M) is injective.

The bound given in Theorem 3.19 improved the earlier
bound 2k0(d + 1) due to Zaitsev [78]. We should add that
Theorem 3.19 applies as well to local biholomorphisms of
C∞-smooth CR submanifolds (see [5]).

The reason that the codimension appears in this bound is
actually related to the fact that it is an universal bound on the
so-called Segre number of a finite type manifold. Roughly
speaking, in the proofs of Theorem 3.19, one shows that the
jets of order k0�, for every integer �, suffice to determine
mappings uniquely along the Segre set of order � at p. First
one defines the Segre varieties

Sq(U ) := {Z ∈ U : �(Z , q̄) = 0, � ∈ I (M)} ⊂ U , q ∈ U ,

defined for small enough U . Here I (M) denotes the ideal
of M in the sheaf of real-analytic functions on C

N . For p ∈
M ∩U , one then defines inductively

S1p(U ) = Sp(U ), S�
p(U ) :

=
⋃

q∈S�−1
p (U )

Sq(U ).

One then notes that the germ S�
p of these Segre sets is well

defined. It is known that M is of finite type at p if and only
if there exists a number �0 ≤ d + 1, the smallest of which is
called the Segre number ofM , such that the germ S�0

p contains
an open set inC

N . Thus the jets of order k0�0 suffice to deter-
mine elements ofBp(M) uniquely. Formal analogues of this
construction are useful when trying to transfer jet determina-
tion results into the formal category, which is going to be of
some importance below; for a summary of the approaches to
the Segre maps in the formal context, the reader can consult
e.g. [33].

4 CR diffeomorphisms of smooth CR
manifolds

The finite jet determination problem for C k-smooth CR sub-
manifolds, where k ∈ Z+ ∪ {+∞} differs starkly from the
real-analytic case discussed above. The main method used
in the real-analytic setting, complexification, prolongation,
and iteration along the Segre maps becomes unavailable in
the smooth setting. Also the main determining factors, holo-
morphic nondegeneracy and finite type, are different in the
smooth setting as we’ll discuss below.
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First we need to identify the CR automorphisms under
study precisely as one may find in the literature different
regularity assumptions on such maps. If M is C k-smooth,
k ∈ Z+ ∪ {∞, ω} and � ≤ k, then we denote by Aut�p(M)

the group of germs of CR automorphisms of M , fixing p and
of class C �. As usual, any integer is smaller than ∞ and that
∞ < ω. We shall also denote, for M as above and p ∈ M ,
by Autωp(M) the (pseudo)-group of local biholomorphisms

near p, fixing M and p. Note that Aut�p(M) is potentially
much larger than Autωp(M) for � ≤ k.

The techniques developed in [27,29,75] carry over to the
case of C∞-smooth Levi-nondegenerate real hypersurfaces,
and therefore Theorem 3.2 holds for C∞-smooth CR auto-
morphisms between such hypersurfaces. The other results
discussed in Sect. 3 also carry over in a formal setting, and
it is important that the reader is aware about the distinction
between the bona-fide finite determination conditions dis-
cussed below and these formal results.

Every C∞ smooth CR manifold M ⊂ C
N
Z at any of its

points p ∈ M gives rise to a formal CR manifold M̂p, which
is in general not an embedded submanifold of some C

N but
rather defined by the ideal generated by the Taylor series of
the defining equations of M at p in the formal power series
ring C�Z , Z̄�. The notions of finite type and all of the non-
degeneracy conditions discussed above naturally extend to
this formal setting, and one can deduce finite jet determina-
tion results in this extended setting, but for formal mappings.
Now for a smooth CRmap h, the associated formal mapping
ĥ p at the point p is just the Taylor series of the smooth CR
map h at the point p, that is, an element of C�Z�N . A deter-
mination result in the formal category therefore gives unique
determination of ĥ p from a jet j kph of fixed order, but not of
the smooth map h. One might wonder whether there is a way
to obtain the unique determination of h from some form of
unique continuation property, but to date, this question seems
to be out of reach.

The notion of k0-nondegeneracy has special prominence
among the nondegeneracy conditions in the smooth category
as it seems to be the only one which yields just as strong
results as its formal counterpart. In this context, Ebenfelt [37]
proved the first significant result by showing the following:

Theorem 4.1 [37] Let M ⊂ C
N be aC∞-smooth real hyper-

surface that is k0-nondegenerate. Then for every p ∈ M, the
jet mapping j2k0p : Aut∞p (M) → J 2k0p (M) is injective.

The general idea of the proof of Theorem 4.1 is to show
that local CR automorphisms satisfy a certain type of “com-
plete” system of differential equations of some fixed order,
from which jet determination may be deduced. Such an
approach was previously used by Han [47,48] to study dif-
feomorphisms of real-analytic hypersurfaces.

Later, Kim and Zaitsev [55] were able to extend Theorem
4.1 to abstract CR manifolds of arbitrary codimension as
follows.

Theorem 4.2 [55] Let M be an abstract C∞-smooth CR
manifold that is k0-nondegenerate and of finite type. Then
for every p ∈ M, the jet mapping j2k0(d+1)

p : Aut∞p (M) →
J 2k0(d+1)
p (M) is injective, where d is the CR codimension of

M.

Observe that the jet order needed to guarantee injectivity
of the jet mapping in Theorem 4.2 is 2k0(d + 1) and there-
fore higher than the one in Theorem 4.1 in the embedded
hypersurface case. However, one can obtain the bound in
Theorem 4.1 from Theorem 4.2 in the following way.

First, one associates toM and afixed p ∈ M the associated
generic formal submanifold M̂p , which is obtained byfinding
a basis of formal integrals for the CR structure of M at p (for
details, see [67] after Def. 6.4.). Any CR diffeomorphism h
of M then gives rise to a formal CR automorphism ĥ p of M̂p.
These are uniquely determined by their k0(d + 1) jets by [5,
Thm. 2.1.1.]. Hence we get that the jet of any order of ĥ p is

uniquely determined by j k0(d+1)
p ĥ p = j k0(d+1)

p h.
Let us point out that Theorem 4.2 admits also versions for

CR manifolds that are merely C k-smooth for some k. We
refer to [55] for the exact statements of these results.

In fact recently there has been a lot of activity in trying
to derive finite jet determination results for mappings and
manifolds that are C k-smooth, with k as low as possible.
The sharpest result in that direction extending Theorem 3.2
(for hypersurfaces) was proven by Bertrand and Blanc-Centi
[17] in 2014:

Theorem 4.3 [17] Let M ⊂ C
N be a C 4-smooth Levi-

nondegenerate real hypersurface. Then for every p ∈ M,
the mapping j2p : Aut3p(M) → J 2p(M) is injective.

The method to derive Theorem 4.3 is different from pre-
vious ones and consists of attaching “stationary” discs to the
hypersurface. Such invariants objects were first introduced
by Lempert [69] in his celebrated work on the Kobayashi
metric on strongly convex domains, and in a rather precise
sense, stationary discs solve the Euler–Lagrange equations
for the Kobayashi pseudometric. While strong convexity is
not an invariant notion, some results also hold on strictly
pseudoconvex domain (see Huang [50]). Let us expand a bit
on the ideas behind this approach.

Let � be the open unit disc in the complex plane. A holo-
morphic disc A : � → C

N is said to be attached to M if
it extends to a (sufficiently smooth, typically C k,α(�)) map
A : � → C

N with A(∂�) ⊂ M . It is a fact that any CR
function extends to any holomorphic disc attached to M via
the Cauchy transform, and so, the elements of Autkp(M) act
on the set of attached discs in a natural way. The problem
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for finite determination is that the set of attached discs is
rather large (it is infinite dimensional). One is therefore led
to look for smaller subsets of discs. A disc A is said to be
stationary if it lifts to a map with a simple pole at the ori-
gin Ã = (A, Â) : � → T ∗

C
N such that it is attached to

the conormal bundle N∗M = T 0M ⊂ T ∗
C

N . For Levi-
nondegenerate real hypersurfaces M , the conormal bundle
is a totally real subset of T ∗

C
N . One checks that stationary

discs are a finite dimensional family of discs attached to M
and therefore are muchmore suitable for finite determination
properties.

Let us describe the problem that the disc determination
method runs into for general hypersurfaces in the context of
C
2. Consider a real hypersurface M ⊂ C

2 with a defining
equation of the form

Imw = ϕ(z, z̄,Rew).

If one decomposes the Taylor series ϕ̂ ∈ C�z, z̄, s� in the
following form:

ϕ̂(z, z̄, s) =
∑
α,β

ϕα,β(z)z̄αsβ,

then it turns out that for any (α, β) minimal with respect to
the condition ϕα,β �≡ 0 in the partial ordering generated by
the cone � ⊂ R

2 given by � = {(x, y) : y ≥ 0, x + y ≥ 0},
the pair (α, β) is a biholomorphic invariant of M , called an
invariant pair, see [38]. Actually, also the order γ (α, β) =
ordzϕα,β is invariant in that case, and we write ϕ̂α,β(z) =
cα,β zγ + O(γ + 1).

If we are dealing with a strictly pseudoconvex bound-
ary, then we trivially have exactly one invariant pair, namely
(1, 0), with order γ (1, 0) = 1. This order, it turns out, has to
do with the fact that stationary discs are those which lift to a
map with a simple pole at 0. Also turns out that there is a suit-
able replacement if γ (1, 0) > 1, namely k-stationary discs.
Those are, geometrically speaking, solutions to the Euler–
Lagrange equations of higher order variants of theKobayashi
metric [16].

The construction of k-stationary discs are based on solving
a Riemann–Hilbert problem and go in two steps. First, one
attaches particular stationary discs to model manifolds, in
the case of a finite type manifold, that corresponds to the
model manifold Imw = Recα,0zγ z̄α , where (α, 0) is the
(unique) invariant pair on the line β = 0. One then shows
that stationarity of a disc corresponds to solving a certain
associated system of equations in a suitable Banach space
and it turns out that the implicit function theorem allows for
their solution also when the defining equation is deformed
away from the model manifold. The allowable perturbations
of thedefining equation are limited, however; in the context of
[20,21] thismeans essentially that one is limited tomanifolds

with only one invariant pair. A simple example of a real
hypersurface in C

2 with more than one invariant pair would
be Imw = Rew|z|2 + Rezz̄3, and no unique determination
result are known for smooth deformations of this manifold.

For C k-smooth CR submanifolds of higher codimension,
the 2-jet determination property in Theorem 4.3 cannot hold
in general for Levi-nondegenerate CR submanifolds of finite
type, or even with non-empty Levi-cone interior as shown by
Theorem3.17. However, the approach of attaching stationary
discs can be generalized to higher codimension, as Tumanov
[77] showed. In [76] he has recently obtained the following
result in the strongly pseudoconvex case:

Theorem 4.4 [76] Let M ⊂ C
N be a C 4-smooth strongly

pseudoconvex CR submanifold with non-empty Levi-cone
interior. Then for every p ∈ M, themapping j2p : Aut3p(M) →
J 2p(M) is injective.

ForLevi-nondegenerateCRsubmanifolds that are not nec-
essary strongly pseudoconvex, sufficient conditions which
guarantee that the conclusion of Theorem 4.4 still holds
have been given in [18,19]. These results use refinements
of the Levi-nondegeneracy conditions and exploit the spe-
cial structure of the set of stationary discs in those situations,
which is closer to the hypersurface case than in general. The
conditions introduced there are in particular satisfied by any
C 4-smooth Levi-nondegenerate CR submanifold in C

4 with
non-empty Levi-cone interior. However, the following prob-
lem seems so far still open:

Problem 4.5 Find necessary and sufficient conditions on any
C 4-smooth Levi-nondegenerate CR submanifold with non-
empty Levi-cone interior, guaranteeing that the mapping
j2p : Aut3p(M) → J 2p(M) is injective, for every p ∈ M.

Using different techniques, Blanc-Centi and Meylan [22]
have shown that for any C∞-smooth CR submanifold, Levi-
nondegenerate, whose Levi-cone has non-empty interior, and
of CR codimension 2, the mapping j2p : Autωp(M) → J 2p(M)

is injective, for every p ∈ M . It is unknown whether such a
conclusion also holds with Autωp(M) replaced by Autkp(M)

for k ≥ 2.
Notice that for C k-smooth CR submanifolds (k finite)

most attention has been devoted to Levi-nondegenerate
manifolds and the 2-jet determination property. In the Levi-
degenerate case, the method of stationary discs used in
[17,19,76] fails to work. However, the replacement by k0
stationary (where the simple pole appearing in the definition
of stationarity becomes a pole of some order k0), can be used
to provide finite jet determination results for some classes
of Levi-degenerate real hypersurfaces in C

N . We refer the
reader to the papers [20,21] where such an approach has been
carried out. However, even for C∞ real hypersurfaces, one
is far from a complete understanding of the finite jet deter-
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mination property for Levi-degenerate hypersurfaces. Hence
the following problem is still widely open:

Problem 4.6 Find necessary and sufficient conditions on a
C∞-smooth real hypersurface M ⊂ C

N so that for every
p ∈ M, the mapping jkp : Aut∞p M → J kp(M) is injective for
k = k(p) large enough.

This is a fascinating question for the simple reason that
we know a formal obstruction, but the formal obstruction
is useless for general smooth hypersurfaces, like the hyper-

surface Imw = e
− 1

|z|2 in C
2 which at the origin formally

coincides with the Levi-flat hypersurface Imw = 0. The nat-
ural analogue to holomorphic nondegeneracy for a smooth
real hypersurface M = {Z : �(Z) = 0} ⊂ C

N is CR-
nondegeneracy in the sense that there does not exist a vector
field, defined on an open neighbourhood 
 of some p ∈ M ,
of the form

X =
N∑
j=1

X j (Z)
∂

∂Z j

where the X j are smooth functions on 
 whose restric-
tions to M are CR functions on M ; i.e. the equation is that∑

j X j (Z)�Z j (Z , Z̄) = 0 on
∩M . The existence of such a
vector field is the correct obstruction to finite nondegeneracy
on an open subset, and yield a large family of CR diffeo-
morphisms as in the case of holomorphic nondegeneracy.
However, it remains to be seen whether one can prove finite
determination under such a general condition.

5 Determination results for more general
maps

So far, we have discussed the unique jet determination
problem for CR automorphisms of real-analytic and for
diffeomorphisms of smooth CR manifolds of the same
dimension in C

N . Here we want to address the same unique-
ness questions for germs of maps that are only generically
invertible. In such a situation, one may define two distinct
notions of unique jet determination property that we formal-
ize in the next definition.We also allow, in the next definition,
our manifolds to belong to affine complex spaces of possibly
different dimensions as this notion will be useful in §7 as
well.

In what follows, if M ⊂ C
N and M ′ ⊂ C

N ′
are C �-

smooth CR manifolds, with � ∈ {∞, ω}, we denote by
F �(M, M ′) the sheaf of C �-smooth CR maps from M into
M ′.

Definition 5.1 Let M ⊂ C
N and M ′ ⊂ C

N ′
be C �-smooth

CR submanifolds and S be a subsheaf of F �(M, M ′), � ∈
{∞, ω}. We say that :

(a) S has the weak finite jet determination property if for
every open subset U ⊂⊂ M and every f0 ∈ S (U ),
there exists an integer k = k( f0,U ) such that for every
q ∈ U , if g ∈ Sq and j kq g = j kq f0, then g = f0.

(b) S has the strong finite jet determination property if there
exists a locally bounded map k : M → Z+ such that for
every p ∈ M , the mapping j k(p)p : Sp → J k(p)p (M, M ′)
is injective.

Clearly, Property (a) is stronger than (b). This difference
between the two properties does not appear in previous sec-
tions, since then we were considering the subsheaf of CR
diffeomorphisms and the reader can easily check that the
two properties are in fact equivalent for this sheaf.

Assume, in what follows, that M, M ′ ⊂ C
N are real-

analytic CR submanifolds of the same dimension and same
CR dimension. It is natural to ask whether the jet determi-
nation results mentioned for CR diffeomorphisms in Sect. 3
still hold for more general maps, such as maps of generic full
rank. We denote by S the subsheaf of Fω(M, M ′), con-
sisting of such maps. The following result from [53] extends
Theorem 3.7 to maps in the sheaf S .

Theorem 5.2 [53] Suppose that M, M ′ ⊂ C
N are real-

analytic CR submanifolds of the same dimension and same
CR dimension. Assume furthermore that M is holomorphi-
cally nondegenerate and of finite type. Then S satisfies the
weak finite jet determination property. When M and M ′ are
real hypersurfaces inC

N , the same conclusion holds without
the finite type assumption.

On the other hand, it is not known, whether in the situation
of Theorem 5.2, the strong finite jet determination property
holds. This latter property is known to hold in a more restric-
tive case, namely for essentially finite manifolds. We have:

Theorem 5.3 [64] Suppose that M, M ′ ⊂ C
N are real-

analytic CR submanifolds of the same dimension and same
CR dimension. Assume furthermore that M is essentially
finite and of finite type . Then S satisfies the strong finite
jet determination property.

The notion of essential finiteness lies in between that of
finite nondegeneracy and holomorphic nondegeneracy: one
requires that for p ∈ M , the so-called essential variety

Vp =
⋂
q∈Sp

Sq

reduces to the point p (for details, see [3]).
Theorem 5.3, as stated above, follows from [64, Theorem

9] and a CR transversality result due to Ebenfelt and Son
[39]. Theorem 5.3 has a number of interesting consequences,
including the following one regarding the finite jet determi-
nation property for the full sheaf of arbitrary CR maps.
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Corollary 5.4 [64] Let M, M ′ ⊂ C
N be real-analytic hyper-

surfaces of D’Angelo finite type. Then Fω(M, M ′) has the
strong finite jet determination property.

As the reader may have noticed, the question whether
a subsheaf of maps (say between real-analytic CR sub-
manifolds) satisfies the weak/strong finite jet determination
depends on the manifolds M, M ′ under study. If one is inter-
ested in such a property for the full sheafFω(M, M ′), then
one has to impose stronger nondegeneracy conditions on the
manifolds compared to the case of a specific “smaller” sub-
sheaf (such as e.g. the subsheaf of CR diffeomorphisms).
The problem of determining which triples (M, M ′,S ) sat-
isfy theweak/strong finite jet determination remains not fully
understood for real-analytic CR manifolds, and even less,
for C k-smooth (k ∈ Z+ ∪ {∞}) CR manifolds where, to
our knowledge, there is no single result dealing with sheaves
other than the sheaf of CR diffeomorphisms, as discussed
earlier in this section. In Sect. 7, we will discuss recent tools
to tackle this problem for maps between CR submanifolds
of arbitrary dimension and CR dimension, provided that the
source manifold is real-analytic and the target manifold is
Nash.

6 Boundary versions of H. Cartan’s
uniqueness theorem

Let us start by recalling H. Cartan’s uniqueness theorem for
holomorphic self-maps.

Theorem 6.1 [28] Let 
 ⊂ C
N be a bounded domain and

h : 
 → 
 be a holomorphic map. If there exists p ∈ 


such f (z) = z + O(|z − p|2), then necessarily h = Id.

A similar boundary uniqueness property does not hold, in
general, for points p ∈ ∂
. Indeed, the simplest example of
the unit ball in C

N , where all holomorphic automorphisms
are known to extend holomorphically (rationally) through the
boundary (see e.g. [73]), shows that one needs to assume that
f (z) = z+O(|z− p|3) for the conclusion to hold. Hence, in
order to get boundary uniqueness versions of Theorem 6.1,
one must allow a higher order tangency condition on the map
at the boundary point. There are a number of results providing
sufficient conditions for a boundary version of Theorem 6.1
to hold. Such conditions aremostly assumed on the boundary
geometry of the domain 
.

We start by indicating the boundary versions of Theorem
6.1 that follow as a direct application of the results men-
tioned inprevious sections. In all such applications, oneneeds
to assume that the maps under study are biholomorphic or
proper holomorphic to start with.We note that the statements
below actually allow for the comparison of arbitrary pairs of
maps. For instance, as a consequence of Theorem 5.3, one
has:

Theorem 6.2 Let 
 ⊂ C
N be a bounded domain with

smooth real-analytic boundary. Then there exists an inte-
ger �, depending only on the boundary ∂
, such that for
every other bounded domain 
′ with smooth real-analytic
boundary, if h1, h2 : 
 → 
′ are two proper holomorphic
maps extending smoothly up to ∂
 near some point p ∈ ∂


which satisfy h1(z) = h2(z) + o(|z − p|�), then necessarily
h1 = h2.

Note that the smooth extension to the boundary of all
proper holomorphic maps in Theorem 6.2 is known to auto-
matically hold when e.g. 
 and 
′ are pseudoconvex (see
[14,35]). In the special case of dimension two, we can men-
tion the following result, obtained by combining the results
of [36,41,52].

Theorem 6.3 Let
 ⊂ C
2 be a bounded domain with smooth

real-analytic boundary and h1, h2 : 
 → 
 two proper
holomorphic self-maps. If there exists p ∈ ∂
 such that
h1(z) = h2(z) + o(|z − p|2), then h1 = h2.

Further results are known when one puts some (pseudo)-
convexity assumptions on the domain 
. Firstly, in the
strictly pseudoconvex case, the following is an immediate
consequence of Theorem 4.3 and the extension result from
[30]:

Theorem 6.4 Let
,
′ ⊂ C
N be two bounded strictly pseu-

doconvexdomainswithC 4-smoothboundary. If h1, h2 : 
 →

′ are two proper holomorphic maps such h1(z) = h2(z) +
o(|z − p|2) for some p ∈ ∂
, then h1 = h2.

Theorem 6.4 should be compared with the following, ear-
lier, result for general holomorphicmaps due toBurns-Krantz
[26]:

Theorem 6.5 [26] Let 
 ⊂ C
N be a bounded strictly pseu-

doconvex domain with C 6 boundary and h : 
 → 
 be
a holomorphic self-map. If there exists p ∈ ∂
 such that
h(z) = z + O(|z − p|4), then h = Id.

While Theorem6.5 compares arbitrary holomorphicmaps
with the identity mapping at a boundary point, Theorem 6.4
compares arbitrary pairs of proper holomorphic maps at a
boundary point. Hence, despite of having the same flavour,
Theorems 6.4 and 6.5 are independent from each other. The-
orem 6.5 is usually referred to as a boundary Schwarz lemma
result. Along these lines, Huang [49] later extended Theorem
6.5 to smoothly bounded convex domains of finite type (see
defined in Sect. 2). He proved the following :

Theorem 6.6 [49] Let 
 ⊂ C
N be a C∞-smoothly bounded

convex domain of finite type and h : 
 → 
 be a holo-
morphic self-map. If there exists p ∈ ∂
 such that h(z) =
z+o(|z− p|m) for somem > L(p), then h = Id. The number
L(p) depends only on the geometry of ∂
 near p.
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Very recently, Zimmer [80] significantly strengthened
Theorem 6.6 in different directions by showing the follow-
ing:

Theorem 6.7 [80] Let
 ⊂ C
N be a bounded convex domain

withC 2-smooth boundary and h : 
 → 
 be a holomorphic
self-map. If there exists p ∈ ∂
 such that f (z) = z+O(|z−
p|5) , then f = Id.

It is unknown whether one can lower the vanishing order
condition in Theorem 6.7; with more assumptions on the
boundary point in question, the vanishing order can be low-
ered; see Zimmer [80], where the reader can furthermore
find related results for biholomorphisms for certain classes
of domains, with no regularity assumption on the bound-
ary. We also refer the reader to [11,51,80] for further results
and related work on the boundary Schwarz lemma in Several
Complex Variables and the references therein.

There are a number of questions left open regarding the
boundary versions of Theorem 6.1 discussed in this section.
For instance, it would be interesting to know whether ver-
sions of Theorem 6.5 remain valid for merely pseudoconvex
domains, even with C∞-smooth boundaries.

7 CRmaps of positive codimension

This last section discusses the finite jet determination prob-
lem for CR maps between real submanifolds embedded in
complex spaces of possibly different dimension. In contrast
to all results mentioned in Sects. 3–4, we now allow our
CR manifolds M ⊂ C

N and M ′ ⊂ C
N ′

to lie in complex
spaces where N and N ′ might be different and where the CR
dimensions ofM andM ′ might be different aswell. There are
extremely few existing results in such a setting, even when
the manifolds are real-analytic, which we will assume from
now on.

We fix a subsheafS ⊂ Fω(M, M ′) and are interested in
deciding under which conditions on the triple (M, M ′,S )

the sheafS has theweak/strongfinite jet determinationprop-
erty (see Definition 5.1).

Let us first discuss the case of spheres M = S
2N−1

and M ′ = S
2N ′−1 and the full sheaf of maps S =

Fω(S2N−1, S
2N ′−1). In such a situation, Forstnerič has

shown in [42] that any map f ∈ S extends to a global
rational map from C

N → C
N ′

and the degree of these maps
is uniformly bounded in terms of N and N ′. As an easy con-
sequence of these facts, one immediately gets the following:

Theorem 7.1 Fω(S2N−1, S
2N ′−1) has the strong finite jet

determination property.

The proof of Theorem 7.1 is heavily based on the fact that
Fω(S2N−1, S

2N ′−1) is a sheaf of rational maps of uniformly

bounded degree. Such a property does not hold even if one
replaces S

2N−1 by an arbitrary real-analytic hypersurface.
In positive codimension, there were only a few results up

to very recently which guaranteed finite determination, and
most of them were restricted to theweak finite determination
property. In our current language, the first author [61] showed
that the sheaf of so-called constantly degenerate maps has
the weak finite determination property in the real-analytic
setting, andEbenfelt and thefirst author [40] later generalized
this to the smooth setting.

Theorem 7.2 [61] Assume that M ⊂ C
N is a generic real-

analytic submanifold of finite type and M ′ ⊂ C
N ′

is a
real-analytic hypersurface. Denote by S ⊂ Fω(M, M ′)
the sheaf of real-analytic CR maps of constant degeneracy.
ThenS has the weak finite jet determination property in the
following situations:

• M ′ is strictly pseudoconvex;
• M ′ is Levi-nondegenerate and N ′ = N + 1.

The problem with the sheaf S is that the membership of
maps in this sheaf cannot be a priori finitely determined. The
first result that bypasses this difficulty was obtained recently
by Zaitsev and the second author [71] who were able to gen-
eralize Theorem 7.1 as follows:

Theorem 7.3 [71] Let M ⊂ C
N be a real-analytic CR sub-

manifold of finite type. ThenFω(M, S
2N ′−1) has the strong

finite jet determination property.

On the other hand, one cannot expect that Theorem 7.3
to hold for the full sheaf F (M, M ′) for an arbitrary target
manifold M ′. Indeed, it is easy to see that whenever M ′ con-
tains a complex curve,Fω(M, M ′) does not even satisfy the
weak finite jet determination property. This motivates the
following question about the full sheaf Fω(M, M ′).

Problem 7.4 Let M ⊂ C
N be a real-analytic CR sub-

manifold of finite type and M ′ ⊂ C
N ′

be a real-analytic
CR submanifold of D’Angelo finite type. Does the sheaf
Fω(M, M ′) satisfy the weak/strong finite jet determination
property?

In what follows, we shall describe some results from
[68] generalizing Theorem 7.3 to arbitrary Nash submani-
folds, i.e. semi-algebraic subsets which are also real-analytic
submanifolds (see [23]). Such results not only provide affir-
mative answers to Problem 7.4 in a number of new situations
but also address the possibility of changing the subsheaf of
maps under study. Let us illustrate this with the following
simple example.

Example 7.5 LetM ⊂ C
2
z1,z2 be theLewyhypersurface given

by Im z2 = |z1|2 and M ′ ⊂ C
3
ζ1,ζ2,ζ3

the hyperquadric with
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positive signature given by Im ζ3 = |ζ1|2 − |ζ2|2. Because
M ′ contains the complex line ζ1 = ζ2, ζ3 = 0, the full sheaf
Fω(M, M ′)does not satisfy theweakfinite jet determination
property as mentioned above. However, considering the sub-
sheaf S ⊂ Fω(M, M ′) of CR transversal maps (see Sect.
2), we shall prove that such a sheaf has the strong finite jet
determination property. Hence for a fixed given pair of man-
ifolds (M, M ′), there might be subsheaves of Fω(M, M ′)
that have or have not the (weak/strong) finite jet determina-
tion property.

The main tool used in [68] to tackle the above mentioned
situation relies on the notion of so-called 2-approximation
CRS -deformation. This condition takes its origin from the
previous works [66,70].

Definition 7.6 Let M ⊂ C
N and M ′ ⊂ C

N ′
be, respectively,

a real-analytic CR submanifold and a real-analytic subman-
ifold, andS a subsheaf ofFω(M, M ′). We say that a germ
of a real-analytic CR map B : (M × C

k, (p, 0)) → C
N ′
, for

some point p ∈ M and some integer k ≥ 1, is a germ of
a 2-approximate CR S -deformation from M into M ′ if it
satisfies the following properties :

(i) B|t=0 ∈ Sp;

(ii) rk
∂B

∂t
(p, 0) = k;

(iii) For every ρ : (M ′, B(p, 0)) → R germ of a real-
analytic function vanishing on M ′, we have

ρ(B(ξ, t), B(ξ, t)) = O(|t |3),

for ξ ∈ M near p and t ∈ C
k close to 0.

If a germ of a CR map B : (M × C
k, (p, 0)) → C

N ′
only

satisfies (ii) and (iii), we simply say that B is a (germ of a)
2-approximation CR deformation from M into M ′.

Definition 7.6 slightly differs from the one given in [68]
since the results mentioned there hold for sheaves of C∞-
smooth CRmaps and therefore the deformations are allowed
to be C∞-smooth CR maps in that setting. The definition
given here will be sufficient since we are considering only
real-analytic maps.

For a given triple (M, M ′,S ) as above, the existence
of a 2-approximate S -approximate deformation should be
regarded a strong degeneracy condition. In [68], we relate
the strong finite jet determination property to the existence
of such deformations. The exact statement is as follows.

Theorem 7.7 Let M ⊂ C
N be a real-analytic CR submani-

fold, M ′ ⊂ C
N ′

a Nash submanifold, and S a subsheaf of
Fω(M, M ′). Assume that M is of finite type and there is no
germ of a 2-approximate CR S -deformation from M into

M ′. Then (M, M ′,S ) satisfies the strong finite jet determi-
nation property.

Theorem 7.7 translates the finite jet determination prop-
erty to thenon-existenceof 2-approximateCRS -deformations.
In [68], it is shown that such deformations do not exist in the
following situations:

• M is any real-analytic CR submanifold in C
N , M ′ is any

strongly pseudoconvex real-analytic CR submanifold in
C

N ′
and S = Fω(M, M ′);

• M is any real-analytic CR submanifold in C
N , M ′ is any

weakly pseudoconvex real-analytic hypersurface in C
N ′

andS is the subsheaf of real-analytic CRmaps mapping
no open subset of M into the Levi-degenerate set of M ′;

• M is any (connected) real-analytic Levi-nondegenerate
hypersurface inC

N of signature �, M ′ is any (connected)
real-analytic hypersurface in C

N ′
of signature either � or

� + N ′ − N , and S is the subsheaf of real-analytic CR
transversal maps.

Hence, Theorem 7.7 allows a unified treatment of a number
of target manifolds, including everywhere Levi-degenerate
targets such as boundaries of the classical domains. In the
latter case, the non-existence of approximate CR deforma-
tions has been thoroughly studied by Greilhuber and the first
author in [46] and yields in conjunction with Theorem 7.7
a number of unique jet determination results that are even
new in that special setting. We refer the reader to [68] for the
exact statements.

To conclude, wemention the following approach, inspired
by [66], that would lead to the solution of Problem 7.4 using
approximate deformations. For a given integer k0, one may
easily define, building on Definition 7.6, the notion of k0-
approximate CR-S deformation. The following conjecture
seems plausible:

Conjecture 7.8 Let M ⊂ C
N be a real-analytic CR sub-

manifold, M ′ ⊂ C
N ′

a real-analytic submanifold, and S
a subsheaf of Fω(M, M ′). Assume that M is of finite type
and there is no germ of a k0-approximate CRS -deformation
from M into M ′ for some k0 ∈ Z+. Then (M, M ′,S ) satis-
fies the strong finite jet determination property.
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