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We study the C∞ regularity problem for CR maps from an abstract CR manifold M
into some complex Euclidean space CN′

. We show that if M satisfies a certain condition
called the microlocal extension property, then any C k-smooth CR map h : M → CN′

,
for some integer k, which is nowhere C∞-smooth on some open subset Ω of M , has
the following property: for a generic point q of Ω, there must exist a formal complex
subvariety through h(q), tangent to h(M) to infinite order, and depending in a C 1 and
CR manner on q. As a consequence, we obtain several C∞ regularity results generalizing
earlier ones by Berhanu–Xiao and the authors (in the embedded case).
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1. Introduction and Results for CR Structures
of Hypersurface Type

The purpose of this paper is to extend our recent study [16] of the regularity problem
for CR mappings between smooth CR submanifolds of CN and CN ′

, respectively,
to the case of maps from an abstract CR manifold with values in some complex
Euclidean space CN ′

. More precisely, the question we are interested in is the follow-
ing. Given an abstract CR manifold M and a C∞-smooth CR manifold M ′ ⊂ CN ′

,
under which conditions can we guarantee that there exists an integer k such that
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for any C k-smooth CR map h : M → M ′ is actually C∞-smooth on some open,
dense, subset of M? We refer the reader to the survey paper by Forstnerič [11] and
to our recent paper [16] for a discussion explaining why this problem is a natural
problem to study.

In this paper, we shall answer the question in a way similar to our approach for
the regularity of CR maps between CR submanifolds, which built on our work on
the convergence of formal CR maps [15]. This means that in order to understand
under which circumstances we can expect regularity, we are actually going to study
consequences of irregularity. We shall show that, under a condition on M called
the microlocal extension property, if a C k-smooth CR map h : M → M ′, for some
integer k, is nowhere C∞-smooth on some open subset Ω of M , then for a generic
point q ∈ Ω, there must exist a formal complex subvariety through h(q), tangent
to M ′ to infinite order, and depending in a C 1 and CR manner on q. In particular,
the absence of such formal complex subvarieties provides an obstruction to irregu-
larity, and therefore, one obtains that, under these circumstances, such a map h is
necessarily smooth on an open, dense subset of M .

Our results generalize and recover those obtained in [16] in the embedded case,
as well as those by Berhanu and Xiao [3, 4] in which they tackled the case of
abstract CR manifolds M with Levi-nondegenerate real hypersurfaces M ′ as tar-
gets. Although the general approach taken in this paper follows the same philosophy
as that of [16], we have to overcome some new difficulties as our source manifolds are
general abstract CR structures, and therefore not necessarily embeddable into some
complex Euclidean space (see e.g. [1, 2]). In particular, tools such as holomorphic
extension of CR functions into wedges, which were crucial throughout the whole
construction and proofs given in [16], are no longer available for non-embeddable
CR manifolds. At the end of Sec. 2, we explain in more details how we carry over
the strategy developed in [16] to this more general setting.

We now briefly recall some basic notions in order to state, at first, our results
for abstract CR manifolds of hypersurface type.

An abstract CR manifold (M,V ) is a C∞-smooth manifold M together with a
complex subbundle V ⊂ CTM , called the CR bundle, such that

V ∩ V̄ = {0}, [V ,V ] ⊂ V . (1.1)

We will assume that M is connected, and write dimR M = 2n + d, where n =
dimC V = dimCRM and d = codimCRM . The second condition in (1.1) is often
referred to as formal integrability, and is a shorthand notation for the fact that the
Lie bracket of two CR vector fields (i.e. C∞-sections of V , the set of which we will
denote by Γ(M,V )) is again a CR vector field: For all X,Y ∈ Γ(M,V ), it holds
that [X,Y ] ∈ Γ(M,V ). One can, equivalently, introduce an abstract CR manifold
by a subbundle T cM ⊂ TM and a complex structure operator J :T cM → T cM ,
and we shall use both descriptions in what follows.

When d = 1, M is an abstract CR manifold of hypersurface type. We recall
that an abstract CR manifold M of hypersurface type is strongly pseudoconvex if
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its Levi form (see Sec. 2 for the definition) is either positive definite at all points
or negative definite at all points.

We define the characteristic bundle T 0M ⊂ T ∗M as the set of (real) forms anni-
hilating V and V̄ , and the holomorphic cotangent bundle T ′M := V ⊥ ⊂ CT ∗M .
We usually write N = dimC T

′M = n + d. If (M,V ) and (M ′,V ′) are abstract
CR manifolds, and h :M → M ′ is a CR map of class C 1, we say that h is strictly
noncharacteristic if for every p ∈M ,

h∗(T 0
pM

′) = T 0
pM.

We should mention that the notion of strictly noncharacteristic map coincides with
the well-known condition of CR transversality (see e.g. [10, 13]) when M and M ′

have the same CR codimension (see [16]). If h is as above, the singular support of
h, denoted SingSupph, is the locus of points p in M such that h is not C∞-smooth
in any neighborhood of p.

In order to state our first main result, we shall briefly recall an extension of
the notion of finite type which was used in [16], building on the original concept
introduced by D’Angelo [6]. If X ⊂ CN ′

is a set, we denote the ideal of germs at q ∈
X of smooth functions vanishing alongX by Iq(X) = {ϕ ∈ C∞(CN ′

, q) :ϕ|X = 0}.
For ψ ∈ C ∞(C, 0), denote by ν0ψ the order of vanishing of ψ at 0. For p ∈ X , we
define the 1-type of X at p as

Δ(X, p) = sup
γ : Δ→C

N′

γ(0)=q

(
inf

ρ∈Iq(X)

ν0(ρ ◦ γ)
ν0(γ)

)
∈ [0,∞], (1.2)

where the supremum is taken over all holomorphic curves γ : Δ = {ζ ∈ C : |ζ| <
1} → CN ′

. We say that p is a D’Angelo finite-type point of X if Δ(X, p) < ∞,
and a D’Angelo infinite-type point of X otherwise. We denote the set of infinite-
type points in X by EX and recall that, in the case where X is a smooth real
hypersurface, then EX is closed in X by [7, 8].

Our main result for abstract CR manifolds of hypersurface type is the following.

Theorem 1.1. Let M be an abstract strongly pseudoconvex CR manifold of hyper-
surface type, of CR dimension n, M ′ ⊂ Cn′+1 be a C∞-smooth real hypersurface,
n′ > n ≥ 1, and let h :M → M ′ be a strictly noncharacteristic CR map of class
C n′−n+1. Then h((SingSupp h)◦) ⊂ EM ′ .

When EM ′ = ∅, we obtain as an immediate consequence the following regularity
result.

Theorem 1.2. Let M be an abstract strongly pseudoconvex CR manifold of hyper-
surface type, of CR dimension n, and M ′ ⊂ Cn′+1 be a C∞-smooth real hypersurface
of D’Angelo finite type, n′ > n ≥ 1. If h :M → M ′ is a strictly noncharacteristic
CR map of class C n′−n+1, then (SingSupph)◦ = ∅, i.e. h is C ∞-smooth on a dense
open subset of M .

Note that it follows from the proof that any map as in Theorem 1.1 must be
automatically CR immersive and hence Theorem 1.2 appears also as a regularity
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result of CR embeddings. Our approach in this paper will allow us to get more gen-
eral versions of Theorems 1.1 and 1.2 for CR manifolds of arbitrary CR codimension
(see Sec. 2).

2. Statement of Results for Abstract CR Manifolds
of Any CR Codimension

The results in Sec. 1 follow from more general results that we shall now describe.
To this end, we first introduce some notation to be used throughout the paper, and
define a number of notions (some of them are not necessarily standard).

Let (M,V ) be an abstract CR manifold of CR dimension n and CR codimension
d. For every p ∈M , the Levi map of M is the (vector-valued) Hermitian form

L : Vp × Vp → CTpM�Vp ⊕ V̄p

defined by

Lp(Xp, Yp) = [X, Ȳ ]p mod Vp ⊕ V̄p. (2.1)

In (2.1), the definition of the Levi form Lp is independent of the choice of the
vectors fields X and Y extending Xp and Yp in a neighborhood of p.

We say that M is Levi-nondegenerate if for every p ∈M , Lp(Xp, Yp) = 0 for all
Yp ∈ Vp implies that Xp = 0. If M is of hypersurface type, then the Levi map is a
Hermitian form and we say that M is strongly pseudoconvex if the Levi form Lp is
positive definite at every p (or negative definite at every p).

If (M,V ) and (M ′,V ′) are abstract CR manifolds, and h :M → M ′ is a map
of class C 1, then we say that h is CR provided that dh(V ) ⊂ V ′, or, equivalently,
if h∗(T ′M ′) ⊂ T ′M (we again abuse notation by identifying bundles with sections
here). If M ′ = CN ′

, h = (h1, . . . , hN ′) is CR if and only if each hj a CR function
on M (for details, see e.g. [1]). We shall denote by Γp(M) the set of all germs at p
of CR vector fields of M .

Now we come to a notion that will be important throughout the remainder of
this paper.

Definition 2.1. Let M be an abstract CR manifold and p ∈ M . We say that M
satisfies the microlocal extension property at p, if, for every neighborhood Ω of p,
there is a (nonempty) open convex cone Γ ⊂ T 0

pM such that for every continuous
CR function u on Ω, we have WF(u)|p ⊂ Γ. We further say that M satisfies the
microlocal extension property if it satisfies the microlocal extension property at
every point of M .

We are going to recall the classical notion of wavefront set WF (u) in Defi-
nition 4.1. In Sec. 4, we will discuss the microlocal extension property in more
detail, exhibit important instances of CR manifolds for which this property is satis-
fied, and relate it to almost analytic extendability. The reader should compare this
notion with the work of Berhanu and Xiao [3, 4]. We also note that we require that
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the (usual) wavefront set of a CR function/distribution in Ω is a priori contained
in a convex cone, which however is allowed to change as Ω changes; this is a bit
in contrast with the hypoanalytic wavefront set in the embedded setting (for this
concept, we refer the reader to [23]).

Recall that for a subset X ⊂ CN ′
, and for every q ∈ X , we denote by Iq(X) ⊂

C∞(CN ′
, q) the ideal of all germs at q of C∞-smooth functions ρ : (CN ′

w , q) → C that
vanish on X near q. For r ∈ {1, . . . , N ′}, we define the regular r-type of X ⊂ CN ′

at q as follows:

Δr(X, q) = sup
α : Δr→C

N′

α(0)=q,rk α′(0)=r

(
inf

ρ∈Iq(X)
ν0(ρ ◦ α)

)
∈ Z+ ∪ {∞}. (2.2)

Here, Δr = {t = (t1, . . . , tr) ∈ Cr : |tj | < 1, j = 1, . . . , r} and the supremum is
taken over all holomorphic maps α : Δr → CN ′

which are of full rank r at 0 and
satisfy α(0) = q. Note the inequalities

ΔN ′(X, q) ≤ ΔN ′−1(X, q) ≤ · · · ≤ Δ1(X, q) ≤ Δ(X, q),

where Δ(X, q) is the 1-type already defined in (1.2). We shall say that q is of
r-regular infinite-type if Δr(X, q) = ∞, and we denote the set of points in X which
are of r-regular infinite-type by E r

X . We therefore have

E N ′
X ⊂ E N ′−1

X ⊂ · · · ⊂ E 1
X ⊂ EX .

A formal holomorphic subvariety Γ ⊂ CN ′
through a point p ∈ CN ′

is given by
a (radical) ideal Ip(Γ) ⊂ C�Z ′ − p�. We say that a formal holomorphic subvariety
Γ ⊂ CN ′

through the point p is formally contained in X at p ∈ X if for every
CN ′

-valued formal power series ϕ(t), t ∈ C, with ϕ(0) = p, one has

ψ ◦ ϕ(t) = 0, ∀ψ ∈ Ip(Γ) ⇒ ν0(	(ϕ(t), ϕ(t))) = ∞, ∀ 	 ∈ Ip(X).

It follows from this definition that if there exists a nontrivial formal subvariety
through p which is formally contained in X , then p is a D’Angelo infinite-type point.
If there exists a formal (holomorphic) submanifold of dimension r through p which
is formally contained in X , then p ∈ E r

X .
The next definition introduces the key geometrical concept to be used in our

main theorem.

Definition 2.2. Let M be an abstract CR manifold and h :M → CN ′
be a C 1-

smooth CR map. We say that (Γq)q∈M is a CR family of r-dimensional formal
(holomorphic) submanifolds through h(M) if for every p ∈M we can find a neigh-
borhood U of p such that there exists a map ψ :U → (C�t1, . . . tr�)N ′

such that for
ξ ∈ U , we can write a parametrization of Γξ in the form

ψ(ξ) : (Cr
t , 0) � t �→ h(ξ) +

∑
α∈Nr

ψα(ξ)tα,

where each ψα :U → CN ′
is a C 1-smooth CR map and ∂t(ψ(ξ))(0) is of rank r for

all ξ ∈ U .
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For every p ∈ M , and every CR map h :M → CN ′
of class C k, we define the

following numerical invariant:

ek(p) := dimC span{L̄1 . . . L̄jρw(h(p), h(p)) : ρ ∈ Ih(M)(h(p)),

L̄1, . . . , L̄j ∈ Γp(M), 0 ≤ j ≤ k}. (2.3)

The complex gradients

ρw(h(p), h(p)) =
(
∂ρ

∂w1
(h(p), h(p)), . . . ,

∂ρ

∂wN ′
(h(p), h(p))

)
,

which correspond to j = 0 in (2.3), and their CR derivatives

L̄1 . . . L̄jρw(h(p), h(p))

=
(
L̄1 . . . L̄j

∂ρ

∂w1
(h(p), h(p)), . . . , L̄1 . . . L̄j

∂ρ

∂wN ′
(h(p), h(p))

)
,

are considered as vectors in CN ′
. For k ≥ 0, the function p �→ ek(p) is integer valued

and lower semicontinuous, and obviously ek(p) ≤ N ′ for every p ∈M . We define

ek := max {� ∈ Z+ : ek(p) ≥ � for p on some dense subset of M} .
We may now state our most general result.

Theorem 2.3. Let M be an abstract CR manifold with the microlocal extension
property, and assume that k, � ∈ N are given satisfying 0 ≤ k ≤ � ≤ N ′ and
N ′ − �+ k ≥ 1. Let h :M → CN ′

be a CR mapping of class C N ′−�+k, and assume
that ek ≥ �.

Then there exists a dense open subset Ω of (SingSupp h)◦ which can be decom-
posed into disjoint open sets,

Ω =
N ′−�⊔
r=1

Ωr,

and for each r = 1, . . . , N ′ − �, a CR family (Γr
ξ)ξ∈Ωr of r-dimensional formal

submanifolds through h(Ωr) such that each Γr
ξ is formally contained in h(M). In

particular, it holds that h(Ωr) ⊂ E r
h(M) and hence h(Ω) ⊂ Eh(M).

We will see later (in view of Proposition 4.5) that Theorem 2.3 recovers [16,
Theorem 2.2] when M is embedded.

By putting various geometric assumptions on M and h(M), we may use Theo-
rem 2.3 to get different types of (less technical) statements. We shall illustrate this
by deriving several regularity results in different contexts.

For maps with no specific rank assumption, Theorem 2.3 provides the following.

Corollary 2.4. Let M be an abstract CR manifold with the microlocal extension
property, M ′ ⊂ CN ′

be a C ∞-smooth CR submanifold of CR dimension n′ ≥ 1.
Then for every CR map h :M → M ′ of class C n′

, there is a dense open subset Ω
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of (SingSupph)◦ such that h(Ω) ⊂ EM ′ . In particular, if M ′ is of D’Angelo finite
type, h must be C∞-smooth on a dense open subset of M .

For strictly noncharacteristic CR maps, we may assume less initial regularity
than in Corollary 2.4 to boost higher regularity.

Corollary 2.5. Let M be a Levi-nondegenerate abstract CR manifold with the
microlocal extension property, of CR dimension n and CR codimension d, and M ′ ⊂
CN ′

be a C∞-smooth CR submanifold with N ′ > N = n+d. Then for every strictly
noncharacteristic CR map h :M → M ′ of class C N ′−N+1, there is a dense open
subset Ω of (SingSupp h)◦ such that h(Ω) ⊂ EM ′ . In particular, if M ′ is of D’Angelo
finite type, h must be C ∞-smooth on a dense open subset of M .

Observe that Corollary 2.5 can be seen as a generalization of Theorem 1.1 for
CR manifolds of arbitrary CR codimension.

For CR immersions (that are not necessarily strictly noncharacteristic), Theo-
rem 2.3 yields the following variant of Corollary 2.5.

Corollary 2.6. Let M be an abstract CR manifold with the microlocal extension
property, M ′ ⊂ CN ′

be a Levi-nondegenerate C∞-smooth CR submanifold, of CR
dimension n and n′, respectively. Then for every CR immersion h :M →M ′ of class
C n′−n+1, there is a dense open subset Ω of (SingSupph)◦ such that h(Ω) ⊂ EM ′ .
In particular, if M ′ is of D’Angelo finite type, h must be C ∞-smooth on a dense
open subset of M .

In fact, it follows from the proof of Corollary 2.6 that the result also holds for
CR maps whose differential is injective on T 1,0M . Hence, Corollary 2.6 recovers
an earlier result by Berhanu–Xiao [3, Theorem 2.5] for strongly pseudoconvex real
hypersurfaces M ′ as targets.

In the previous results, C∞ regularity of the maps follows automatically once
the target manifold is of D’Angelo finite type. However, Theorem 2.3 can also be
used to establish C∞ regularity results when the target manifold is everywhere of
D’Angelo infinite-type. We will illustrate this by showing how the following other
result due to Berhanu–Xiao [4] may also be derived from Theorem 2.3.

Corollary 2.7. Let M be an abstract CR manifold of hypersurface type, M ′ ⊂
Cn′+1 be a C∞-smooth (connected) real hypersurface, both Levi-nondegenerate.
Denote by n the CR dimension of M and by �′ > 0 the signature of M ′, with
n′ > n ≥ 1. If max(n′ − �′, �′) ≤ n, then every strictly noncharacteristic CR map
h :M →M ′, of class C n′−n+1, is C∞-smooth on some dense open subset of M .

Recall here that the signature of M ′ is the minimum of the numbers of positive
and negative eigenvalues of the Levi form at an arbitrary point of M ′.

The reader can further exploit Theorem 2.3 to derive, in the spirit of [16], more
applications for target manifolds, both of D’Angelo finite and infinite-type.

Let us discuss now the ingredients of the proof of the main result, Theorem 2.3,
as well as the organization of the paper. To a given CR map h :M → CN ′

(of a
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certain a priori smoothness), we associate a disjoint union of open subsets of M
(Sec. 5). Each open subset ω in the obtained decomposition satisfies the follow-
ing alternative: it is either contained in M\(SingSupph) (Proposition 5.5) or has
the property that for every point q ∈ ω, there is a formal holomorphic submani-
fold (of fixed positive dimension) through h(q) that is formally contained in h(M)
(Proposition 5.6). Since the union of such open subsets happens to be dense in M ,
this roughly proves Theorem 2.3. The open subsets decomposition is constructed
through the introduction of numerical invariants associated to rings of functions
attached to the map h. This strategy is analogous to that carried out in [16] in
the case where M is embedded. However, we should point out that the open sub-
set decomposition in [16] uses heavily the minimality assumption on the embedded
manifold M (and Tumanov’s extension theorem) and therefore cannot be applied
in the abstract case tackled in this paper. We instead proceed with a different con-
struction of the rings and invariants attached to the map leading to the desired
open subset decomposition. Our present construction, though still similar in spirit
with that of [16], has the advantage to make no assumption on M , and hence, is
more general than the one given in [16], even in the embedded case. Furthermore,
in order to prove Proposition 5.5, we also need to establish a smooth version of
the reflection principle of [16, Theorem 3.1] adapted to abstract CR structures.
This is achieved in Theorem 4.8 and Corollary 4.10 where the microlocal extension
property of M comes into play. In Sec. 4, we prove Theorem 4.8 and discuss in
detail the microlocal extension property. Using [3, Theorem 2.9], we give instances
of abstract as well as embeddable CR manifolds satisfying this condition, showing
in particular that the results of this paper recover those of Berhanu–Xiao [3, 4]
in the abstract case, and those of the authors [16] in the embedded case. We also
relate the microlocal extension property to the notion of almost analytic extension,
whose basic properties are recalled in Sec. 3. The proofs of Theorem 2.3 and its
consequences are finalized in Sec. 6.

3. Almost Analytic Extensions, Wedges and Boundary Values

In this section, we recall some standard facts about almost analytic extensions on
wedges and boundary values, which will be useful when discussing the microlocal
analytic extension property in Sec. 4. We also prove in this section (Proposition 3.5)
a Hölder regularity result for ∂̄-bounded extensions of Hölder continuous boundary
values on some wedges, which will be used in the proof of the smooth reflection
principle given in Theorem 4.8.

3.1. Almost analytic extensions

We start the section by recalling that any smooth function possesses an almost
analytic extension. This fact is commonly attributed to Nirenberg [21], and we also
refer the reader to the paper of Dyn’kin [9].
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Proposition 3.1. Assume that u ∈ C∞(Rd
s). There exists a function U ∈

C∞(Rd
s + iRd

t ) such that for every compact set K ⊂ Rd, every integer a ∈ N

and every multi-index α ∈ Nd, there exists a constant C = C(K, a, α) > 0 such that

U(s, 0) = u(s),
∣∣∣∣∂|α|

∂sα

(
∂U

∂σ̄j

)
(s, t)

∣∣∣∣ ≤ C ‖t‖a , s ∈ K, t ∈ Rd, j = 1, . . . , d.

In the above result and in what follows, we use the standard notation ∂
∂σ̄ =

1
2 ( ∂

∂s + i ∂
∂t ) for the CR operators on R2d associated to the complex coordinates

σ = s+ it.
Let D ⊂ Cn

z × Rd
s be a fixed open subset. For a cone Γ ⊂ Rd

t \{0} (with vertex
the origin) and r > 0, we denote by Γr = {t ∈ Γ : ‖t‖ < r}. Consider now an open
cone Γ ⊂ Rd and a set of the form

Wr := D + iΓr = {(z, s+ it) ∈ D + iΓ ⊂ Cn × Cd : ‖t‖ < r},
and define the set B(Wr) to consist of all functions U ∈ C 1(Wr) which have the
following properties:

(a) For any compact set K ⊂⊂ D and any compactly contained subcone Γ′ ⊂⊂ Γ,
there is a constant C = C(K,Γ′) > 0 and a nonnegative integer k = k(K,Γ′)
such that

|U(z, z̄, s, t)| ≤ C ‖t‖−k , (z, s) ∈ K, t ∈ Γ′
r. (3.1)

(b) For j = 1, . . . , d, ∂̄σjU is bounded on Wr , that is, for any K ⊂⊂ D and Γ′ ⊂⊂ Γ
as in (a), there is a constant C = C(K,Γ′) > 0 such that∣∣∣∣∂U(z, z̄, s, t)

∂σ̄j

∣∣∣∣ ≤ C, (z, s) ∈ K, t ∈ Γ′
r, j = 1, . . . , d. (3.2)

As in [14], we introduce the families of functions that we are taking as “almost
analytic extensions” as follows. We first define the set A(Wr) to consist of all func-
tions U ∈ C ∞(Wr) with the property that for every α, β ∈ Nn and every γ ∈ Nd,

∂|α|+|β|+|γ|U
∂zαz̄βsγ

∈ B(Wr).

In other words, U ∈ A(Wr) if for every compact subset K ⊂ D, subcone Γ′ ⊂ Γ
with Γ′ ⊂⊂ Γ, every α, β ∈ Nn, every γ ∈ Nd, there exists a k ∈ N, and a constant
C = C(K,Γ′, α, β, γ) > 0 such that∣∣∣∣∂|α|+|β|+|γ|

∂zαz̄βsγ
U(z, z̄, s, t)

∣∣∣∣ ≤ C ‖t‖−k
, (z, s) ∈ K, t ∈ Γ′

r, (3.3)

and such that∣∣∣∣∂|α|+|β|+|γ|

∂zαz̄βsγ

∂

∂σ̄j
U(z, z̄, s, t)

∣∣∣∣ ≤ C, (z, s) ∈ K, t ∈ Γ′
r, j ∈ {1, . . . , d}. (3.4)

If, furthermore, U ∈ A(Wr) has the property that, for every compact set K ⊂ D,
every subcone Γ′ ⊂ Γ with Γ′ ⊂⊂ Γ, every α, β ∈ Nn, every γ ∈ Nd, every a ∈ N,
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there exists C2 = C2(K, a,Γ′, α, β, γ) > 0 such that∣∣∣∣∂|α|+|β|+|γ|

∂zαz̄βsγ

∂

∂σ̄j
U(z, z̄, s, t)

∣∣∣∣ ≤ C2 ‖t‖a
, (z, s) ∈ K, t ∈ Γ′

r, j ∈ {1, . . . , d},
(3.5)

then we say that U ∈ A∞(Wr).

Definition 3.2. We say that a distribution u defined on an open subset D ⊂ Cn ×
Rd possesses a ∂̄-bounded extension (respectively, a regular ∂̄-bounded extension,
respectively, an almost analytic extension) to

Wr = {(z, s+ it) : (z, s) ∈ D, t ∈ Γ, 0 < ‖t‖ < r},

if there exists a function U ∈ B(Wr) (respectively, U ∈ A(Wr), respectively, U ∈
A∞(Wr)) with u = bvWr U . We also refer to such an U as a ∂̄-bounded (respectively,
a regular ∂̄-bounded, respectively, an almost analytic) extension of u (to Wr).

If a distribution u on D has one of the types of extensions introduced in
Definition 3.2 to a function U ∈ B(Wr) (respectively, U ∈ A(Wr), respectively,
U ∈ A∞(Wr)), for every 0 < r′ ≤ r, we can also write u = bvWr′ Ũ , where
Ũ(z, s, t) = χ(‖t‖)U(z, s, t) with χ ∈ C∞

c ({‖t‖ < r′}) satisfying χ(‖t‖) = 1
for 2 ‖t‖ < r′. We shall consequently drop the index r from consideration when
appropriate.

Observe also that u possesses one of the extensions introduced in Definition 3.2
to D+iΓ if and only if ū possesses the same type of extension to D−iΓ = D+i(−Γ).

Remark 3.3. We observe that A∞(Wr) is a subalgebra of C∞(Wr) and therefore,
distributions u1, u2 which have almost analytic extensions U1 and U2, respectively,
can be multiplied by setting u1u2 = bv(U1U2).

Remark 3.4. The preceding remark also shows that for a vector field X on D,
whose coefficients are boundary value distributions of functions in A∞(W ), thus
extending to a vector field X+ on W , for u = bvW U with U ∈ A∞(W ) the distri-
bution Xu is defined, and Xu = bvW (X+U). In particular, derivatives with respect
to smooth vector fields of functions/distributions on D which extend almost ana-
lytically to W also extend almost analytically to W .

3.2. A priori regularity for ∂̄-bounded extensions

Our goal in this section is to prove a Hölder regularity result for extensions of Höder
continuous functions which are ∂̄-bounded and whose derivative is of slow growth.
We are following in our approach the paper of Coupet [5]. However, we need a
slightly more general result than what is stated in [5], which we could not locate in
the literature. We therefore include the details of the proof.

2050009-10

In
t. 

J.
 M

at
h.

 2
02

0.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
92

.1
95

.9
5.

17
4 

on
 0

2/
07

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 23, 2019 16:52 WSPC/S0129-167X 133-IJM 2050009

Regularity of CR mappings of abstract CR structures

We first recall that a continuous function f : Ω → C is Höder continuous on a
set Ω ⊂ Rd with Höder exponent α ∈ (0, 1] if there exists a constant C > 0 such
that

|f(x) − f(y)| ≤ C ‖x− y‖α
.

The space of all Höder continuous functions with Höder exponent α is denoted by
C 0,α(Ω). If Ω is compact, it becomes a Banach space if endowed with the norm

‖f‖0,α = ‖f‖∞ + ‖f‖α ,

where

‖f‖∞ = max
x∈Ω

|f(x)|, ‖f‖α = max
x 	=y∈Ω

|f(x) − f(y)|
‖x− y‖α .

In what follows, we write Cd
σ = Rd

s + iRd
t and W = Rd + iΓ, where Γ is an open

convex cone linearly equivalent to Rd
+ := {(t1, . . . , td) ∈ Rd : tj > 0, ∀ j}.

Proposition 3.5. Assume that h ∈ C 1(W ) ∩ C 0(W ) has compact support in W

and satisfies on W

|(∂̄σjh)(s, t)| ≤ C, |hsj (s, t)| ≤
C

‖t‖k
, j = 1, . . . , d,

for some constant C > 0 and some integer k ≥ 1. If h|t=0 ∈ C 0,α(Rd) for some
0 < α < 1 and β := α

α+k , then there exists a universal constant A > 0, depending
only on α and the support of h such that

h ∈ C 0,β(W ), with ‖h‖β ≤ A(C + ‖h|t=0‖0,α).

Proof. As in the aforementioned paper of Coupet (which treats the case k = 1), we
divide the proof in several steps. First note that without loss of generality, we may
assume that Γ = Rd

+. In each of the following steps, for σ = s+ it and σ′ = s′ + it′

with t, t′ ∈ Γ, we estimate |h(σ) − h(σ′)| satisfying different restrictions in each
step.

Step 1. s = s′, t = λt′, λ > 0. We consider the map ϕ :H+ = {ζ ∈ C : Im ζ > 0} →
W given by

ϕ(ζ) = s+ ζ
t

‖t‖ .

Note that ϕ(i ‖t‖) = σ, ϕ(iλ ‖t‖) = σ′. The function u = h ◦ ϕ is defined on H+,
continuous up to R, and u|R ∈ C 0,α. Furthermore, ∂u

∂ζ̄
is bounded (by C) on H+,

and C1(H+). We can therefore apply the generalized Cauchy formula to write the
function u as

u(ζ) =
1

2πi

∫
R

u(x)
x− ζ

dx+
1

2πi

∫
H+

∂u

∂z̄
(z, z̄)

1
z − ζ

dz ∧ dz̄ = f1(ζ) + f2(ζ).
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The first integral can be estimated via

|f1(ζ) − f1(ζ′)| ≤ C1 ‖u|R‖0,α |ζ − ζ′|α ≤ C1 ‖h|t=0‖0,α |ζ − ζ′|α,
with a universal constant C1, by e.g. Muskhelishvili’s book [20, Chap. 2, Para-
graphs 19 and 22].

We estimate the second integral as follows. Let us assume that supp u ⊂ DR :=
{ζ ∈ C : |ζ| < R}. First note that for any r > 2, we have that∫

Dr

1
|ξ(1 − ξ)|dV (ξ) ≤ C̃2 ln(r).

|f2(ζ) − f2(ζ′)| =
1
2π

∣∣∣∣∣
∫

H+∩DR

∂u

∂z̄
(z)

ζ − ζ′

(z − ζ)(z − ζ′)
dz ∧ dz̄

∣∣∣∣∣
≤ C

π

∫
H+∩DR

∣∣∣∣ ζ − ζ′

(z − ζ)(z − ζ′)

∣∣∣∣ dV (z)

ξ =
z − ζ

ζ′ − ζ
, dV (ξ) =

dV (z)
|ζ − ζ′|2

=
C

π
|ζ − ζ′|

∫
D2R/|ζ−ζ′|

1
|ξ(1 − ξ)|dV (ξ)

≤ C̃2 ln(2R/|ζ − ζ′|)C|ζ − ζ′|
≤ C2C|ζ − ζ′|α,

where C2 depends on the support of u and α, but not on u.
We combine the preceding estimates to obtain

|h(σ) − h(σ′)| = |u(i ‖t‖) − u(iλ ‖t‖)|
≤ (C1 ‖h|t=0‖0,α + C2C)| ‖t‖ − λ ‖t‖ |α

≤ C3(‖h|t=0‖0,α + C) ‖σ − σ′‖α
. (3.6)

Step 2. t = t′. First assume that ‖s− s′‖ 1
α+k ≤ ‖t‖. Then, we use the mean value

theorem to estimate

|h(σ) − h(σ′)| ≤ C

‖t‖k
‖s− s′‖ ≤ C ‖s− s′‖ α

α+k . (3.7)

If on the other hand, ‖s− s′‖ 1
α+k > ‖t‖, we set

λ =
‖s− s′‖ 1

α+k

‖t‖ > 1.

By Step 1, (3.6), we can estimate

|h(s+ it) − h(s+ iλt)| ≤ C3(‖h|t=0‖0,α + C) ‖t‖α (λ− 1)α

≤ C3(‖h|t=0‖0,α + C) ‖s− s′‖ α
α+k ,
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as well as

|h(s′ + it) − h(s′ + iλt)| ≤ C3(‖h|t=0‖0,α + C) ‖s− s′‖ α
α+k .

Therefore, using these estimates and (3.7), we have

|h(s+ it) − h(s′ + it)| ≤ |h(s+ it) − h(s+ iλt)| + |h(s+ iλt) − h(s′ + iλt)|
+ |h(s′ + iλt) − h(s′ + it)|

≤ 2C3(‖h|t=0‖0,α + C) ‖s− s′‖ α
α+k + C ‖s− s′‖ α

α+k

≤ C4(‖h|t=0‖0,α + C) ‖s− s′‖ α
α+k .

Without loss of generality, we assume that C4 > 1, to obtain now for all s, s′ that

|u(s+ it) − u(s′ + it)| ≤ C4(‖h|t=0‖0,α + C) ‖s− s′‖ α
α+k . (3.8)

Step 3. s = s′. As in [5], we define the points

P1 = s+ it, P2 = s+ it2, . . . , Pn = s+ itn, Pn+1 = s+ it′,

where

t2 =

⎛⎜⎜⎜⎜⎝
t′1
t2
...
tn

⎞⎟⎟⎟⎟⎠, t3 =

⎛⎜⎜⎜⎜⎝
t′1
t′2
...
tn

⎞⎟⎟⎟⎟⎠ , . . . , tn+1 =

⎛⎜⎜⎜⎜⎝
t′1
t′2
...
t′n

⎞⎟⎟⎟⎟⎠,
and the functions hj(s̃ + it̃) := h(s + iPj + s̃ + it̃). Now note that for every j, by
Step 2, the function hj |t̃=0 is Höder regular of order α

α+k , with

‖hj |t̃=0‖0, α
α+k

≤ C4(‖h|t=0‖0,α + C).

We can apply Step 1 (note that hj is also ∂̄-bounded, with the same constant C),
with α replaced by α

α+k , to obtain (if t′j < tj we can replace hj by hj+1)

|h(s+ iPj) − h(s+ iPj+1)| = |hj(0) − hj((t′j − tj)ej)|
≤ C5(‖h|t=0‖0,α + C)|t′j − tj | α

α+k ,

so that

|h(s+ it) − h(s+ it′)| ≤ C6(‖h|t=0‖0,α + C) ‖t− t′‖ α
α+k .

Step 4. We can now estimate

|h(σ) − h(σ′)| ≤ |h(s+ it) − h(s+ it′)| + |h(s+ it′) − h(s′ + it′)|
≤ A(‖h|t=0‖0,α + C) ‖σ − σ′‖ α

α+k ,

which finishes the proof.
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4. Abstract CR Manifolds and the Microlocal Extension Property

Our goal in this section is to discuss in detail the microlocal extension property
introduced in Sec. 2 for abstract CR manifolds. We will furthermore show that
CR mappings on such CR manifolds satisfying certain “regular” systems of smooth
equations are actually smooth. Even though in spirit this follows our recent paper
[16], the abstract case, as already indicated, poses specific problems, which need
special treatment that we address in this section.

4.1. The microlocal extension property

Let M be an abstract CR manifold of CR dimension n and of real dimension 2n+d.
In what follows, we set N = n + d. We first recall the definition of the wavefront
set of a function u :M → R (since we shall only deal with smooth wavefront sets
here, we drop it from the notation).

Definition 4.1. Let u be a distribution on M . A point (p0, ξ0) ∈ T ∗M , where
T ∗

p0
M � ξ0 �= 0, is not in the wavefront set WF(u) ⊂ T ∗M\{0} (here 0 denotes

the image of the zero section) if there exists a coordinate neighborhood U of p0, an
open (nonempty) convex cone Γ ⊂ T ∗

p0
M containing ξ0 and a function χ, compactly

supported in U with χ(p0) �= 0, such that the Fourier transform of χu decays rapidly,
uniformly for ξ ∈ Γ, i.e.

∀N ∈ N, ∃CN > 0 : |Fχu(ξ)| =
∣∣∣∣∫

Rn+d

(χu)(x)e−ixξdx

∣∣∣∣ ≤ CN (1 + |ξ|)−N , ξ ∈ Γ.

We note that the preceding definition does not depend on the (bundle) coordi-
nates used for defining the Fourier transform, and that WF(u) is a closed subset of
T ∗M\{0} (meaning that the image of the zero section is removed). We also note
that (x, ξ) ∈ WF(u) if and only if (x,−ξ) ∈ WF(ū).

The (closed) set of points where u is not smooth (i.e. the set of points p for
which there does not exist a neighborhood U on which u is smooth) is called the
singular support of u and coincides with the projection of the wavefront set of u
to M :

SingSuppu = {x ∈M : ∃ ξ ∈ T ∗
xM, ξ �= 0, (x, ξ) ∈ WF(u)}.

The notions we introduced above for functions generalize in a straightforward
manner to maps: if h = (h1, . . . , hN ′) is a CN ′

-valued map (with components being
either distributions or functions), then we define

WF(h) =
N ′⋃
j=1

WF(hj) and SingSupph =
N ′⋃
j=1

SingSupp hj.

Let P be a (classical) pseudodifferential operator with principal symbol P (we
do not go into too much detail about the fact that we are working on a manifold
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instead of an open subset of Rn+d, as all of the notions we introduce are really
local).

Definition 4.2. A point (x, ξ) ∈ T ∗M , where ξ �= 0, does not belong to the
characteristic set Char(P ) ⊂ T ∗M\{0} of P if P(x, ξ) �= 0.

For all of the (pseudodifferential) operators P which we will consider in this
paper, it will hold that

WF(Pu) ⊂ WF(u), (4.1)

for any distribution u on M . We also have the elliptic regularity theorem (see e.g.
[12]), which states that

WF(u) ⊂ Char(P ) ∪ WF(Pu). (4.2)

A direct consequence of the elliptic regularity theorem is that for any CR func-
tion (or distribution) u on M , we have WF(u) ⊂ T 0M , where T 0M is the charac-
teristic bundle of M . Indeed, the CR vector fields, considered as pseudodifferential
operators, have the property that the intersection of their characteristic sets coin-
cides with T 0M (see [2]). We will therefore, when speaking about wavefront sets of
CR distributions, only consider them as subsets of T 0M .

We now introduce the notion of standard coordinate patch which will be useful
for us in order to characterize the microlocal extension property of an abstract CR
manifold.

We say that an open subset D ⊂M is a standard coordinate patch if there exists
an open subset D ⊂ Cn × Rd, a C∞-smooth diffeomorphism Φ :D → D with the
property that, for every z0 ∈ π1(D), where π1 :D → Cn is the canonical projection,
the submanifold Nz0 := Φ({z = z0}) of D is totally real and transverse to the
complex tangent directions in M . On a standard coordinate patch D , for p ∈ D ,
we have T 0

pM
∼= T ∗

pNπ1(p) (induced by the restriction of evaluation of the forms)
and we require that this yields a well-defined identification T 0D ∼= D × Rd. We
shall refer to any such a choice of local coordinates as standard coordinates. It is
quite simple to see that for every p ∈M , there exists a standard coordinate patch
D ⊂ M containing p: Starting with any smooth chart Ψ : D̃ → R2n+d centered
at p. Then dΨ(T c

pM) ⊂ T0R
2n+d = R2n+d is a 2n-dimensional subspace, and we

can choose smooth coordinates (x, y, s) in R2n+d such that dΨ(T c
pM) = {s = 0}.

We claim that for (x, y) = z ∈ Cn close by the origin and for a small ε > 0, the
map γx+iy : (−ε, ε) � s �→ Ψ−1(x, y, s) parametrizes a smooth submanifold Nz of
M which is actually totally real. Indeed, dΨ−1({s = 0}⊕ {z = 0}) = T c

pM ⊕TpN0,
and this direct sum decomposition necessarily stays stable for small perturbations
of (x, y, s), i.e.

dΨ−1({z = z0} ⊕ dΨ(T c
Ψ−1(x0,y0,s0)

M)) = TqNz0 ⊕ T c
qM,

where q = Ψ−1(x0, y0, s0).
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Now set D to be a neighborhood of the origin for which the above equation
holds, Φ = Ψ−1|D, and D = Φ(D).

Therefore, any abstract CR manifold can be covered by standard coordinate
patches. Furthermore, any distribution u defined in some standard coordinate patch
D will be identified as a distribution over D ⊂ R2n × Rd (through the associated
diffeomorphism Φ :D → D) .

The dual cone of a cone Γ ⊂ Rd is defined by

Γo = {t′ ∈ Rd\{0} : 〈t′, t〉 ≥ 0, ∀ t ∈ Γ}.
We also recall that (Γo)o (if nonempty) is the smallest closed (in Rd\{0}) convex
cone containing Γ.

The basic result about almost analytic extensions and the wavefront set we
are going to use is the following well-known result (see e.g. [18] or the proof of
[2, Theorem 5.3.7]).

Theorem 4.3. Let M be an abstract CR manifold of CR dimension n and CR
codimension d. Let u be a CR distribution defined on a standard coordinate patch
D ⊂ M, Γ ⊂ Rd an open, convex cone and set W = D + iΓ. If there exists
U ∈ A∞(W ) with bvW U = u, then WF(u) ⊂ D × Γo. On the other hand, if
WF(u) ⊂ D × Γo, then for any open subset D′ ⊂⊂ D and every cone Γ′ with
Γ′ ⊂ Γ, u|D′ has an almost analytic extension to W ′ = D′ + iΓ′.

Using Theorem 4.3, we reach the following characterization of the microlocal
extension property for abstract CR manifolds.

Proposition 4.4. Let M be an abstract CR manifold of CR dimension n and CR
codimension d. Then M has the microlocal extension property at a point p ∈ M if
and only if for every neighborhood Ω of p, there exists a standard coordinate patch
D ⊂ Ω and a nonempty open convex cone Γ ⊂ Rd such that every continuous CR
function u : Ω → C admits an almost analytic extension to D + iΓ.

Proof. Suppose that M has the microlocal extension property at p. Fix a neigh-
borhood Ω of p and let D ⊂ Ω be a standard coordinate patch centered at p. By
assumption there exists a nonempty open convex cone Γ ⊂ T 0

pM such that any
continuous CR function u : Ω → C satisfies WF (u)|p ⊂ Γ. Since by assumption Γ is
open, and by definition WF(u) is closed, shrinking D if necessary, we may assume
that WF (u|D) ⊂ D × Γ. Furthermore, since Γ is convex, we may find an acute
convex cone Γ̃ ⊂ Rd such that Γ ⊂ Γ̃o. Applying Theorem 4.3 and shrinking D and
Γ̃, we get that any such function u extends almost analytically to D + iΓ̃.

Conversely, let Ω be a neigbhourhood of p. Then there exists a standard coor-
dinate patch D ⊂ Ω centered at p and an open convex cone Γ ⊂ Rd such that
every continuous CR function u on Ω extends almost analytically to D+ iΓ. Hence,
Theorem 4.3 implies that WF (u) ⊂ D × Γo. Since Γo is a closed acute cone, we
may find an open convex cone Γ̂ such that Γo ⊂ Γ̂ and hence WF(u)|p ⊂ Γ̂. The
proof is complete.
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4.2. CR manifolds satisfying the microlocal extension property

We want to discuss here some classes of CR manifolds for which the microlocal
extension property does hold. Though this is not the focus of this present paper,
let us first look at the case of embedded CR manifolds. Recall that an embedded
CR submanifold M ⊂ CN is said to be minimal at a point p ∈ M if there is no
proper CR submanifold Σ ⊂M through p with the same CR dimension as that of
M (see e.g. [1, 24]). We have the following:

Proposition 4.5. Let M ⊂ CN be a generic C∞-smooth CR submanifold in CN

and p ∈M . If M is minimal at p, then M satisfies the microlocal extension property
at p.

Proof. In order to prove the proposition, we use the characterization given by
Proposition 4.4 to show that the almost analytic extension property holds for any
continuous CR function defined in any neighborhood of p. To this end, we just
note that by Tumanov’s theorem [24], for any neighborhood Ω of p in M , there
exists a wedge of edge M at p in CN to which all continuous CR functions on
Ω extend holomorphically. The desired almost analytic extension property for all
CR functions on Ω then follows by using standard coordinates attached to generic
submanifolds in complex space such as in [16, Proposition 3.2]. The details are left
to the reader.

To the authors’ knowledge, there is no known characterization of the microlocal
extension property for abstract CR manifolds. However, the following general suffi-
cient condition for abstract CR manifolds with nondegenerate Levi form (analogous
to Lewy’s extension theorem [17]) is due to Berhanu and Xiao [3, Theorem 2.9],
and is also, to the best of our knowledge, currently the only such result.

Theorem 4.6. Let M be an abstract CR manifold. If the Levi form of M at a point
p ∈ M has the property that it possesses a nonzero eigenvalue in the direction of
every characteristic form η ∈ T 0

pM, then M has the microlocal extension property
at p. In particular, if M is of hypersurface type, then M has the microlocal extension
property at every point where the Levi-form has a nonzero eigenvalue.

4.3. Smooth edge-of-the-wedge theory

Let D be a standard coordinate patch in an abstract CR manifold M . If u :D → C

is a CR function that admits an almost analytic extension U ∈ A∞(W ), with
W = D+ iΓ for some cone Γ ⊂ Rd, and if furthermore u ∈ C k(D), then, by a result
of Rosay [22], U is actually k times continuously differentiable up to the edge D,
i.e. U ∈ C k(D + i(Γ′ ∪ {0})), for any cone Γ′ ⊂⊂ Γ. Proposition 3.5 proved Sec. 3
can be seen as a variant of this result, for Hölder continuous CR functions.

Another known smoothness result, which we now recall, states that it is enough
to check smoothness in enough independent directions (by the edge of the wedge
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theorem). The version we will need for the purpose of this paper can be stated as
follows.

Theorem 4.7. Let M be an abstract CR manifold of CR dimension n and CR
codimension d, u be a CR distribution on M and p ∈M . Then p /∈ SingSupp(u) if
and only if there is a standard coordinate neighborhood D of p in M and an open
convex cone Γ ⊂ Rd, such that u|D admits an almost analytic extension to both
W+ = D + iΓ and W− = D − iΓ.

The proof of this theorem is rather simple now: ReplacingM by a suitable neigh-
borhood of p, we apply Theorem 4.3 to see that WF(u)|p ⊂ (Γo ∩ (−Γ)o)\{0}=∅,
and hence u is smooth near p.

4.4. A smooth reflection principle on abstract CR manifolds

We now turn to an important a priori regularity result for CR maps, which, for
embedded CR manifolds, is contained in [16].

Theorem 4.8. Let M be an abstract CR manifold, h :M → CN ′
and g :M → Ck

be, respectively, a CR C 1-smooth and a C 0 map. Let D ⊂M be a standard coordi-
nate patch, p ∈ D , Γ ⊂ Rd an open convex cone, and assume that (all components
of) h and g extend almost analytically to D+iΓ. Let r be a C ∞-smooth, CN ′

-valued
map, defined in a neighbhourhood of (p, h(p), g(p)) ∈ M × CN ′ × Ck, holomorphic
in its last variable, satisfying for q ∈M near p the following properties :

r
(
q, h(q), h(q), g(q)

)
= 0;

det rw
(
p, h(p), h(p), g(p)

)
�= 0.

Then p /∈ SingSupph.

Let us stress that even though h is assumed to be CR, g need not be CR in
Theorem 4.8. We are going to exploit this in a more specific result that follows
from Theorem 4.8. In order to state it, we introduce the following notion (that will
appear later in this paper).

Definition 4.9. Let M be an abstract CR manifold, r ∈ N, and let f : Ω → C be a
C r-smooth function on some open subset Ω ⊂ M . We say that f is C r-admissible
if there exists an integer � ≥ 0, a C r+�-smooth CR function F : Ω → C, and C∞-
smooth (1, 0) vector fields X1, . . . , X� defined on Ω such that f = X1 . . . X�F .

This notion of admissible functions extends obviously to Cn-valued maps by
requiring that each component be admissible.

Corollary 4.10. Let M be an abstract CR manifold, p ∈ M, and assume that
M has the microlocal extension property at p. Let h :M → CN ′

and g :M → Ck

be, respectively, a C 1 CR map and a C 0-admissible map. Let r be a C ∞-smooth,

2050009-18

In
t. 

J.
 M

at
h.

 2
02

0.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
92

.1
95

.9
5.

17
4 

on
 0

2/
07

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 23, 2019 16:52 WSPC/S0129-167X 133-IJM 2050009

Regularity of CR mappings of abstract CR structures

CN ′
-valued map, defined in a neighbhourhood of (p, h(p), g(p)) ∈ M × CN ′ × Ck,

holomorphic in its last variable, satisfying for q ∈M near p the following properties :

r(q, h(q), h(q), g(q)) = 0;

det rw(p, h(p), h(p), g(p)) �= 0.

Then p /∈ SingSupp h.

Proof of Corollary 4.10. From the microlocal extension property at p, we know
that there exists a coordinate patch D ⊂M containing p and an open convex cone
Γ ⊂ Rd such that all continuous CR functions on M extend almost analytically to
D+iΓ. The corollary then follows from Theorem 4.8 by noticing that any admissible
function is a higher order derivative of a CR function along (1, 0) smooth vector
fields, and therefore, also extends almost analytically to D + iΓ, as a consequence
of Remark 3.4.

Proof of Theorem 4.8. Let (z, z̄, s) be standard coordinates defined on D ⊂
R2n × Rd, in which p may be assumed to be the origin. We may also assume that
h(0) = 0, g(0) = 0. Since the conclusion of the theorem is local, we shall do a
number of steps each of which requires us to possibly shrink D; we shall do so
without explicitly mentioning it, and will not rename D. We will apply the same
policy when denoting constants, that may change from one line to the other. The
proof given here is an adaptation of the proof of [16, Theorem 3.1], that includes
the appropriate changes needed to deal with abstract CR manifolds.

First, we consider Rd
s and CN ′

w as totally real subspaces of Cd
σ and C2N ′

Z,ζ by
σ = s+ it, Z = ζ̄ = w, respectively, i.e. Rew = Re (Z+ζ

2 ), Imw = Re (Z−ζ
2i ). Propo-

sition 3.1 yields, for appropriate open subsets Ω ⊂ CN ′
and O ⊂ Ck containing 0,

an extension R(z, z̄, s, t, Z, Z̄, ζ, ζ̄,Λ) of r to D × Rd × Ω × Ω̄ ×O, i.e.

R(z, z̄, s, 0, w, w̄, w̄, w,Λ) = r(z, z̄, s, w, w̄,Λ, Λ̄),

and such that for everym, � ∈ N, there exists a C = C(m, �) > 0 such that, denoting

P =
∂|α|+|β|+|γ|+|δ|+|ε|+|δ′|+|ε′|

∂zαz̄βsγZδZ̄εζδ′ ζ̄ε′ , with |α| + |β| + |γ| + |δ| + |ε| + |δ′| + |ε′| ≤ m,

for every partial derivative of the form, it holds that

‖PRσ̄‖ + ‖PRZ̄‖ +
∥∥PRζ̄

∥∥ ≤ C
(‖t‖ +

∥∥Z − ζ̄
∥∥)� , (4.3)

shrinking D, Ω and O if necessary. The Jacobian of the map R with respect to Z
(considered as a map R2N ′

to R2N ′
) at the origin is computed to be

R(Z,Z̄) =

(
RZ RZ̄

RZ RZ̄

)
=

(
rw 0

0 rw

)
,

which has a nonzero determinant by assumption. We can therefore apply the
implicit function theorem to obtain a map Φ(z, z̄, s, t, ζ, ζ̄,Λ), holomorphic in its
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last component, such that R(z, z̄, s, t, Z, Z̄, ζ, ζ̄,Λ, Λ̄) = 0 if and only if Z =
Φ(z, z̄, s, t, ζ, ζ̄,Λ). In particular, one has for (z, s) ∈ D

h(z, z̄, s) = Φ(z, z̄, s, 0, h(z, z̄, s), h(z, z̄, s), g(z, z̄, s)). (4.4)

We now claim that, for j = 1, . . . , d and k = 1, . . . , N ′, the Φσ̄j and Φζ̄k
are

controlled in the following way.

Claim 1. For every compact K ⊂ D, every open convex cone Γ′ ⊂⊂ Γ, and for
every �,m ∈ N, there exists a constant C > 0 such that for (z, s) ∈ K, ζ ∈ Ω̄, Λ ∈ O

and t ∈ Γ′ with ‖t‖ sufficiently small,

∑
|α|+|β|+|γ|+|δ|+|ε|≤m

∥∥∥∥∂|α|+|β|+|γ|+|δ|+|ε|

∂zαz̄βsγζδ ζ̄ε
Φσ̄

∥∥∥∥+
∥∥∥∥∂|α|+|β|+|γ|+|δ|+|ε|

∂zαz̄βsγζδ ζ̄ε
Φζ̄

∥∥∥∥
≤ C(‖t‖ +

∥∥Φ(z, z̄, s, t, ζ, ζ̄,Λ) − ζ̄
∥∥)�.

This can be seen in the following way: First, we have that

Φσ̄ = −R−1
Z (Rσ̄ +RZ̄Φ̄σ̄), Φζ̄ = −R−1

Z (Rζ̄ +RZ̄Φ̄ζ̄).

Then any partial derivative (in (z, z̄, s, ζ, ζ̄)) acting on this equation gives (by the
chain rule) rise to expressions which can be controlled in the claimed way using (4.3).

Now, by assumption, h extends almost analytically to D+ iΓ. Let us denote an
almost analytic extension of h by h+(z, z̄, s, t), defined for (z, s) ∈ D and t ∈ Γ,
and similarly for g. In the remainder of the proof, we will show that

h−(z, z̄, s, t) := Φ(z, z̄, s, t, h+(z, z̄, s,−t), h+(z, z̄, s,−t), g+(z, z̄, s,−t)) (4.5)

is an almost analytic extension of h to D − iΓ (here ‖t‖ is small). An application
of Theorem 4.7 then yields that h is smooth near the origin.

Let us first check that h− is of slow growth. Let α, β ∈ Nn and γ ∈ Nd, K ⊂ D

compact, and Γ′ ⊂⊂ −Γ be given. By assumption, h+ and g+ are of slow growth in
D+ iΓ. In particular, there exist constants C = C(α, β, γ) > 0 and k = k(α, β, γ) ∈
N, such that for (z, s) ∈ K and t ∈ −Γ′

∑
α′,β′∈N

n,γ′∈N
d

|α′|+|β′|+|γ′|≤|α|+|β|+|γ|

∥∥∥∥∥∂|α
′|+|β′|+|γ′|h+(z, z̄, s,−t)

∂zα′ z̄β′sγ′

∥∥∥∥∥
+

∥∥∥∥∥∂|α
′|+|β′|+|γ′|g+(z, z̄, s,−t)

∂zα′ z̄β′sγ′

∥∥∥∥∥ ≤ C ‖t‖−k
. (4.6)

We can also assume that D, Ω and O have been chosen so small that all of the
derivatives of R of order at most |α| + |β| + |γ| stay bounded, say by Δ > 0. The
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chain rule, (4.6) and (4.5) then imply that there exists a combinatorial factor Δ̃
such that ∥∥∥∥∂|α|+|β|+|γ|h−(z, z̄, s, t)

∂zαz̄βsγ

∥∥∥∥ ≤ Δ̃ΔC ‖t‖−k , (4.7)

for (z, s) ∈ K and t ∈ −Γ′ with ‖t‖ sufficiently small; i.e. h− is of slow growth as
claimed.

Before we turn to the growth behaviour of the derivatives ∂h−
∂σ̄j

, j = 1, . . . , d, i.e.

∂h−
∂σ̄j

= Φσ̄j + Φζ
∂h+

∂σ̄j
+ Φζ̄

∂h+

∂σj
+ ΦΛ

∂g+
∂σ̄j

, (4.8)

we need some preparation. Fix K and Γ′ as before. We will first establish the
following.

Claim 2. There exist β > 0 and C > 0 such that

‖h+(z, z̄, s,−t) − h−(z, z̄, s, t)‖ ≤ C ‖t‖β
,

(z, z̄, s) ∈ K, t ∈ Γ′, ‖t‖ small.

In order to establish Claim 2, note that by Rosay’s result already mentioned
in the beginning of Sec. 4.3, we have that h+ is actually C 1(D × (Γ′′ ∪ {0})) for
any cone Γ′′ ⊂⊂ Γ, i.e. it is C 1 up to the edge. Since g+ is an almost holomorphic
extension of g, we thus see that (4.8), (4.5) and (4.4) imply that h−(z, z̄, s, t) is a
∂̄-bounded extension to D − iΓ′′ of the function h+|t=0 ∈ C 1(D). Choose a cutoff
function χ such that for an ε > 0 we have supp χ ⊂ D×(−2ε, 2ε)d, χ|K×(−ε,ε)d = 1,
and which is almost holomorphic (in the σj ’s).

Since Γ′ ⊂⊂ Γ is a compact subcone, there exists a finite number of closed
convex cones Γ1, . . . ,Γe, each of which is linearly equivalent to Rd

+, and an open
convex cone Γ′′ ⊂⊂ Γ such that

Γ′ ⊂
e⋃

j=1

Γj ⊂ Γ′′ ⊂⊂ Γ.

For z0 ∈ R2n sufficiently close to 0, considering hz0,j = (χh−)|{z0}×Rd×−Γj
, we see

that hz0,j satisfies the conditions of Proposition 3.5, since h is C 1 over D and (4.7)
and (4.6) hold. So that for some β > 0 (independent of z0 and j) we have that

hz0,j ∈ C 0,β(−Γj), with ‖hz0,j‖0,β ≤ C.

A priori C depends on z0 and j, but the concrete form of the estimates in Propo-
sition 3.5, and the fact mentioned above that h+ ∈ C 1(D × (Γ′′ ∪ {0}), ensures
that C is actually independent of z0 and j. We thus conclude that for z ∈ K and
t ∈ −Γ′, ‖t‖ small enough, we have that

‖h+(z, z̄, s,−t) − h−(z, z̄, s, t)‖ ≤ C ‖t‖β
.

Now, similarly to [16], Claims 1 and 2 can be used to show in particular that we
can control the partial derivatives of Φσ̄ and Φζ̄ in the following way: For everyK,Γ′
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as above, and m, � ∈ N, there exists a C > 0 such that if |α|+ |γ|+ |γ|+ |δ|+ |ε| ≤ m,
then for (z, s) ∈ K, t ∈ Γ′ with ‖t‖ small enough, we have∥∥∥∥∂|α|+|β|+|γ|+|δ|+|ε|

∂zαz̄βsγζδ ζ̄ε
Φσ̄(z, z̄, s, t, h+(z, z̄, s,−t), h+(z, z̄, s,−t), g+(z, z̄, s,−t))

∥∥∥∥
≤ C ‖t‖�

,∥∥∥∥∂|α|+|β|+|γ|+|δ|+|ε|

∂zαz̄βsγζδ ζ̄ε
Φζ̄(z, z̄, s, t, h+(z, z̄, s,−t), h+(z, z̄, s,−t), g+(z, z̄, s,−t))

∥∥∥∥
≤ C ‖t‖�

.

(4.9)

We can now complete the proof of the theorem largely similar to [16]: If we
apply a partial derivative of the form

P =
∂|α|+|β|+|γ|

∂zαz̄βsγ

to (4.8) yields an expression which we can control because it is a sum of products
each of which contains only factors which are of slow growth towards t = 0, and
at least one factor which vanishes to infinite order in t at t = 0; this is obvious
for terms containing derivatives with respect to σ̄ of h+ and g+, and for the other
terms we can use (4.9). The details are analogous to those of [16] and are therefore
left to the reader.

5. Invariants of CR Maps and Associated Open Subsets
Decomposition

In this section, we carry out the construction of the open subsets decomposition
associated to any given CR map mentioned in Sec. 2. To this end, we at first
introduce a number of rings of functions attached to the map as well as study
numerical invariants related to these rings. We follow the lines of thought of the
construction done for embedded CR manifolds in [16], but the present construction
for abstract CR manifolds needs a number to substantial changes that we explain.
In fact, even in the embedded case, our construction in this paper improves the one
carried out in [16] (as the required minimality assumption in a number of properties
in [16, Secs. 4 and 5] is no longer necessary with the present new construction). We
indicate here the main differences and will drop proofs and refer to [16] where they
are very similar to the embedded case.

5.1. Function rings attached to a CR map and

numerical invariants

Let (M,V ) be an abstract CR manifold of CR dimension n and CR codimension
d. We introduce here a sequence of local numerical invariants attached to a (germ
of a) CR map at p ∈ M . In what follows, if X is a real manifold, x0 ∈ X and
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� ∈ Z+ ∪ {∞}, we denote by C �(X,x0) the ring of germs of C �-smooth functions
at x0 and by C �(X) the ring of C �-functions over X .

For p ∈ M and k ∈ Z+ ∪ {∞}, we denote by C k
CR(M,p) the ring of germs of

C k-smooth CR functions at p. Analogously to Definition 4.9, we say that a germ
at p of a C m-smooth function g, m ∈ N, is admissible if there exists an integer
� ∈ N, a germ at p of C �+m-smooth CR function G and C∞-smooth (1, 0) vector
fields defined near p, X1, . . . , X�, such that g = X1, . . . , X�G (as germs at p). Note
that germs at p of CR functions are obviously admissible. This notion extends
in the obvious way to Cn-valued mappings by requiring that every component be
admissible.

Let h :M → CN ′
w be a C 1 CR map. Even though the notation for the rings

and invariants associated to h is the same as we used in [16], let us stress that
the rings and invariants introduced here are different from those introduced in the
above-mentioned paper.

Definition 5.1. Let M and h be as above, p ∈M , and μ, j ∈ N with 0 ≤ j ≤ μ.

(a) We denote by A j,μ
p the set of all pairs (g, r), where g = (g1, . . . , gk) ∈

(C μ−j(M,p))k for some integer k, each gν being admissible, and where
r(q, w, w̄,Λ) ∈ C∞(M × CN ′ × Ck, (p, h(p), g(p))) is holomorphic in Λ, and

r(q, h(q), h(q), g(q)) = 0 for q ∈M near p.

(b) If h is C μ−j -smooth, we denote by F j,μ
p the subring of C μ−j(M,p) consisting

of those functions ψ that may written in the form

ψ(q) = r(q, h(q), h(q), g(q))

for q ∈ M near p, where g = (g1, . . . , gk) ∈ (C μ−j(M,p))k for some integer k,
each gν being admissible, and r(q, w, w̄,Λ) ∈ C∞(M×CN ′ ×Ck, (p, h(p), g(p)))
is holomorphic in Λ.

(c) If h is C μ−j-smooth, for (g, r) ∈ A j,μ
p , we define rw ∈ (F j,μ

p )N ′
by

rw := rw(q, h(q), h(q), g(q))

= (rw1(q, h(q), h(q), g(q)), . . . , rwN′ (q, h(q), h(q), g(q)))

for q ∈M near p.

Observe that if h is C μ−j-smooth, then for any ψ ∈ F j,μ
p there is a neighborhood

of p in M such that for any q in that neighborhood, (the germ at q of) ψ ∈ F j,μ
q .

For every p ∈M , we define the following vector subspace of CN ′
:

Dμ
j (p) = {rw(p, h(p), h(p), g(p)) : (g, r) ∈ A j,μ

p }.
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We define, for p ∈M and any integer 0 ≤ j ≤ μ:

S μ
j (p) := dimC Dμ

j (p). (5.1)

For every p ∈M and each μ ∈ N, we clearly have

Dμ
0 (p) ⊂ Dμ

1 (p) ⊂ · · · ⊂ Dμ
μ (p),

and therefore

S μ
0 (p) ≤ S μ

1 (p) ≤ . . . ≤ S μ
μ (p).

Even though for 0 ≤ j ≤ μ, S μ
j (p) was defined using specific coordinates in

CN ′
, the reader may easily check that S μ

j (p) is actually independent of the specific
choice of (local) holomorphic coordinates in CN ′

near h(p).
For p ∈M , we set

Vj,μ
p := (Dμ

j (p))⊥ = {V ∈ CN ′
: V · rw(p, h(p), h(p), g(p)) = 0, ∀ (g, r) ∈ A j,μ

p }.
(5.2)

Since, as mentioned above, Dμ
j (p) is increasing in j, we have that

Vμ,μ
p ⊂ Vμ−1,μ

p ⊂ · · · ⊂ V0,μ
p and dim Vj,μ

p = N ′ − S μ
j (p).

In Remark 5.2, we define a certain type of “holomorphic” derivatives for any element
of F j,μ

p , that we will frequently use in the sequel.

Remark 5.2. Assume that h is C μ−j-smooth and let p ∈ M , with μ, j ∈ N

satisfying 0 ≤ j ≤ μ.

(i) If ψ ∈ F j,μ
p can be written in two different ways as

ψ(q) = r1(q, h(q), h(q), g(q)) = r2(q, h(q), h(q), g(q))

for q ∈M near p, where g ∈ (C μ−j(M,p))k, for some integer k, is admissible,
then r = r1 − r2 satisfies (g, r) ∈ A j,μ

p . In particular, for every V ∈ Vj,μ
p , since

V · rw(p, h(p), h(p), g(p)) = 0 we have

V · r1w(p, h(p), h(p), g(p)) = V · r2w(p, h(p), h(p), g(p)). (5.3)

It follows that for every V ∈ Vj,μ
p , we may define

V · ψw(p) := V · r1w(p, h(p), h(p), g(p)) (5.4)

since the right-hand side of (5.4) is independent of a particular choice of rep-
resentative for ψ by (5.3).

(ii) For any polynomial P (t, t̄) =
∑

α,β P
α,βtαt̄β ∈ F j,μ

p [t, t̄], t ∈ Cr, and any
V ∈ Vj,μ

p , we define

V · Pw(t, t̄) :=
∑
α,β

(V · Pα,β
w )tα t̄β,

which is well defined (at p) by (i).
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(iii) If ψ ∈ F j,μ
p is defined over a neighborhood U of p, and V :U → CN ′

is a map
satisfying V (q) ∈ Vj,μ

q for every q ∈ U , then V · ψw is well defined over all of
U ; the same holds for polynomials as in (ii).

The next result is a version of [16, Lemma 4.5] suitable for abstract CR mani-
folds. We note that the proof of [16, Lemma 4.5] uses in an essential way the fact
that the CR manifold was embedded as well as Tumanov’s extension theorem for
CR functions on generic minimal submanifolds in complex space. Such techniques
are not available in the abstract setting. Instead, we will present a proof that relies
on the definition of the new rings introduced in this paper.

Lemma 5.3. Let M be an abstract CR manifold, μ, j be integers satisfying 0 ≤
j < μ, and let h :M → CN ′

be a CR map of class C μ−j. Let p ∈ M and K̄ be a
C∞-smooth CR vector field on M (near p).

(i) For ψ ∈ F j,μ
p we have that K̄ψ ∈ F j+1,μ

p , and there exists a neighborhood Up

of p such that for every q ∈ Up, (the germ at q of) K̄ψ belongs to F j+1,μ
q .

Furthermore, if V :Up → CN ′
is a CR map of class C 1 which satisfies V (q) ∈

Vj+1,μ
q for q ∈ Up, then V · (K̄ψ)w is defined over Up and we have

V · (K̄ψ)w = K̄(V · ψw).

(ii) Let (g, r) ∈ A j,μ
p . Then there exists (ĝ, r̂) ∈ A j+1,μ

p (depending on K̄) such
that K̄rw = r̂w.

Proof. Let ψ ∈ F j,μ
p . By definition there exist g = (g1, . . . , gk) ∈ (C μ−j(M,p))k

for some integer k, such that each gν is admissible, and r ∈ C∞(M × CN ′ ×
Ck, (p, h(p), g(p))), holomorphic in its last argument (denoted by Λ in what follows)
such that, for q ∈ Up ⊂M in some neighborhood of p,

ψ(q) = r(q, h(q), h(q), g(q)).

Therefore, for q ∈ Up, since h is CR, the chain rule implies that we may write

K̄ψ = ψ̃ + rw̄ · K̄h̄+rΛ · K̄ḡ,
for some ψ̃ ∈ F j,μ

p . Now we can certainly write K̄h̄ and K̄ḡ in the form Kh and
Kg for some smooth (1, 0) complex vector field K on Up. Hence, we have

K̄ψ = ψ̃ + rw̄ ·Kh+ rΛ ·Kg. (5.5)

Hence for q ∈ Up, we can write

(K̄ψ)(q) = r̃(q, h(q), h(q), g̃(q)),

where g̃ = (g,Kg,Kh) ∈ (C μ−j−1(M,p))2k+N ′
is admissible; since r̃ is clearly

holomorphic in its last argument, we see that K̄ψ ∈ F j+1,μ
p as claimed. Finally,

as observed after Definition 5.1, for every q ∈ Up, the germ at q of K̄ψ belongs to
F j+1,μ

q .
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Next, suppose that we are given a neighborhood Up of p in M as before, and
Up � q �→ V (q) ∈ Vj+1,μ

q is CR of class C 1. Then, we have on Up

V · (K̄ψ)w = V · K̄(ψw) = K̄(V · ψw),

since V is CR. This completes the proof of part (i) of the lemma; part (ii) follows
by very similar arguments.

5.2. Open subset decomposition and its properties

Let M be as above and h :M → CN ′
be a C 1-smooth CR map. For μ, j integers

satisfying 0 ≤ j ≤ μ ≤ N ′, since the functions M � p �→ S μ
j (p) are all lower

semicontinuous and integer valued, the set

M̃ =
N ′⋃

μ=0

μ⋃
j=0

{p ∈M : ∃Up,S
μ
j (p) = S μ

j (q), ∀ q ∈ Up, 0 ≤ j ≤ μ}

is open and dense in M . We denote by M∞
h = M\SingSupp(h) the open subset of

M consisting of those points p ∈ M such that h is C∞-smooth in a neighborhood
of p, and similarly M̃∞

h = M̃\SingSupp(h).
For k, �, ν ∈ N with 0 ≤ k ≤ � ≤ N ′, k ≤ ν ≤ N ′ − �+ k − 1, we define

Ω�
k,ν = {p ∈ M̃ : � ≤ S N ′−�+k

k (p) < · · · < S N ′−�+k
ν (p) = S N ′−�+k

ν+1 (p)}, (5.6)

and for ν = N ′ − �+ k, we set

Ω�
k,N ′−�+k = {p ∈ M̃ : � ≤ S N ′−�+k

k (p) < · · · < S N ′−�+k
N ′−�+k (p) = N ′}. (5.7)

We further decompose each of the sets Ω�
k,ν defined for k, �, ν ∈ N with k ≤ ν ≤

N ′ − �+ k by either (5.6) or (5.7) into

Ω̂�,m
k,ν := {p ∈ Ω�

k,ν : S N ′−�+k
ν (p) = m}, � ≤ m ≤ N ′, (5.8)

so that we have
N ′⊔

m=�

Ω̂�,m
k,ν = Ω�

k,ν . (5.9)

Note that each Ω̂�,m
k,ν is open in Ω�

k,ν , in M̃ , and thus also open in M . Let us finally
note that (5.7) implies that

Ω̂�,m
k,N ′−�+k = ∅, for m < N ′. (5.10)

With the same proof as in [16, Proposition 6.4], we see that.

Proposition 5.4. Let M be an abstract CR manifold and h :M → CN ′
a C 1-

smooth CR map, and �, k ∈ N such that 0 ≤ k ≤ � ≤ N ′. If the open subset
Mk

� := {q ∈ M : S N ′−�+k
k (q) ≥ �} is dense in M, then the open set

⋃N ′−�+k
ν=k Ω�

k,ν

is dense in M, where Ω�
k,ν are defined by (5.6) and (5.7).
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We will relate the open subsets Ω̂�,m
k,ν defined in (5.7) to smoothness properties

of the map h (using Theorem 4.8) and to the CR geometry of h(M) in the next
two results.

Proposition 5.5. Let M be an abstract CR manifold, p ∈M and assume that M
has the microlocal extension property at p. Let h :M → CN ′

be a CR map of class
C 1. If there exist j ≤ μ ≤ N ′ such that S μ

j (p) = N ′, then p ∈ M∞
h . In particular

it holds that
N ′−�+k⋃

ν=k

Ω̂�,N ′
k,ν ⊂ M̃∞

h , where 0 ≤ k ≤ � ≤ N ′ with k ≤ ν ≤ N ′ − �+ k.

Proof. If there are j, μ such that S μ
j (p) = N ′, then we can find

(g, r1), . . . , (g, rN ′
) ∈ A j,μ

p such that for q ∈M near p,

rj(q, h(q), h(q), g(q)) = 0, j = 1, . . . , N ′,

and such that the Jacobian rw of the map r = (r1, . . . , rN ′
) is invertible at p. Hence

we may apply Corollary 4.10 to conclude that h is C∞-smooth in a neighborhood
of p. The remainder of the proposition follows in a straightforward way. The proof
is complete.

Once we have dealt with what is happening for all points belonging to each of
the open subsets Ω̂�,N ′

k,ν , we now turn to describing how the existence of points in
one of the sets Ω̂�,m

k,ν for m < N ′ impacts the CR geometry of the set h(M). This is
explained in the following result.

Proposition 5.6. Let M be an abstract CR manifold and let h :M → CN ′
be

a CR map of class C 1. Let k, �,m, ν ∈ N with k ≤ ν ≤ N ′ − � + k − 1 and
0 ≤ k ≤ � ≤ m < N ′. If h is of class C N ′−�+k−ν on Ω̂�,m

k,ν , then there exists a
CR family of (N ′ −m)-dimensional formal holomorphic submanifolds (Γq)q∈bΩ�,m

k,ν
,

depending in a C N ′−�+k−ν fashion on q, such that for every q ∈ Ω̂�,m
k,ν , Γq is formally

contained in h(M) at h(q).

The proof of Proposition 5.6 follows along the lines of the arguments from [16];
we highlight in what follows the main steps of the proof adapted to the abstract
case studied in this paper. Throughout the rest of this section, we fix k, �,m, ν ∈ N

as in Proposition 5.6.
For p ∈ Ω̂�,m

k,ν , we have by definition dim Vν,N ′−�+k
p = N ′ − m. One of the

main properties which our construction needs is that locally one can find a basis
of CR vector fields which span Vν,N ′−�+k

q for q close to p. Before we formulate the
proposition, let us recall the following result [16, Lemma 5.4], which also holds in
the abstract setting.

Lemma 5.7. Let M be an abstract CR manifold of CR dimension n, p ∈ M,

and Rp be a subring of C τ (M,p), for some τ ∈ Z+, satisfying the following
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condition: for every ψ ∈ Rp, if ψ(p) �= 0 then 1/ψ ∈ Rp. Let N ′ ≥ 1, 1 ≤ δ < N ′,
and A1, . . . , Aδ be germs of p of CN ′

-valued mappings with components in Rp.
Assume that

(i) The rank of the N ′ × δ matrix A := (A1, . . . , Aδ) is equal to δ at p.
(ii) For any smooth CR vector field L̄ of M near p, the rank of the N ′ × 2δ matrix

(A, L̄A) is constantly equal to δ in a neighborhood of p.

Then there exist N ′ − δ germs at p of CN ′
-valued mappings, with components in

Rp ∩ C τ
CR(M,p), denoted by V 1, . . . , V N ′−δ such that for 1 ≤ j ≤ N ′ − δ and

1 ≤ γ ≤ δ, we have

V j · Aγ :=
N ′∑
i=1

V j
i A

γ
i = 0 in Rp, (5.11)

and such that V 1(p), . . . , V N ′−δ(p) are linearly independent.

Proposition 5.8 is obtained from Lemma 5.7 in exactly the same way as
[16, Proposition 5.3] and [16, Lemma 5.5] are obtained from [16, Lemma 5.4].

Proposition 5.8. Let M be an abstract CR manifold and let h :M → CN ′
be

a CR map of class C 1. Let k, �,m, ν ∈ N with k ≤ ν ≤ N ′ − � + k − 1 and
0 ≤ k ≤ � ≤ m < N ′ and assume that h is of class C N ′−�+k−ν on Ω̂�,m

k,ν . Then
for every p ∈ Ω̂�,m

k,ν , there exist a neighborhood Up ⊂ Ω̂�,m
k,ν of p and CR maps

V j :Up → CN ′
of class C N ′−�+k−ν , j = 1, . . . , N ′−m, whose components belong to

F ν,N ′−�+k
p , such that {V 1(q), . . . , V N ′−�(q)} forms a basis of Vν,N ′−�+k

q for every
q ∈ Up. Furthermore, for every q ∈ Up, we have Vν,N ′−�+k

q = Vν+1,N ′−�+k
q and

for every (g, r) ∈ A ν+1,N ′−�+k
q defined on a neighborhood Ũq ⊂ Up of q, it holds

that

V j(q̃) · rw(q̃, h(q̃), h(q̃), g(q̃)) = 0, q̃ ∈ Ũq, j = 1, . . . , N ′ −m.

Once we have established all the useful properties of the spaces Vν,N ′−�+k
p , we

can now construct in the next proposition the formal holomorphic submanifolds
that appear in the statement of Proposition 5.6. Note that the proposition does not
make any assumption on M ; in particular no microlocal extension property on M
is required.

Proposition 5.9. Under the assumptions of Proposition 5.6, for every p ∈ Ω̂�,m
k,ν ,

let V = (V 1, . . . , V N ′−m) and Up be the open set from Proposition 5.8. For t =
(t1, . . . , tN ′−m) ∈ CN ′−m, we set t ·V :=

∑N ′−m
i=1 tiV

i. For d ∈ Z+, define a family
of homogeneous polynomial maps of degree d in (F ν,N ′−�+k

p [t])N ′
inductively by

setting

D1(t) := t · V, Dd+1(t) :=
1

d+ 1
(t ·V) ·Dd

w(t), d ≥ 1. (5.12)
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Further set D(t) :=
∑∞

d=1D
d(t) ∈ (F ν,N ′−�+k

p �t�)N ′
and write D(t) =∑

α∈NN′−m dαt
α. Then the following hold :

(a) For each α ∈ NN ′−m, dα is a well-defined CR map on Up and of class
C N ′−�+k−ν .

(b) For every q ∈ Up, t �→ D(q; t) := h(q)+
∑

α∈NN′−m dα(q)tα defines an (N ′−m)-
dimensional formal holomorphic submanifold through h(q), which we denote
by Γq.

(c) For every q ∈ Up, Γq is formally contained in h(M) at h(q).

The proof of Proposition 5.9 is carried out exactly the same way as the proof
of [16, Proposition 5.5] by using the following properties:

(i) {V 1(q), . . . , V N ′−�(q)} forms a basis of Vν,N ′−�+k
q for every q ∈ Up,

(ii) each V i(q) belongs to Vν,N ′−�+k
q , i.e. that for every (g, r) ∈ A ν,N ′−�+k

q ,

V i · rw(q) = 0, for q ∈ Up, i = 1, . . . , N ′ −m,

(iii) for each i = 1, . . . , N ′ − m, the conjugate V i also belongs to F ν,N ′−�+k
q for

q ∈ Up (since V i is CR and therefore admissible),
(iv) an appropriate use of the chain rule (e.g. [16, Lemma 5.7]).

Proof of Proposition 5.6. A direct application of Proposition 5.9 yields the
(local) existence of Γq, for every q ∈ Ω̂�,m

k,ν , with the required property. We just have
to check that the construction from Proposition 5.9 actually yields the same formal
submanifolds on overlaps of neighborhoods Up ∩ Up̃ ⊂ Ω̂�,m

k,ν with p, p̃ ∈ Ω̂�,m
k,ν (the

following argument also yields that the Γq are independent of the chosen basis V

in Proposition 5.9).
On such an intersection, by construction of Up and Up̃, if we denote the local

bases used in Proposition 5.9 by V = (V 1, . . . , V N ′−m) and Ṽ = (Ṽ 1, . . . , Ṽ N ′−m),
respectively, there exist an invertible matrix A = (Ar

s)
N ′−m
r,s=1 whose components

belong to C N ′−�+k−ν
CR (Up ∩ Up̃) (and F ν,N ′−�+k

q for every q ∈ Up ∩ Up̃) such that

Ṽ r =
N ′−m∑

s=1

Ar
sV

s.

Denote by D(q; t) the parametrization obtained from Proposition 5.9 for the formal
submanifolds Γq’s, associated to V, and D̃(q; t̃) the one corresponding to the Γ̃q’s
associated to Ṽ, for q ∈ Up ∩ Up̃. The reader may check that, using the chain rule,
one may easily construct, for every q ∈ Up ∩ Up̃, a formal (holomorphic) invertible
map Φq : (CN ′−m, 0) → (CN ′−m, 0), whose coefficients depend C N ′−�+k−ν on q,
such that

Φq(t) = A(q)t+ · · · , D̃(q; Φq(t)) = D(q; t).

Hence for q ∈ Up ∩ Up̃, the formal submanifolds Γq and Γ̃q coincide. The proof of
the proposition is complete.
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6. Proofs of Theorem 2.3 and its Consequences

6.1. Proofs of Theorems 1.1 and 2.3, Corollaries 2.4, 2.6 and 2.7

Proof of Theorem 2.3. First of all, since h is of class C N ′−k+�, it is not difficult
to see that for every p ∈ M , we have S N ′−�+k

k (p) ≥ ek(p), where ek(p) is given
by (2.3). Hence S N ′−�+k

k (p) ≥ ek ≥ � for p on some dense open subset of M .
This means that the open subset Mk

� given in Proposition 5.4 is dense in M and
we therefore conclude from that proposition that

⋃N ′−�+k
ν=k Ω�

k,ν is dense too in M ,
where each Ω�

k,ν is given by (5.6) and where the union is a disjoint union. We
therefore get that the disjoint union

N ′−�+k⊔
ν=k

N ′⊔
m=�

Ω̂�,m
k,ν

is dense in M . By Proposition 5.5, we have
⋃N ′−�+k

ν=k Ω̂�,N ′
k,ν ⊂ M̃∞

h and hence, using
in addition (5.10),

N ′−�+k−1⊔
ν=k

N ′−1⊔
m=�

Ω̂�,m
k,ν

is a dense open subset of (SingSupph)◦. Applying Proposition 5.6, we reach the
conclusion of the theorem.

Proof of Corollary 2.4. As in [16, Lemma 6.1], it is easy to show that e0 ≥
N ′ − n′. Applying Theorem 2.3 with k = 0 and � = N ′ − n′, we get a dense open
subset Ω of (SingSupp h)◦ satisfying h(Ω) ⊂ EM ′ . The result is proved.

Proof of Corollary 2.6. As in [16, Lemma 6.2], one can show that the Levi-
nondegeneracy assumption on M ′ and the fact that dh is injective on T 1,0M imply
that e1 ≥ N ′ − n′ + n. Now applying Theorem 2.3 with k = 1 and � = N ′ − n′ + n,
we reach the desired result.

For the proof of Corollary 2.7, we need the following version of [16, Proposi-
tion 7.1] in the abstract case for which we briefly sketch its proof.

Proposition 6.1. Let M be an abstract strongly pseudoconvex CR manifold of
hypersurface type, of CR dimension n, and M ′ ⊂ Cn′+1 be (connected) C ∞-smooth
Levi-nondegenerate of signature �′, n′ > n ≥ 1. Assume that there exists a point
p ∈ M and a germ at p of strictly noncharacteristic CR map h : (M,p) → M ′ of
class C 2 satisfying the following: there exists a neighborhood V ⊂ M of p, and for
every ξ ∈ V, a smooth complex curve Υξ in Cn′+1 containing h(ξ), depending in
a C 1 manner on ξ ∈ V, such that the order of contact of Υξ with M ′ at h(ξ) is
greater or equal to 3. Then necessarily n < n′ − �′ < n′.

Sketch of proof of Proposition 6.1. The proof of [16, Proposition 7.1] is
obtained by adapting the arguments of [19, Proposition 3.1]. We claim that the
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same arguments may be used in the present situation (of an abstract strongly pseu-
doconvex CR manifold M of hypersurface type). Indeed, using the fact that there
exists an integrable strongly pseudoconvex CR structure V̂ on M near p whose CR
bundle agrees with V to infinite order at p (see [23, Theorem IV.1.3]), one obtains,
analogously to what is done in [4], first order normalization conditions for the map
h at p. Once these normalizations are obtained, the proof of [19, Proposition 3.1]
can be carried out in the same way (with obvious adjustments) to prove Proposi-
tion 6.1 (see also [15, Lemma 6.7] for similar arguments). We leave the details to
the reader.

Proof of Corollary 2.7. By [3, Theorem 2.9],M satisfies the microlocal extension
property (at every point). Furthermore, without loss of generality, we may assume
that M is connected. If there is point on M whose Levi form has one positive
and one negative eigenvalue, then the same holds at every point on M , and by
[3, Theorem 2.9] and Theorem 4.7, h is smooth all over M . Hence, we may assume
that M is strongly pseudoconvex. Now using again the fact that there exists an
integrable strongly pseudoconvex CR structure V̂ on M near p whose CR bundle
agrees with V to infinite order at p, one can show that, since h is strictly non-
characteristic, h must be CR immersive too (see [4]). Therefore, as in the proof
of Corollary 2.6, we have that e1 ≥ n + 1. Applying Theorem 2.3 with k = 1
and � = n + 1, we get that if (SingSupph)◦ were not empty, there would exist a
nonempty open subset V of M and a family of formal holomorphic curves Γq, for
q ∈ V , depending on a C 1-smooth and CR manner on q, such that h(q) ∈ Γq and
Γq is formally contained in M ′ (at h(q)). From such a family, we easily get another
family Υq, for q ∈ V , of smooth complex curves passing through h(q), depending
in a C 1 manner on q, that are tangent to order ≥ 3 to M ′ at h(q). It follows from
Proposition 6.1 that n < n′ − �′, a contradiction. The proof is complete.

6.2. Proof of Corollary 2.5

We shall prove Corollary 2.5 by establishing the following more general result, which
contains Corollary 2.5 as a special case for k = 1. First let us recall that an abstract
CR manifold M is called k-finitely nondegenerate at a point p ∈M , σ ∈ Z+, if the
Lie derivatives

LK̄1
· · ·LK̄j

ϑ(p), j ≤ k, ϑ ∈ Γ(M,T 0M), K̄ν ∈ Γ(M,V )

span T ′
pM , and it is called k-finitely nondegenerate if it is k-finitely nondegenerate

at each point. Furthermore, M is 1-finitely nondegenerate if and only if it is Levi-
nondegenerate (see [1] for more on this).

Theorem 6.2. Let M be a k-finitely nondegenerate abstract CR manifold with
the microlocal extension property, of CR dimension n and CR codimension d, and
M ′ ⊂ CN ′

be a C ∞-smooth CR submanifold with N ′ > N = n+ d. Then for every
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strictly noncharacteristic CR map h :M →M ′ of class C N ′−N+k, there is a dense
open subset Ω of (SingSupp h)◦ such that h(Ω) ⊂ EM ′ . In particular, if M ′ is of
D’Angelo finite type, h is C ∞-smooth on a dense open subset of M .

For the proof of Theorem 6.2, we need to prove the following lemma, which can
be viewed as a version of [16, Lemma 6.3].

Lemma 6.3. Let M be an abstract CR manifold and M ′ ⊂ CN ′
be a C ∞-smooth

CR submanifold. If M is k-finitely nondegenerate and if h :M → M ′ is a strictly
noncharacteristic CR map of class C k+1, then ek ≥ n+ d where n = dimCRM and
d = codimCRM .

In order to prove Lemma 6.3, we need to recall a number of facts and establish
a basic smooth-to-formal transition. We are going to write

eM
� (p) := dimC{LK̄1

· · ·LK̄k
ϑ(p), k ≤ �, ϑ ∈ Γ(M,T 0M), K̄j ∈ Γp(M,V )},

and similarly for M ′.
We recall that a formal generic submanifold M̂ ⊂ CN

z of codimension d (through
the origin) is given by a formal manifold ideal Î = Î(M̂) ⊂ C�z, z̄�, that is, Î =
(ρ1, . . . , ρd) and the generators ρ1, . . . , ρd ∈ C�z, z̄� can be chosen to satisfy the
following conditions:

(1) Each of the ρj is real: ρj(z, z) = ρ̄j(z, z), for j = 1, . . . , d.
(2) The complex gradients of the ρj are linearly independent at 0:

rk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ρ1

∂z1
(0) . . .

∂ρ1

∂zn
(0)

...
...

∂ρd

∂z1
(0) . . .

∂ρd

∂zn
(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= d.

A formal generic submanifold has a formal coordinate ring

C�M̂� = C�z, z̄��Î(M̂),

which is isomorphic to a power series ring in 2n+ d variables. We are denoting the
image of a formal power series A(z, z̄) in C�M̂� as A(z, z̄)|M̂ .

Assume that M̂ ⊂ CN
z and M̂ ′ ⊂ CN ′

w are formal generic submanifolds.
A formal power series map of the form H (z, z̄) = (H(z), H̄(z̄)) is said to be a formal
holomorphic map from M̂ to M̂ ′ if H ∗Î(M̂ ′) ⊂ Î(M̂), i.e. if ρ′(H(z), H̄(z̄)) ∈ Î(M̂)
for every ρ′ ∈ Î(M̂ ′). If we denote the maximal ideal of C�M̂� by m(M̂), then we
say that a formal power series map of the form above is a k-approximate formal
map from M to M ′ if ρ′(H(z), H̄(z̄))|M ∈ m(M̂)k+1 for every ρ′ ∈ Î(M̂ ′).
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We also need to introduce the notion of a formal abstract CR structure before we
will show that this is actually the same type of concept as that of a formal generic
submanifold. For this, we let x = (x1, . . . , xm) be (real) formal unknowns, which
we think of as coordinate functions of a formal manifold, i.e. we are identifying its
coordinate ring with R�x�. The ring C�x� has a natural involution given by

a(x) =
∑

α

aαx
α �→ ā(x) =

∑
α

āαx
α,

which extends in a natural way to free modules over C�x�. For any subset A ⊂
C�x�m of such a free module we denote by Ā the set of conjugates of elements of
A. If A ⊂ C�x�m is a submodule, so is Ā. We define the Lie brackets of elements of
C�x�m by identifying

a(x) =

⎛⎜⎜⎝
a1(x)

...

am(x)

⎞⎟⎟⎠ with
m∑

j=1

aj(x)
∂

∂xj
,

and also use this to define the action of a ∈ A on a formal function f , i.e.

a · f =
m∑

j=1

aj(x)
∂f

∂xj
(x).

We identify the elements of

A⊥ =

⎧⎨⎩(b1(x), . . . , bm(x)) : b · a =
∑

j

aj(x)bj(x) = 0∀a ∈ A

⎫⎬⎭
with forms, i.e.

(b1(x), . . . , bm(x)) is identified with
∑

j

bj(x)dxj .

The exterior differential of a formal power series f is defined in the usual way; note
that a function f is a solution to the differential equations a · f = 0 for a ∈ A if
and only if df ∈ A⊥.

Definition 6.4. We say that a submodule A, of constant rank n, of C�x�m defines
a formal abstract CR structure if

(1) A ∩ Ā = {0}; and
(2) [A,A] ⊂ A.

Let A ⊂ C�x�m and B ⊂ C�y�m′
be formal abstract CR structures. We say that a

formal power series map ĥ(x) = (ĥ1(x), . . . , ĥm′
(x)) ∈ R�x�m′

is CR if h∗B⊥ ⊂ A⊥,
where the pullback operation is defined by

ĥ∗

⎛⎝∑
j

b′j(y)dyj

⎞⎠ =
∑

j

b′j(h(x))dĥj(x).
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Two formal abstract CR structures are said to be formally equivalent if there exists
an invertible CR map taking one into the other.

An example of a formal abstract CR structure comes from a formal generic
submanifold M̂ ⊂ CN of codimension d as discussed before: If we define the (0, 1)-
vector fields tangent to M̂ to be the formal vector fields of the form

L̄ =
N∑

j=1

L̄j(z, z̄)
∂

∂z̄j
, satisfying L̄ρ(z, z̄) = 0 ∀ ρ ∈ Î(M̂),

then each such L̄ defines a formal vector field acting on C�z, z̄��Î(M̂); we call the

module of all these vector fields D(0,1)(M̂). Now note that because of the assumption
on the rank of ρw, D(0,1)(M̂) is a module of (constant) rank n = N − d over the
ring C�z, z̄��Î(M̂), which as observed above is the coordinate ring of a formal real
manifold of dimension m = 2n+ d, and thus isomorphic to some power series ring
C�x1, . . . , x2n+d�; a convenient coordinate choice is (z, z̄′), where z̄′ consists of n of
the z̄. In this case, D(0,1)(M̂) is generated by the dzj .

Note that a formal CR map between these formal abstract CR structures is the
same as a formal holomorphic map defined above. On the one hand, if H (z, z̄) =
(H(z), H̄(z̄)) is a formal holomorphic map, then for any j = 1, . . . , N ′, we have that
H∗dwj =

∑
k

∂Hj

∂zk
(z)dzk. If on the other hand we have a map h = (H(z, z̄), H(z̄, z))

which takes the dwj to linear combinations of the dzk, then necessarily L̄Hk(z, z̄) =
0 for every formal CR vector field L̄ and for every k = 1, . . . , N ′. Because M is
generic, this is only possible if every Hk is independent of z̄.

An easy application of the Frobenius theorem yields that a formal abstract CR
structure A is integrable in the sense that A⊥ is spanned by linearly independent
differentials of solutions Z(x) of the equations L̄Z = 0, where L̄ ∈ A, just as in the
case of a real-analytic CR structure: We recall the corresponding statement and
proof.

Lemma 6.5. Let A ⊂ C�x1, . . . , xm�m be an abstract formal CR structure, of
rank n and codimension d = m − 2n. Then there exists a formal generic manifold
M̂ ⊂ CN , with N = n + d, such that the formal CR structure of M̂ is formally
equivalent to A.

Proof. Let x = (x1, . . . , xm) be the real coordinates in the theorem, and choose a
basis L̄1, . . . L̄n of A,

L̄j =
m∑

k=1

L̄k
j (x)

∂

∂xk
.

Since [L̄j , L̄�] =
∑

k a
k
j,�L̄k for some formal power series ak

j,�, we can use the Frobe-

nius theorem in the formal category for the family of vector fields ˆ̄L1, . . . ,
ˆ̄Ln and
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obtain that there exist N = n + d formal integrals ẑ1(x), . . . , ẑN(x) ∈ C�x�, with
linearly independent differentials (at 0). The image of R2n+d (as a formal manifold)
under the formal map x �→ ẑ(x) = (ẑ1(x), . . . , ẑN (x)) is a formal generic manifold
of CN possessing the desired properties.

Yet another way to obtain a formal abstract CR structure is from an abstract CR
structure (M,V ) at a point p ∈M . In order to do that, let us denote for a germ of
a smooth function a ∈ C∞(M,p) by âp the formal function associated to a, i.e. the
image of a in the quotient of C∞(M,p) under the equivalence relation that a and b
agree to infinite order at p. This ring can, in any set of smooth coordinates vanishing
at p, be identified with the formal Taylor series at p via âp(x) =

∑
α

1
α!

∂|α|a
∂xα (0)xα,

and the construction can be adapted to also define formal maps associated to a
smooth map in the same way. We now define A to consist of all of the formal vector
fields coming from local sections of V , i.e.

A =

{∑
k

ˆ̄L
k ∂

∂xk
: L̄ =

∑
k

L̄k(x)
∂

∂xk
∈ Γ(M,V )

}
.

We will denote the formal CR structure gotten in this way by M̂p.
The formal map associated to a smooth CR map h : (M,V ) → (M ′,V ′) between

abstract CR structures gives rise to a formal CR map ĥp : M̂p → M̂ ′
h(p). If h is a

C k-smooth CR map, then we analogously obtain a k-approximate formal CR map
ĥ

[k]
p : M̂p → M̂ ′

h(p).
We are now ready to give the proof of Lemma 6.3.

Proof of Lemma 6.3. Assume that h is strictly noncharacteristic at p. We
are going to show that the inequality eM

s (p) ≤ es(p) holds for every s ≤ k.
From this, the lemma follows. Since h is strictly noncharacteristic, there exist
functions ρ1, . . . , ρd ∈ Ih(p)(M ′), satisfying ∂ρ1 ∧ · · · ∧ ∂ρd(p) �= 0, such that
h∗i∂ρ1, . . . , h∗i∂ρd span T 0M near p. We replace M ′ by the (larger) smooth man-
ifold near h(p) defined by ρ1 = · · · = ρd = 0.

Now, we compute the first k Lie derivatives of the h∗i∂ρ1, . . . , h∗i∂ρd on the
associated formal manifold M̂p; we are allowed to do this because the map h is
C k+1 and therefore ĥ = ĥ

[k+1]
p is a (k + 1)-approximate formal CR map from M̂p

to M̂ ′
h(p).

It follows that, with the ẑj denoting the formal integrals of M̂p as before, that

LK̄1
· · ·LK̄�

h∗i∂ρj(p)

= LK̄1
· · ·LK̄k

N ′∑
k=1

(
	j

wk
◦ h) dhk

∣∣∣∣∣
p
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=

⎛⎝ ˆ̄K1 . . .
ˆ̄K�

N ′∑
k=1

N∑
ν=1

(
	̂j

wk

(
ĥ(ẑ), ĥ(ẑ)

)) ∂ĥk

∂ẑν
dẑν

⎞⎠∣∣∣∣∣∣
p

=
(

ˆ̄K1 . . .
ˆ̄K�	̂

j
w

(
ĥ(ẑ), ĥ(ẑ)

))∣∣∣
p

⎛⎜⎜⎜⎜⎜⎝
∂ĥ1

∂ẑ1
(p) . . .

∂ĥ1

∂ẑN
(p)

...
...

∂ĥN ′

∂ẑ1
(p) . . .

∂ĥN ′

∂ẑN
(p)

⎞⎟⎟⎟⎟⎟⎠.
In the last line, we have identified forms with row vectors as before, and used the
fact that the ĥk are actually formal holomorphic functions. By definition, the space
spanned by the collection of all derivatives appearing on the left-hand side for � ≤ s

of this equation has dimension eM
s (p), and therefore the space spanned by vectors

of the form

( ˆ̄K1 . . .
ˆ̄K�	̂

j
w(ĥ(ẑ), ĥ(ẑ)))|p = (K̄1 . . . K̄�(	j

w ◦ h))|p
also has at least that dimension as claimed.

Proof of Corollary 2.5. We apply Lemma 6.3 and Theorem 2.3 with k = 1
and � = N to conclude the existence of the open subset Ω with the required
properties.

Proof of Theorem 1.1. We first note that since M is an abstract strongly pseu-
doconvex CR manifold of hypersurface type, it is everywhere Levi-nondegenerate
and therefore satisfies the microlocal extension property by Theorem 4.6. We may
therefore apply Corollary 2.5 with N = n + 1 and N ′ = n′ + 1, to conclude
that for every strictly noncharacteristic CR map h :M → M ′ of class C n′−n+1

there exists a dense open subset Ω of (SingSupp h)◦ such that h(Ω) ⊂ EM ′ . But
since EM ′ is closed (see [6]), we even have h((SingSupp h)◦) ⊂ EM ′ . The proof is
complete.
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