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Approximation and Convergence of Formal CR-Mappings

Francine Meylan, Nordine Mir, and Dmitri Zaitsev

1 Introduction and results

An important step in understanding the existence of analytic objects with certain proper-

ties consists of understanding the same problem at the level of formal power series. The

latter problem can be reduced to a sequence of algebraic equations for the coefficients

of the unknown power series and is often simpler than the original problem, where the

power series are required to be convergent. It is therefore of interest to know whether

such power series are automatically convergent or can possibly be replaced by other

convergent power series satisfying the same properties. A celebrated result of this kind

is Artin’s approximation theorem [1] which states that a formal solution of a system of

analytic equations can be replaced by a convergent solution of the same system that ap-

proximates the original solution at any prescribed order.

In this paper, we study convergence and approximation properties (in the spirit

of [1]) of formal (holomorphic) mappings sending real-analytic submanifolds M ⊂ C
N

and M ′ ⊂ C
N ′

into each other, N,N ′ ≥ 2. In this situation, the above theorem of Artin

cannot be applied directly. Moreover, without additional assumptions on the subman-

ifolds, the analogous approximation statement is not even true. Indeed, in view of an

example of Moser-Webster [23], there exist real-algebraic surfaces M,M ′ ⊂ C
2 that are

formally but not biholomorphically equivalent. However, our first main result shows that

this phenomenon cannot happen if M is a minimal CR-submanifold (not necessarily al-

gebraic) in C
N (see Section 2.1 for notation and definitions).

Theorem 1.1. Let M ⊂ C
N be a real-analytic minimal CR-submanifold and M ′ ⊂ C

N ′

a real-algebraic subset with p ∈ M and p ′ ∈ M ′. Then for any formal (holomorphic)
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mapping f : (CN, p) → (CN ′
, p ′) sending M into M ′ and any positive integer k, there

exists a germ of a holomorphic map fk : (CN, p) → (CN ′
, p ′) sending M into M ′, whose

Taylor series at p agrees with f up to order k. �

Approximation results in the spirit of Theorem 1.1 have been recently obtained

in [8, 9] in the important case when N = N ′ and f is invertible. Note that under the as-

sumptions of Theorem 1.1, there may exist nonconvergent maps f sending M into M ′.

For instance, it is easy to construct such maps in caseM is not generic in C
N. Also, ifM ′

contains an irreducible complex-analytic subvariety E ′ of positive dimension through p ′,

such maps fwith f(M) ⊂ E ′ (in the formal sense) always exist. Our next result shows that

these are essentially the only exceptions. Denote by E ′ the set of all points ofM ′ through

which there exist irreducible complex-analytic subvarieties ofM ′ of positive dimension.

This set is always closed (see [12, 18]) but not real-analytic in general (see [20] for an ex-

ample). In the following, we say that a formal (holomorphic) map f : (CN, p) → (CN ′
, p ′)

sendsM into E ′ ifϕ(f(x(t))) ≡ 0 holds for all germs of real-analytic maps x : (Rdim M
t , 0) →

(M,p) and ϕ : (M ′, p ′) → (R, 0) such that ϕ vanishes on E ′. We prove the following

theorem.

Theorem 1.2. Let M ⊂ C
N be a minimal real-analytic generic submanifold and M ′ ⊂

C
N ′

a real-algebraic subset with p ∈ M and p ′ ∈ M ′. Then any formal (holomorphic)

mapping f : (CN, p) → (CN ′
, p ′) sending M into M ′ is either convergent or sends M

into E ′. �

As an immediate consequence we obtain the following characterization.

Corollary 1.3. Let M ⊂ C
N be a minimal real-analytic generic submanifold and M ′ ⊂

C
N ′

a real-algebraic subset with p ∈ M and p ′ ∈ M ′. Then all formal maps f : (CN, p) →
(CN ′

, p ′) sending M into M ′ are convergent if and only if M ′ does not contain any irre-

ducible complex-analytic subvariety of positive dimension through p ′. �

In contrast to most previously known related results, Theorems 1.1, 1.2, and

Corollary 1.3 do not contain any assumption on the map f. Indeed, Theorems 1.1 and 1.2

seem to be the first results of this kind and an analog of Corollary 1.3 appears only in the

work of Baouendi, Ebenfelt, and Rothschild [6] for the caseM,M ′ ⊂ C
N are real-analytic

hypersurfaces containing no nontrivial complex subvarieties (see also Huang [14] for

regularity results under the same assumptions). In fact they prove a more general result

for M and M ′ of higher codimension assuming the map f to be finite and show (see the

proof of [6, Proposition 7.1]) that the finiteness of f automatically holds (unless f is con-

stant) in the mentioned case of hypersurfaces. However, in the setting of Corollary 1.3,

the finiteness of a (nonconstant) map f may fail to hold even when M,M ′ ⊂ C
N are



Approximation and Convergence of Formal CR-Mappings 213

hypersurfaces, for example, for M := S3 × C,M ′ := S5 ⊂ C
3, where S2n−1 ⊂ C

n is the

unit sphere. Thus, even in this case, Theorems 1.1, 1.2, and Corollary 1.3 are new and

do not follow from the same approach. It is worth mentioning that Corollary 1.3 is also

new in the case of unit spheres M = S2N−1 and M ′ = S2N ′−1 with N ′ > N. In con-

junction with a rationality result due to Forstnerič [13], we obtain the following corol-

lary.

Corollary 1.4. Any formal map sending the unit sphere S2N−1 ⊂ C
N into another unit

sphere S2N ′−1 ⊂ C
N ′

is a convergent rational map. �

Previous work in the direction of Theorem 1.2 is due to Chern and Moser [11] for

real-analytic Levi-nondegenerate hypersurfaces. More recently, this result was extended

in [3, 4, 6, 8, 9, 17, 21, 22] under weaker conditions on the submanifolds and mappings

(see also [7, 15] for related references).

One of the main novelties of this paper, compared to previous related work, lies

in the study of convergence properties of ratios of formal power series rather than of

the series themselves. It is natural to call such a ratio convergent, if it is equivalent to a

ratio of convergent power series. However, for our purposes, we need a refined version of

convergence along a given submanifold that we define in Section 3.1 (see Definition 3.4).

With this refined notion, we are able to conclude the convergence of a given ratio along

a submanifold, provided its convergence is known to hold along a smaller submanifold

and under suitable conditions on the ratio (see Lemmas 3.7 and 3.8).

Another novelty of our techniques consists of applying the mentioned conver-

gence results of Section 3.1 and their consequences given in Section 3.2 to ratios defined

on iterated complexifications of real-analytic submanifolds (in the sense of [25, 26])

rather than on single Segre sets (in the sense of [2]) associated to given fixed points. The

choice of iterated complexifications is needed to guarantee the nonvanishing of the rele-

vant ratios that may not hold when restricted to the Segre sets. These tools are then used

to obtain the convergence of a certain type of ratios of formal power series that appear

naturally in the proofs of Theorems 1.1 and 1.2. This is done in Theorem 4.1 that is, in

turn, derived from Theorem 3.13 which is established in the more general context of a

pair of submersions of a complex manifold.

After the necessary preparations in Sections 5 and 6, we state and prove Theorem

7.1 which is the main technical result of the paper and which implies, in particular,

that the (formal) graph of f is contained in a real-analytic subset Zf ⊂ M × M ′ sat-

isfying a straightening property. If f is not convergent, the straightening property im-

plies the existence of nontrivial complex-analytic subvarieties in M ′ and hence proves

Theorem 1.2. To obtain Theorem 1.1, we use the additional property of the set Zf (also
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given by Theorem 7.1), stating thatZf also contains graphs of holomorphic maps approx-

imating f up to any order. The fact that Zf ⊂M×M ′ then yields Theorem 1.1.

2 Notation and definitions

2.1 Formal mappings and CR-manifolds

A formal (holomorphic) mapping f : (CN
Z , p) → (CN ′

Z ′ , p ′) is the data of N ′ formal power

series (f1, . . . , fN ′) in Z − p, with f(p) = p ′. Let M ⊂ C
N and M ′ ⊂ C

N ′
be real-analytic

submanifolds with p ∈ M and p ′ ∈ M ′, and let ρ(Z,Z), ρ ′(Z ′, Z ′) be real-analytic vector-

valued defining functions forM near p andM ′ near p ′, respectively. Recall that a formal

mapping f as above sendsM intoM ′ if there exists a matrix a(Z,Z), with entries in C[[Z−

p,Z− p]], such that the formal identity

ρ ′(f(Z), f(Z)
)

= a
(
Z,Z

) · ρ(Z,Z) (2.1)

holds. Observe that (2.1) is independent of the choice of local real-analytic defining func-

tions forM andM ′. ForM ′ merely a real-analytic subset in C
N ′

, we also say that f sends

M into M ′, and write f(M) ⊂ M ′, if (2.1) holds for any real-analytic function ρ ′ (with

some a depending on ρ ′), defined in a neighborhood of p ′ in C
N ′

, vanishing on M ′. The

notation f(M) ⊂ M ′ is motivated by the fact that in case f is convergent, the above con-

dition holds if and only if f is the Taylor series of a holomorphic map sending (M,p) into

(M ′, p ′) in the sense of germs.

For a real-analytic CR-submanifold M ⊂ C
N (see, e.g., [5] for basic concepts re-

lated to CR-geometry), we write Tc
pM for the complex tangent space of M at p ∈ M, that

is, Tc
pM := TpM ∩ iTpM. Recall that M is called generic if for any point p ∈ M, we have

TpM+ iTpM = TpC
N. Recall also thatM is called minimal (in the sense of Tumanov [24])

at a point p ∈M if there is no real submanifold S ⊂M through pwith dimS < dimM and

Tc
qM ⊂ TqS for all q ∈ S. It is well known that, ifM is real-analytic, the minimality ofM

at p is equivalent to the finite type condition of Kohn [16] and Bloom and Graham [10].

2.2 Rings of formal power series

For a positive integer n, we write C[[t]] for the ring of formal power series (with complex

coefficients) in the indeterminates t = (t1, . . . , tn) and C{t} for the ring of convergent ones.

If t0 ∈ C
n, C[[t− t0]], and C{t− t0} will denote the corresponding rings of series centered

at t0. For any formal power series F(t), we denote by F(t) the formal power series obtained

from F(t) by taking complex conjugates of its coefficients.
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An ideal I ⊂ C[[t]] is called a manifold ideal if it has a set of generators with

linearly independent differentials (at 0). If I ⊂ C[[t]] is a manifold ideal, then any set

of generators with linearly independent differentials has the same number of elements

that we call the codimension of I. In general, we say that a manifold ideal I defines a

formal submanifold S ⊂ C
l and write I = I(S). Note that if I ⊂ C{t}, then I defines a

(germ of a) complex submanifold S ⊂ C
n through the origin in the usual sense. Given a

formal submanifold S ⊂ C
n of codimension d, a (local) parametrization of S is a formal

map j : (Cn−d, 0) → (Cn, 0) of rank n − d (at 0) such that V ◦ j = 0 for all V ∈ I(S). If

S, S ′ ⊂ C
n are two formal submanifolds, we write S ⊂ S ′ to mean that I(S ′) ⊂ I(S). For

a formal map h : (Cn
t , 0) → (Cr

T , 0), we define its graph Γh ⊂ C
n × C

r as the formal sub-

manifold given by I(Γh), where I(Γh) ⊂ C[[t, T ]] is the ideal generated by T1 −h1(t), . . . , Tr −

hr(t).

For a formal power series F(t) ∈ C[[t]] and a formal submanifold S ⊂ C
l, we write

F|S ≡ 0 (or sometimes also F(t) ≡ 0 for t ∈ S) to mean that F(t) ∈ I(S). If k is a nonnegative

integer, we also write F(t) = O(k) for t ∈ S to mean that for one (and hence for any)

parametrization j = j(t) of S, (F ◦ j)(t) vanishes up to order k at the origin. We also say

that another power seriesG(t) agrees with F(t) up to order k (at the origin) if F(t)−G(t) =

O(k).

A convenient criterion for the convergence of a formal power series is given by

the following well-known result (see, e.g., [6, 21] for a proof).

Proposition 2.1. Any formal power series which satisfies a nontrivial polynomial iden-

tity with convergent coefficients is convergent. �

It will be also convenient to consider formal power series defined on an abstract

complex manifold (of finite dimension) X centered at a point x0 ∈ X without referring

to specific coordinates. In each coordinate chart such a power series is given by a usual

formal power series that transforms in the obvious way under biholomorphic coordinate

changes. Given such a series H, we write H(x0) for the value at x0 that is always defined.

It is easy to see that the set of all formal power series on a complex manifold centered at

x0 forms a (local) commutative ring that is an integral domain. The notion of convergent

power series extends to power series on abstract complex manifolds in the obvious way.

In a similar way, we may consider formal holomorphic vector fields on abstract

complex manifolds and apply them to formal power series. If F and G are such formal

power series on X centered at x0, we write L(F/G) ≡ 0 if and only if FLG − GLF ≡ 0 (as

formal power series on X).

Completely analogously, we may define formal power series mappings between

complex manifolds and their compositions.
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3 Meromorphic extension of ratios of formal power series

The ultimate goal of this section is to establish a meromorphic extension property for

ratios of formal power series (see Theorem 3.13).

3.1 Convergence of ratios of formal power series

Throughout Section 3, for any formal power series F = F(t) ∈ C[[t]] in t = (t1, . . . , tn) and

any nonnegative integer k, we denote by jkF or by jkt F the formal power series mapping

corresponding to the collection of all partial derivatives of F up to order k. We will use

the first notation when there is no risk of confusion and the second one when other inde-

terminates appear. For F(t), G(t) ∈ C[[t]], we write (F : G) for a pair of two formal power

series thinking of it as a ratio, where we allow both series to be zero.

Definition 3.1. Let (F1 : G1) and let (F2 : G2) be ratios of formal power series in t =

(t1, . . . , tn), and S ⊂ C
n be a (germ of a) complex submanifold through 0 ∈ C

n. We say

that the ratios (F1 : G1) and (F2 : G2) are k-similar along S if (jk(F1G2 − F2G1))|S ≡ 0.

The defined relation of similarity for formal power series is obviously symmetric

but not transitive, for example, any ratio is k-similar to (0 : 0) along any complex sub-

manifold S and for any nonnegative integer k. However, we have the following weaker

property.

Lemma 3.2. Let (F1 : G1), (F2 : G2), and (F3 : G3) be ratios of formal power series in

t = (t1, . . . , tn), S ⊂ C
n a complex submanifold through the origin and k a nonnegative

integer. Suppose that both ratios (F1 : G1) and (F3 : G3) are k-similar to (F2 : G2) along

S. Then, if there exists l ≤ k such that (jl(F2, G2))|S �≡ 0, then (F1 : G1) and (F3 : G3) are

(k− l)-similar along S. �

Proof. Without loss of generality, we may assume that (jlF2)|S �≡ 0. By the assumptions,

we have (jk(F1G2 − F2G1))|S ≡ 0 and (jk(F3G2 − F2G3))|S ≡ 0. Multiplying the first identity

by F3, the second by F1, and subtracting from each other, we obtain

(
jk
(
F2

(
F1G3 − F3G1

)))∣∣
S
≡ 0. (3.1)

Since (jlF2)|S �≡ 0, the last identity is only possible if (jk−l(F1G3−F3G1))|S ≡ 0 as required.
�

We will actually use the following refined version of Lemma 3.2 whose proof is

completely analogous. In what follows, for some splitting of indeterminates t = (t1,

t2, t3) ∈ C
n1 × C

n2 × C
n3 and for any formal power series F(t) ∈ C[[t]], we write jk

tiF

for the collection of all partial derivatives up to order k of Fwith respect to ti, i = 1, 2, 3.
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Lemma 3.3. Let (F1 : G1), (F2 : G2), and (F3 : G3) be ratios of formal power series in

t = (t1, t2, t3) ∈ C
n1 × C

n2 × C
n3 and set S := C

n1 × {(0, 0)} ⊂ C
n1 × C

n2 × C
n3 . Suppose

that there exist integers l ≥ 0 and k2, k3 ≥ l such that

(
jl
(
F2, G2

))∣∣
S
�≡ 0, (

jk2

t2 j
k3

t3

(
F1G2 − F2G1

))∣∣
S
≡ 0,(

jk2

t2 j
k3

t3

(
F3G2 − F2G3

))∣∣
S
≡ 0.

Then (jk2−l

t2 jk3−l

t3 (F1G3 − F3G1))|S ≡ 0. �

Clearly, given a complex submanifold S ⊂ C
n through the origin, any fixed ratios

(F1 : G1) and (F2 : G2) are k-similar along S for any k if and only if F1G2 − F2G1 ≡ 0, that

is, if they are equivalent as ratios. We now define a notion of convergence along S for any

ratio of formal power series.

Definition 3.4. Let S ⊂ C
n be a complex submanifold through the origin and F(t), G(t) ∈

C[[t]], t = (t1, . . . , tn). The ratio (F : G) is said to be convergent along S if there ex-

ist a nonnegative integer l and, for any nonnegative integer k, convergent power series

Fk(t), Gk(t) ∈ C{t}, such that the ratio (Fk : Gk) is k-similar to (F : G) along S and

(jl(Fk, Gk))|S �≡ 0.

The uniformity of the choice of the integer l is a crucial requirement in Definition

3.4 (see, e.g., the proof of Lemma 3.8). This notion of convergence for ratios of formal

power series has the following elementary properties.

Lemma 3.5. For F(t), G(t) ∈ C[[t]], t = (t1, . . . , tn), the following properties hold:

(i) (F : G) is always convergent along S = {0};

(ii) if F and G are convergent, then (F : G) is convergent along any submanifold

S ⊂ C
n (through 0);

(iii) if (F : G) is equivalent to a nontrivial ratio that is convergent along a subman-

ifold S, then (F : G) is also convergent along S;

(iv) if (F : G) is convergent along S = C
n, then it is equivalent to a nontrivial ratio

of convergent power series. �

Proof. Properties (i), (ii), and (iv) are easy to derive from Definition 3.4. Property (iii) is

a consequence of Lemma 3.2. �

An elementary useful property of ratios of formal power series is given by the

following lemma.



218 Francine Meylan et al.

Lemma 3.6. Let (F : G) be a ratio of formal power series in t = (t1, t2) ∈ C
n1 × C

n2 with

G �≡ 0, and such that (∂/∂t2)(F/G) ≡ 0. Then there exists F̃(t1), G̃(t1) ∈ C[[t1]] with G̃ �≡ 0

such that (F : G) is equivalent to (F̃ : G̃). �

Proof. From the assumption it is easy to obtain, by differentiation, the identity

(
∂ν

t2F
)(
∂α

t2G
)

−
(
∂ν

t2G
)(
∂α

t2F
) ≡ 0, (3.2)

for all multi-indices α, ν ∈ N
n2 . Since G �≡ 0, there exists α ∈ N

n2 such that (∂α
t2G)|t2=0 �≡

0. Define F̃(t1) := ∂α
t2F(t1, 0) ∈ C[[t1]] and G̃(t1) := ∂α

t2G(t1, 0) ∈ C[[t1]]. Then, by putting

t2 = 0 in (3.2), we obtain that (F̃∂ν
t2G− G̃∂ν

t2F)|t2=0 ≡ 0 for any multi-index ν ∈ N
n2 . From

this, it follows that the ratios (F : G) and (F̃ : G̃) are equivalent, which completes the proof

of the lemma since by construction G̃ �≡ 0. �

The following lemma will be used in Section 3.2 to pass from smaller sets of con-

vergence to larger ones.

Lemma 3.7. Let F(t), G(t) ∈ C[[t]] be formal power series in t = (t1, t2, t3) ∈ C
n1 × C

n2 ×
C

n3 that depend only on (t1, t3). Then, if the ratio (F : G) is convergent along C
n1 × {(0, 0)},

it is also convergent along C
n1 × C

n2 × {0}. �

Proof. We set S := C
n1 × {(0, 0)} ⊂ C

n1 ×C
n2 ×C

n3 and S̃ := C
n1 ×C

n2 × {0} ⊂ C
n1 ×C

n2 ×
C

n3 . By the assumptions and Definition 3.4, there exist a nonnegative integer l and, for

any nonnegative integer k, convergent power series Fk(t), Gk(t) ∈ C{t} such that

(
jkt
(
F
(
t1, t3

)
Gk(t) −G

(
t1, t3

)
Fk(t)

))∣∣
S
≡ 0, (3.3)

and (jl(Fk, Gk))|S �≡ 0. We fix k ≥ l. Choose β0 ∈ Nn2 with |β0| ≤ l such that

(
jl(t1,t3)

((
∂

β0

t2 Fk

)(
t1, 0, t3

)
,
(
∂

β0

t2 Gk

)(
t1, 0, t3

)))∣∣∣
t3=0

�≡ 0. (3.4)

Define F̃k(t) := ∂
β0

t2 Fk(t1, 0, t3) and G̃k(t) := ∂
β0

t2 Gk(t1, 0, t3). By the construction, we have

(jl(F̃k, G̃k))|
S̃

�≡ 0 and it is also easy to see from (3.3) that (F : G) is (k − l)-similar to

(F̃k : G̃k) along S̃. This finishes the proof of Lemma 3.7. �

The next less obvious lemma will be also used for the same purpose.

Lemma 3.8. Consider formal power series F(t), G(t) ∈ C[[t]] in t = (t1, t2, t3) ∈ C
n1 ×

C
n2 × C

n3 of the form

F(t) = ϕ
(
Y
(
t1, t3

)
, t2
)
, G(t) = ψ

(
Y
(
t1, t3

)
, t2
)
, (3.5)
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where Y(t1, t3) ∈ (C[[t1, t3]])r for some integer r ≥ 1 and ϕ and ψ are convergent power

series in C
r × C

n2 centered at (Y(0), 0). Then the conclusion of Lemma 3.7 also holds.

�

Proof. The statement obviously holds if F and G are both zero, hence we may assume

that (F,G) �≡ 0. Then there exists a nonnegative integer d such that (jd(F,G))|S �≡ 0, where

S := C
n1 × {(0, 0)} ⊂ C

n1 × C
n2 × C

n3 . Since (F : G) is assumed to be convergent along S,

there exist a nonnegative integer l and ratios (Fs : Gs), s = 0, 1, . . . , of convergent power

series such that (F : G) is s-similar to (Fs : Gs) and

(
jl
(
Fs, Gs

))∣∣
S
�≡ 0 (3.6)

for all s. Then, for any k ≥ l and s ≥ k+ l, we have

(
js−k
t2 jkt3

(
FGs − FsG

))∣∣
S
≡ 0. (3.7)

In view of (3.5) we may rewrite (3.7) in the form

Rs,k

((
jkt3Y

)(
t1, 0

)
, t1
) ≡ 0, (3.8)

where Rs,k is a convergent power series in the corresponding variables. We view (3.8)

as a system of analytic equations Rs,k(y, t1) = 0 for k ≥ l fixed, s ≥ k + l arbitrary,

and y(t1) := (jk
t3Y)(t1, 0) as a formal solution of the system. By applying Artin’s approx-

imation theorem [1], for any positive integer κ, there exists a convergent solution yκ(t1)

agreeing up to order κ (at 0 ∈ C
n1) with y(t1) (and depending also on k) and satisfy-

ing Rs,k(yκ(t1), t1) ≡ 0 for all s ≥ k + 1. It is easy to see that there exists a convergent

power series Yκ(t1, t3) (e.g., a polynomial in t3) satisfying (jk
t3Y

κ)|t3=0 ≡ yκ(t1). Hence

the power series F̃κ
k(t) := ϕ(Yκ(t1, t3), t2) and G̃κ

k(t) := ψ(Yκ(t1, t3), t2) are convergent and

agree with F(t) and G(t), respectively, up to order κ, therefore by choosing κ sufficiently

large (depending on k), we may assume that (jd(F̃κ
k, G̃

κ
k))|S �≡ 0. In what follows, we fix

such a choice of κ. By our construction, (3.8) is satisfied with Y replaced by Yκ and thus

(3.7) is satisfied with (F,G) replaced by (F̃κ
k, G̃

κ
k), that is,

(
js−k
t2 jkt3

(
F̃κ

kGs − FsG̃
κ
k

))∣∣
S
≡ 0. (3.9)

In view of Lemma 3.3, (3.7), (3.9), and (3.6) imply

(
js−k−l
t2 jk−l

t3

(
FG̃κ

k − F̃κ
kG
))∣∣

S
≡ 0. (3.10)
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Since s can be taken arbitrarily large, (3.10) implies that (F : G) and (F̃κ
k : G̃κ

k) are (k − l)-

similar along S̃ := C
n1 × C

n2 × {0}. Since (jd(F̃κ
k, G̃

κ
k))|S �≡ 0 implies (jd(F̃κ

k, G̃
κ
k))|

S̃
�≡ 0,

the ratio (F : G) is convergent along S̃ (in the sense of Definition 3.4) and the proof is

complete. �

For the proof of Theorem 3.13, we will also need the following lemma.

Lemma 3.9. Let η be a holomorphic map from a neighborhood of 0 in C
r into a neigh-

borhood of 0 in C
n, with η(0) = 0, and α(t), β(t) ∈ C[[t]], t = (t1, . . . , tn). Suppose that

there exists a (germ of a) complex submanifold S ⊂ C
r through 0 such that η|S : S → C

n

has maximal rank n at points of the intersection S ∩ η−1({0}) that are arbitrarily close to

0 ∈ C
r. Suppose also that the ratio (α ◦ η : β ◦ η) is convergent along S (in the sense of

Definition 3.4). Then (α : β) is equivalent to a nontrivial ratio of convergent power series.

�

Proof. Without loss of generality, S is connected. By Definition 3.4, there exist a nonneg-

ative integer l and, for any positive integer k, convergent power seriesAk(z), Bk(z) ∈ C{z},

z = (z1, . . . , zr), such that

(
jkz
(
Bk(α ◦ η) −Ak(β ◦ η)))∣∣

S
≡ 0 (3.11)

and (jlz(Ak, Bk))|S �≡ 0. We may assume thatAk, Bk are convergent in a polydisc neighbor-

hood ∆k of 0 ∈ C
r. Choose ν0 ∈ N

r, |ν0| ≤ l, of minimal length such that

(
∂ν0

z Al, ∂
ν0
z Bl

)∣∣
S
�≡ 0. (3.12)

Then, since (∂ν
zAl, ∂

ν
zBl)|S ≡ 0 for |ν| < |ν0|, (3.11) with k = l implies

((
∂ν0

z Bl

)
(α ◦ η) −

(
∂ν0

z Al

)
(β ◦ η))∣∣

S
≡ 0. (3.13)

By assumption on η|S, we may choose a point s0 ∈ S∩∆l arbitrarily close to 0with s0 ∈ ∆l,

such that η|S has rank n at s0 and η(s0) = 0. By the rank theorem, we may choose a right

inverse of η, θ : Ω → S, holomorphic in some neighborhood Ω of 0 ∈ C
n with θ(0) = s0.

Since (η◦θ)(t) ≡ t,we obtain from (3.13) that ((∂ν0
z Bl)◦θ)(t)(α(t))−((∂ν0

z Al)◦θ)(t)(β(t)) ≡
0. To complete the proof of the lemma, it remains to observe that, in view of (3.12), θ can

be chosen so that (((∂ν0
z Al) ◦ θ)(t), ((∂ν0

z Bl) ◦ θ)(t)) �≡ 0. �

3.2 Applications to pullbacks of ratios of formal power series

The notion of convergence of a ratio of formal power series along a submanifold intro-

duced in Definition 3.4 extends in an obvious way to formal power series defined on a
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complex manifold X. We also say that two ratios (F1 : G1), (F2 : G2) of formal power se-

ries on X are equivalent if F1G2 −F2G1 vanishes identically as a formal power series on X.

Let Y be another complex manifold and v : Y → X a holomorphic map defined

in a neighborhood of a reference point y0 ∈ Y with x0 := v(y0). Consider the pullback

under v of a ratio (F : G) of formal power series on X (centered at x0) and assume that it

is convergent along a submanifold S ⊂ Y through y0. Under certain assumptions on the

map v and on the formal power series we show in this section that Y can be embedded into

a larger manifold Ỹ and v holomorphically extended to ṽ : Ỹ → X such that the pullback

of (F : G) under ṽ is convergent along a larger submanifold S̃ ⊂ Ỹ. The precise statement

is the following proposition.

Proposition 3.10. Let X and Y be complex manifolds and v : Y → X a holomorphic sub-

mersion with y0 ∈ Y. Let S ⊂ Y be a complex submanifold through y0 and (F : G) a ratio of

formal power series on X, centered at x0 := v(y0), whose pullback under v is convergent

along S. Let η : X → C be a holomorphic submersion onto a complex manifold C. Define

Ỹ :=
{
(y, x) ∈ Y × X : η(v(y)) = η(x)

}
,

S̃ :=
{
(y, x) ∈ Ỹ : y ∈ S},

ṽ : Ỹ 	 (y, x) 
−→ x ∈ X.

(3.14)

Assume that one of the following conditions hold:

(i) the ratio (F : G) is equivalent to a nontrivial ratio (α ◦ η : β ◦ η), where α and β

are formal power series on C centered at η(x0);

(ii) the ratio (F : G) is equivalent to a nontrivial ratio of the form (Φ(Y(η(x)), x) :

Ψ(Y(η(x)), x)), where Y is a C
r-valued formal power series on C centered

at η(x0) and Φ,Ψ are convergent power series centered at (Y(x0), x0) ∈
C

r × X.

Then the pullback of (F : G) under ṽ is convergent along S̃. �

Remark 3.11. The conclusion of Proposition 3.10 obviously holds in the case dimX =

dimC (without assuming neither (i) nor (ii)), and therefore, we may assume, in what fol-

lows, that dimX > dimC which implies dimỸ > dimY.

In order to reduce Proposition 3.10 to an application of Lemmas 3.7 and 3.8, we

need the following lemma.

Lemma 3.12. In the setting of Proposition 3.10, define

Ŝ :=
{(
y, v(y)

)
: y ∈ S} ⊂ Ỹ. (3.15)

Then the pullback of (F : G) under ṽ is convergent along the complex submanifold Ŝ. �
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The idea of the proof lies in the fact that the derivatives of the pullbacks under ṽ

can be expressed through derivatives of the pullbacks under v of the same power series.

For this property to hold, it is essential to assume that v is submersive.

Proof. The manifold Y can be seen as embedded into Ỹ via the map ϑ : Y 	 y 
→ (y, v(y)) ∈
Ỹ. Therefore, by considering ϑ(Y), we may also think of Y as a submanifold in Ỹ. Since

v is a submersion, after possibly shrinking Y near y0 and X near x0, we may choose for

every y ∈ Y a holomorphic right inverse of v, v−1
y : X → Y, such that v−1

y (v(y)) = y. Such

a choice can be made by the rank theorem so that the map Y × X 	 (y, x) 
→ v−1
y (x) ∈ Y is

holomorphic.

Choose open neighborhoods Ω1 ⊂ C
dimY and Ω2 ⊂ C

dimỸ−dimY of the origin and

local holomorphic coordinates (z,w) = (z(y, x), w(y, x)) ∈ Ω1 × Ω2 on Ỹ vanishing at

(y0, x0) ∈ Ỹ such that ϑ(Y) is given by {(y, x) ∈ Ỹ : w = 0}. (Hence z|Y : Y 	 y 
→ z(y, v(y)) ∈
Ω1 is a system of holomorphic coordinates for Y.) In what follows, as is customary, we

identify S and z(S). Since (F : G) is convergent along S, for any nonnegative integer k,

there exist convergent power series fk, gk in C{z} such that

(
jkzRk

)∣∣
S
≡ 0, Rk(z) := (F ◦ v)(z)gk(z) − (G ◦ v)(z)fk(z), (3.16)

and (jlz(fk, gk))|S �≡ 0 for some nonnegative integer l independent of k. In what follows

we fix k and may assume, without loss of generality, that fk, gk are holomorphic in Ω1.

We will define convergent power series f̃k, g̃k ∈ C{z,w} whose restrictions to {w = 0} are

fk, gk. For this, we set, for z ∈ Ω1, v
−1
z := v−1

y where y ∈ Y is uniquely determined by the

relation z = z(y, v(y)). Define holomorphic functions onΩ1×Ω2 by setting f̃k(z,w) := (fk◦
v−1

z ◦ ṽ)(z,w) and g̃k(z,w) := (gk◦v−1
z ◦ ṽ)(z,w). We also set R̃k(z,w) := (F◦ ṽ)(z,w)g̃k(z,w)−

(G◦ ṽ)(z,w)f̃k(z,w). Since v−1
z is a right convergent inverse for v, it follows from the above

construction that R̃k(z,w) = (Rk ◦ v−1
z ◦ ṽ)(z,w). Therefore, by the chain rule, the power

series mapping jk(z,w)R̃k is a linear combination (with holomorphic coefficients in (z,w))

of the components of (jkzRk) ◦ (v−1
z ◦ ṽ). By restricting to z ∈ S and w = 0, we obtain, in

view of (3.16) and the fact that v−1
z (ṽ(z, 0)) = z,

(
jk(z,w)

((
F ◦ ṽ)g̃k −

(
G ◦ ṽ)f̃k))∣∣z∈S, w=0

≡ 0. (3.17)

We therefore conclude that (f̃k : g̃k) is k-similar to (F ◦ ṽ : G ◦ ṽ) along Ŝ since the sub-

manifold Ŝ is given by {(z, 0) : z ∈ S} in the (z,w)-coordinates. Since (fk, gk) is the restric-

tion of (f̃k, g̃k) to {w = 0} by construction, we have (jl(z,w)(f̃k, g̃k))|
Ŝ
�≡ 0. This shows that

(F ◦ ṽ : G ◦ ṽ) is convergent along Ŝ and hence completes the proof of the lemma. �

Proof of Proposition 3.10. The statement obviously holds when F andG are both zero, so

we may assume that the ratio (F : G) is nontrivial. Choose local holomorphic coordinates
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Z = Z(y) ∈ C
dimY for Y, vanishing at y0, such that S is given in these coordinates by

{Z = (Z1, Z2) ∈ C
n1 × C

n2 : Z2 = 0}, with dimY = n1 + n2. By the construction of Ỹ,

we may choose holomorphic coordinates Z̃ for Ỹ near (y0, x0) of the form Z̃ = Z̃(y, x) =

(Z(y), Z3(y, x)) ∈ C
dimY × C

n3 , where Z is as above, n3 = dimỸ − dimY and such that ϑ(Y)

is given by {Z3 = 0}. Note that the submanifolds Ŝ and S̃ are given in the Z̃-coordinates

by {Z2 = Z3 = 0} and {Z2 = 0}, respectively, and η ◦ ṽ is independent of Z3 (again by the

construction of Ỹ).

To prove the conclusion assuming (i), we first note that since v is a submersion

and ϑ(Y) ⊂ Ỹ, it follows that ṽ is a submersion too. Therefore, the nontrivial ratio (F ◦ ṽ :

G ◦ ṽ) is equivalent to the nontrivial ratio (α ◦η ◦ ṽ : β ◦η ◦ ṽ), and this latter is convergent

along Ŝ by Lemma 3.5(iii) and Lemma 3.12. To complete the proof of (i), it is enough to

prove that (α ◦ η ◦ ṽ : β ◦ η ◦ ṽ) is convergent along S̃ (again by Lemma 3.5(iii)). Using

the Z̃-coordinates for Ỹ, we see that the conclusion follows from a direct application of

Lemma 3.7.

The proof of the conclusion assuming (ii) follows the same lines of the proof as-

suming condition (i) by making use of Lemma 3.8 (instead of Lemma 3.7). This completes

the proof of Proposition 3.10. �

3.3 Pairs of submersions of finite type and meromorphic extension

We will formulate our main result of this section in terms of pairs of submersions defined

on a given complex manifold. The main example of this setting is given by the complex-

ification M ⊂ C
N × C

N of a real-analytic generic submanifold M ⊂ C
N, where a pair

of submersions on M is given by the projections on the first and the last component C
N,

respectively.

In general, let X, Z, and W be complex manifolds and λ : X → Z, µ : X → W be

holomorphic submersions. Set X(0) := X and for any integer l ≥ 1, define the (odd) fiber

product

X(l) :=
{(
z1, . . . , z2l+1

) ∈ X2l+1 : µ
(
z2s−1

)
= µ

(
z2s

)
, λ(z2s) = λ(z2s+1), 1 ≤ s ≤ l}.

(3.18)

Analogously, fiber products with even number of factors can be defined, but will not be

used in this paper. It is easy to see that X(l) ⊂ X2l+1 is a complex submanifold. Let

X(l) 	 (z1, . . . , z2l+1

) 
−→ π
(l)
j

(
z1, . . . , z2l+1

)
:= zj ∈ X (3.19)
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be the restriction to X(l) of the natural projection to the jth component, 1 ≤ j ≤ 2l+1, and

denote by λ̃ : X(l) → Z and µ̃ : X(l) → W the maps defined by

λ̃ := λ ◦ π(l)
1 , µ̃ := µ ◦ π(l)

2l+1. (3.20)

Then, for every x ∈ X we set x(l) := (x, . . . , x) ∈ X(l), and

Dl(x) := λ̃−1
(
λ̃
(
x(l))), El(x) := µ̃−1

(
µ̃
(
x(l))) (3.21)

are complex submanifolds of X(l).

In the above mentioned case, that is, when X is the complexification of a real-

analytic generic submanifold M ⊂ C
N, the construction of X(l) yields the iterated com-

plexification M2l as defined in [25]. In this case the images µ̃(Dl(x)) are the Segre sets in

the sense of Baouendi, Ebenfelt, and Rothschild [2] and their finite type criterion says

that M is of finite type in the sense of Kohn [16] and Bloom and Graham [10] if and only

if the Segre sets of sufficiently high order have nonempty interior. The last condition can

also be expressed in terms of ranks (see [5]). Motivated by this case, we say in the above

general setting that the pair (λ, µ) of submersions is of finite type at a point x0 ∈ X if

there exists l0 ≥ 1 such that the map µ̃l0
|Dl0

(x0) has rank equal to dim W at some points

of the intersectionDl0
(x0) ∩ El0

(x0) that are arbitrarily close to x(l0)
0 .

The main result of Section 3 is the following meromorphic extension property of

ratios of formal power series that was inspired by an analogous result from [19] in a

different context. Its proof is however completely different and will consist of repeatedly

applying Proposition 3.10.

Theorem 3.13. Let X, Z, W be complex manifolds and λ : X → Z, µ : X → W be a pair of

holomorphic submersions of finite type at a point x0 ∈ X. Consider formal power series

F(x), G(x) on X centered at x0 of the form F(x) = Φ(Y(λ(x)), x),G(x) = Ψ(Y(λ(x)), x),where Y

is a C
r-valued formal power series on W centered at λ(x0) andΦ,Ψ are convergent power

series on C
r × X centered at (Y(λ(x0)), x0). Suppose that G �≡ 0 and L(F/G) ≡ 0 holds

for any holomorphic vector field L on X annihilating µ. Then (F : G) is equivalent to a

nontrivial ratio of convergent power series on X (centered at x0). �

Remark 3.14. From the proof of Theorem 3.13, it will follow that the ratio (F : G) is even

equivalent to a ratio of the form (α̃ ◦ µ : β̃ ◦ µ), where α̃, β̃ are convergent power series on

W centered at µ(x0) with β̃ �≡ 0.

We start by giving several lemmas that will be used in the proof of Theorem 3.13.
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Lemma 3.15. Let µ : X → W be a holomorphic submersion between complex manifolds

and let F(x), G(x) be formal power series on X centered at a point x0 ∈ X. Suppose that

G �≡ 0 and that L(F/G) ≡ 0 for any holomorphic vector field L on X that annihilates µ.

Then there exist formal power series α,β on W centered at µ(x0), with β �≡ 0, such that

the ratio (F : G) is equivalent to the ratio (α ◦ µ : β ◦ µ). �

The proof of Lemma 3.15 follows from Lemma 3.6 after appropriate choices of

local coordinates in X and W. In the next lemma, we apply the iteration process provided

by Proposition 3.10 in the context of Theorem 3.13.

Lemma 3.16. In the setting of Theorem 3.13, the following holds. If, for some nonnega-

tive integer l, the ratio (F ◦ π(l)
2l+1 : G ◦ π(l)

2l+1) is convergent along Dl(x0), then the ratio

(F ◦ π(l+1)
2l+3 : G ◦ π(l+1)

2l+3 ) is convergent alongDl+1(x0). Here, π(j)
2j+1 is the projection given by

(3.19) andDj(x0) is the submanifold given by (3.21), j = l, l+ 1. �

Proof. In order to apply Proposition 3.10, we first set η := µ, X := X, C := W, Y := X(l),

y0 := x
(l)
0 , v := π

(l)
2l+1, and S := Dl(x0), where X(l) and π(l)

2l+1 are given by (3.18) and

(3.19), respectively. Note that v is a holomorphic submersion and that, by assumption,

the pullback under v of the ratio (F : G) is convergent along S. In view of Lemma 3.15,

Proposition 3.10(i) implies that, by setting

Y1 :=
{(
z1, . . . , z2l+1, z2l+2

) ∈ X(l) × X : µ
(
z2l+1

)
= µ

(
z2l+2

)}
,

S1 :=
{(
z1, . . . , z2l+1, z2l+2

) ∈ Y1 : λ
(
z1
)

= λ
(
x0

)}
,

v1 : Y1 	 (z1, . . . , z2l+1, z2l+2

) 
−→ z2l+2 ∈ X,

(3.22)

the pullback of (F : G) under v1 is convergent along S1. We now want to apply a second

time Proposition 3.10. For this, we reset η := λ, X := X, C := Z, Y := Y1, y0 := (x0, . . . , x0) ∈
Y1, v := v1, and S := S1, where Y1, S1, and v1 are as in (3.22). Applying Proposition 3.10(ii)

in that context, we obtain easily that the pullback of (F : G) under π(l+1)
2l+3 is convergent

alongDl+1(x0), the required conclusion. �

Proof of Theorem 3.13. We first claim that the pullback of (F : G) under π(0)
1 is convergent

along D0(x0). Indeed, note that this is equivalent to saying that (F : G) is convergent

along {x ∈ X : λ(x) = λ(x0)}. Applying Proposition 3.10(ii) with η := λ, X := X, C := Z,

Y := X, y0 := x0, v := IdX, and S := {x0}, and using Lemma 3.5(i), we get the desired claim.

Applying Lemma 3.16 and using the finite type assumption on the pair (λ, µ), it follows

that the ratio (F◦π(l0)
2l0+1 : G◦π(l0)

2l0+1) is convergent alongDl0
(x0),where l0 is chosen so that

µ̃|Dl0
(x0) has rank equal to dim W at some points of the intersectionDl0

(x0)∩El0
(x0) that

are arbitrarily close to x(l0)
0 . Let α and β be power series on W given by Lemma 3.15. In
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view of Lemma 3.5(iii), the nontrivial ratio (α◦ µ̃ : β◦ µ̃) is thus convergent alongDl0
(x0),

where β ◦ µ̃ �≡ 0. Since El0
= µ̃−1({0}), we see that Lemma 3.9 implies that the ratio (α : β)

is equivalent to a nontrivial ratio (α̃ : β̃) of convergent power series on W (centered at

µ(x0)). Therefore, it follows from Lemma 3.15 and the fact that µ is a submersion that

(F : G) is equivalent to the nontrivial ratio (α̃ ◦ µ : β̃ ◦ µ). The proof of Theorem 3.13 is

complete. �

4 Applications of Theorem 3.13 to ratios

on generic submanifolds

The goal of this section is to apply the meromorphic extension property of ratios of for-

mal power series given by Theorem 3.13 to the context of real-analytic generic subman-

ifolds in C
N, and to deduce some other properties (see Proposition 4.3) which will be

useful for the proof of the theorems (Theorems 1.1 and 1.2) mentioned in the introduc-

tion.

Let M ⊂ C
N be a real-analytic generic submanifold of codimension d through 0,

and ρ(Z,Z) := (ρ1(Z,Z), . . . , ρd(Z,Z)) be a real-analytic vector-valued defining function

forM defined in a connected neighborhoodU of 0 in C
N, satisfying ∂ρ1 ∧ · · ·∧ ∂ρd �= 0 on

U. Define the complexification M ofM as follows:

M :=
{
(Z, ζ) ∈ U×U∗ : ρ(Z, ζ) = 0

}
, (4.1)

where for any subset V ⊂ C
k, we have denoted V∗ := {w : w ∈ V}. Clearly, M is a d-

codimensional complex submanifold of C
N ×C

N. We say that a vector field X defined in a

neighborhood of 0 ∈ C
N ×C

N is a (0, 1) vector field if it annihilates the natural projection

C
N × C

N 	 (Z, ζ) 
→ Z ∈ C
N. We also say that X is tangent to M if X(q) ∈ TqM for any

q ∈ M near the origin. We have the following consequence of Theorem 3.13.

Theorem 4.1. Let M ⊂ C
N be a real-analytic generic submanifold through 0 and M ⊂

C
N
Z × C

N
ζ its complexification as given by (4.1). Consider formal power series F(Z, ζ),

G(Z, ζ) ∈ C[[Z, ζ]] of the form F(Z, ζ) = Φ(Y(ζ), Z), G(Z, ζ) = Ψ(Y(ζ), Z), where Y(ζ) is a C
r-

valued formal power series and Φ,Ψ are convergent power series centered at (Y(0), 0) ∈
C

r×C
N withG(Z, ζ) �≡ 0 for (Z, ζ) ∈ M. Suppose thatM is minimal at 0 and that L(F/G) ≡

0 on M (i.e., FLG − GLF ≡ 0 on M) for any (0, 1) holomorphic vector field tangent to M.

Then there exist convergent power series F̃(Z), G̃(Z) ∈ C{Z}, with G̃(Z) �≡ 0, such that the

ratios (F : G) and (F̃ : G̃) are equivalent as formal power series on M. �
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For the proof of the theorem, we set X := M, Z = W := C
N and define the holomor-

phic submersions

λ : M 	 (Z, ζ) 
−→ ζ ∈ C
N, µ : M 	 (Z, ζ) 
−→ Z ∈ C

N. (4.2)

Lemma 4.2. In the above setting, the pair (λ, µ) is of finite type at 0 ∈ M (as defined in

Section 3.3) if and only ifM is minimal at the origin. �

Proof. For any nonnegative integer l, the fiber product M(l) is here given by

M(l) =
{((
Z1, ζ1

)
, . . . ,

(
Z2l+1, ζ2l+1

)) ∈ M2l+1 : Z2s−1 = Z2s, ζ2s =ζ2s+1, 1≤s≤ l
}

(4.3)

and the maps λ̃l : M(l) → C
N, µ̃ : M(l) → C

N by

(
Z1, ζ1, . . . , Z2l+1, ζ2l+1

) 
−→ ζ1,
(
Z1, ζ1, . . . , Z2l+1, ζ2l+1

) 
−→ Z2l+1, (4.4)

respectively. We then have Dl(0) = {((Z1, ζ1), . . . , (Z2l+1, ζ2l+1)) ∈ M(l) : ζ1 = 0} and

El(0) = {((Z1, ζ1), . . . , (Z2l+1, ζ2l+1)) ∈ M(l) : Z2l+1 = 0}. The reader can check that the

map µ̃l|Dl(0) coincides, up to a parametrization of M(l), with a suitable Segre mapping

v2l+1 at 0 as defined in [4, 5]. Therefore, in view of the minimality criterion of [5] (see also

[2]), the pair (λ, µ) is of finite type at 0 ∈ M if and only ifM is minimal at 0. The proof of

the lemma is complete. �

Proof of Theorem 4.1. Since (0, 1) holomorphic vector fields tangent to M coincide with

holomorphic vector fields on M annihilating the submersion µ, in view of Lemma 4.2,

we may apply Theorem 3.13 to conclude that the ratio (F : G) is equivalent to a ratio

(F̃(Z) : G̃(Z)) of convergent power series on M with G̃(Z) �≡ 0. (The fact that F̃, G̃ may be

chosen independent of ζ, follows from Remark 3.14.) The proof is complete. �

In what follows, for any ring A, we denote, as usual, by A[T ], T = (T1, . . . , Tr), the

ring of polynomials over A in r indeterminates. An application of Theorem 4.1 is given

by the following result, which will be essential for the proof of the main results of this

paper.

Proposition 4.3. LetM ⊂ C
N be a minimal real-analytic generic submanifold through 0

and let M ⊂ C
N
Z × C

N
ζ be its complexification given by (4.1). Let F(Z) := (F1(Z), . . . , Fr(Z))

be a formal power series mapping satisfying one of the following conditions:

(i) there exist G(ζ) := (G1(ζ), . . . , Gs(ζ)) ∈ (C[[ζ]])s, G(0) = 0, and a polynomial

R(Z, ζ, X; T) ∈ C{Z, ζ, X}[T ], X = (X1, . . . , Xs), T = (T1, . . . , Tr), such that
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R(Z, ζ,G(ζ); T) �≡ 0 for (Z, ζ) ∈ M, and such that R(Z, ζ,G(ζ); F(Z)) ≡ 0

for (Z, ζ) ∈ M;

(ii) there exists a polynomial P(Z, ζ; T̃ , T) ∈ C{Z, ζ}[T̃ , T ], T̃ = (T̃1, . . . , T̃r), T = (T1,

. . . , Tr), such that P(Z, ζ; T̃ , T) �≡ 0 for (Z, ζ) ∈ M, and such that P(Z, ζ; F(ζ),

F(Z)) ≡ 0 for (Z, ζ) ∈ M.

Then there exists a nontrivial polynomial ∆(Z; T) ∈ C{Z}[T ] such that ∆(Z, F(Z)) ≡ 0. �

Proof. Let R be as in (i) such that

R
(
Z, ζ,G(ζ); F(Z)

) ≡ 0, for (Z, ζ) ∈ M. (4.5)

We write R as a linear combination,

R
(
Z, ζ,G(ζ); T

)
=

l∑
j=1

δj

(
Z, ζ,G(ζ)

)
rj(T), (4.6)

where each δj(Z, ζ,G(ζ)) �≡ 0 for (Z, ζ) ∈ M, δj(Z, ζ, X) ∈ C{Z, ζ}[X], and rj is a monomial in

T . We prove the desired conclusion by induction on the number l of monomials in (4.6).

For l = 1, (4.5), (4.6), and the fact that δ1(Z, ζ,G(ζ)) �≡ 0 on M imply that r1(F(Z)) ≡ 0.

Since r1 is a monomial, it follows that Fj(Z) = 0 for some j, which yields the required

nontrivial polynomial identity.

Suppose now that the desired conclusion holds for any polynomial R whose num-

ber of monomials is strictly less than l and for any formal power series mappingG(ζ). In

view of (4.5) and (4.6), we have the following identity (understood in the field of fractions

of formal power series):

rl
(
F(Z)

)
+

∑
j<l

δj

(
Z, ζ,G(ζ)

)
δl

(
Z, ζ,G(ζ)

)rj(F(Z)
) ≡ 0, (Z, ζ) ∈ M. (4.7)

Let L be any (0, 1) holomorphic vector field tangent to M. Applying L to (4.7) and using

the fact that L(Fj(Z)) ≡ 0 for any j, we obtain

∑
j<l

L

(
δj

(
Z, ζ,G(ζ)

)
δl

(
Z, ζ,G(ζ)

))rj(F(Z)
) ≡ 0, (Z, ζ) ∈ M. (4.8)

We set Qj(Z, ζ) := δj(Z, ζ,G(ζ))/δl(Z, ζ,G(ζ)). It is easy to see that each ratio LQj can be

written as a ratio of the following form:

δ̃j

(
Z, ζ, G̃(ζ)

)
δ̃l

(
Z, ζ, G̃(ζ)

) (4.9)
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for some G̃(ζ) ∈ (C[[ζ]])s̃ with G̃(0) = 0 and some δ̃j(Z, ζ, X̃), δ̃l(Z, ζ, X̃) ∈ C{Z, ζ, X̃}, X̃ ∈ C
s̃,

with δ̃l(Z, ζ, G̃(ζ)) �≡ 0 for (Z, ζ) ∈ M. From (4.8), we are led to distinguish two cases. If for

some j ∈ {1, . . . , l−1}, LQj does not vanish identically on M, then the required conclusion

follows from (4.8), (4.9), and the induction hypothesis.

It remains to consider the case when LQj ≡ 0 on M for all j and for all (0, 1)

holomorphic vector fields L tangent to M. Then each ratio Qj satisfies the assumptions

of Theorem 4.1, and therefore, there exist Φj(Z), Ψj(Z) ∈ C{Z} with Ψj(Z) �≡ 0 such that

Qj(Z, ζ) = Φj(Z)/Ψj(Z) for j = 1, . . . , l− 1. As a consequence, (4.7) can be rewritten as

rl
(
F(Z)

)
+

∑
j<l

Φj(Z)
Ψj(Z)

rj
(
F(Z)

) ≡ 0. (4.10)

This proves the desired final conclusion and completes the proof of the conclusion as-

suming (i).

For the statement under the assumption (ii), consider a nontrivial polynomial

P(Z, ζ; T̃ , T) (on M) such that P(Z, ζ; F(ζ), F(Z)) ≡ 0 for (Z, ζ) ∈ M. We write

P
(
Z, ζ; T̃ , T

)
=

∑
ν∈Nr, |ν|≤l

Pν

(
Z, ζ; T̃

)
Tν, (4.11)

where each Pν(Z, ζ; T̃) ∈ C{Z, ζ}[T̃ ] and at least one of the Pνs is nontrivial. If there exists

ν0 ∈ N
r such that Pν0

(Z, ζ; F(ζ)) �≡ 0 for (Z, ζ) ∈ M, then it follows that the polynomial

P(Z, ζ; F(ζ), T) is nontrivial (on M) and satisfies P(Z, ζ; F(ζ), F(Z)) ≡ 0 for (Z, ζ) ∈ M. Then

condition (i) is fulfilled and the required conclusion is proved above.

It remains to consider the case when Pν(Z, ζ; F(ζ)) ≡ 0 on M and for any ν ∈ N
r.

Fix any ν such that Pν(Z, ζ; T̃) is nontrivial for (Z, ζ) ∈ M. Write Pν(Z, ζ; T̃) =∑
|α|≤k cα,ν(Z, ζ)T̃α with each cα,ν(Z, ζ) ∈ C{Z, ζ}. Set Pν(Z, ζ; T) :=

∑
|α|≤k cα,ν(ζ, Z)Tα.

Then Pν(Z, ζ; T) is a nontrivial polynomial (on M) and satisfies Pν(Z, ζ; F(Z)) ≡ 0 for

(Z, ζ) ∈ M. Here again, condition (i) is fulfilled and the desired conclusion follows. The

proof is complete. �

We conclude by mentioning the following result proved in [22, Theorem 5.1] and

which is an immediate consequence of Proposition 4.3(i) and Proposition 2.1.

Corollary 4.4. Let M ⊂ C
N be a minimal real-analytic generic submanifold through the

origin, M ⊂ C
N
Z × C

N
ζ its complexification as given by (4.1) and F(Z) ∈ C[[Z]]. Assume

that there exist G(ζ) := (G1(ζ), . . . , Gs(ζ)) ∈ (C[[ζ]])s with G(0) = 0 and a polynomial

R(Z, ζ, X; T) ∈ C{Z, ζ, X}[T ], X = (X1, . . . , Xs), T ∈ C, such R(Z, ζ,G(ζ); T) �≡ 0 for (Z, ζ) ∈ M

and such that R(Z, ζ,G(ζ); F(Z)) ≡ 0 for (Z, ζ) ∈ M. Then F(Z) is convergent. �
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5 Zariski closure of the graph of a formal map

Throughout this section, we let f : (CN
Z , 0) → (CN ′

Z ′ , 0) be a formal map. As in Section 2.2,

we associate to f its graph Γf ⊂ C
N
Z ×C

N ′
Z ′ seen as a formal submanifold. Given a (germ at

(0, 0) ∈ C
N × C

N ′
of a) holomorphic function H(Z,Z ′), we say that H vanishes on Γf if the

formal power series H(Z, f(Z)) vanishes identically. If A ⊂ C
N × C

N ′
is a (germ through

the origin of a) complex-analytic subset, we further say that the graph of f is contained in

A, and write Γf ⊂ A, if any (germ at (0, 0) ∈ C
N ×C

N ′
of a) holomorphic functionH(Z,Z ′)

that vanishes onA, vanishes also on Γf. The goal of this section is to define and give some

basic properties of the Zariski closure of the graph Γf ⊂ C
N × C

N over the ring C{Z}[Z ′].

5.1 Definition

For f as above, define the Zariski closure of Γf with respect to the ring C{Z}[Z ′] as the

germ Zf ⊂ C
N × C

N ′
at (0, 0) of a complex-analytic set defined as the zero set of all el-

ements in C{Z}[Z ′] vanishing on Γf. Note that since Zf contains the graph of f, it follows

that dimCZf ≥ N. In what follows, we will denote by µ(f) the dimension of the Zariski

closure Zf. Observe also that since the ring C[[Z]] is an integral domain, it follows that Zf

is irreducible over C{Z}[Z ′].

5.2 Link with transcendence degree

In this section, we briefly discuss a link between the dimension of the Zariski closure

µ(f) defined above and the transcendence degree of a certain field extension. (See [27] for

basic notions from field theory used here.) In what follows, if K ⊂ L is a field extension

and (x1, . . . , xl) ∈ (L)l, we write K(x1, . . . , xl) for the subfield of L generated by K and

(x1, . . . , xl).

We denote by MN the quotient field of the ring C{Z} and consider the field ex-

tension MN ⊂ MN(f1(Z), . . . , fN ′(Z)) where we write f(Z) = (f1(Z), . . . , fN ′(Z)). We then

define the transcendence degree of the formal map f, denoted in what follows bym(f), to

be the transcendence degree of the above finitely generated field extension. (We should

point out that this notion of transcendence degree of a formal map is in general differ-

ent from the one discussed in [21, 22].) We have the following standard relation between

m(f) and µ(f).

Lemma 5.1. For any formal map f : (CN, 0) → (CN ′
, 0), µ(f) = N+m(f). �

The following well-known proposition shows the relevance of µ(f) for the study

of the convergence of the map f.
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Proposition 5.2. Let f : (CN, 0) → (CN ′
, 0) be a formal map and µ(f) be as defined in

Section 5.1. Then the following are equivalent:

(i) µ(f) = N;

(ii) f is convergent. �

Proposition 5.2 is a straightforward consequence of Proposition 2.1.

6 Local geometry of the Zariski closure

In this section, we keep the notation of Section 5. Our goal is to study the Zariski closure

defined in Section 5.1 near some points of smoothness.

6.1 Preliminaries

Throughout Section 6, we assume that the dimension of the Zariski closure Zf satisfies

µ(f) < N+N ′. (6.1)

In what follows, for an open subset Ω ⊂ C
k, we denote by O(Ω) the ring of holomorphic

functions inΩ. Recall also that we use the notationΩ∗ for the subset {q : q ∈ Ω}.

In Section 5, we saw that µ(f) ≥ N and m := m(f) = µ(f) − N coincides with the

transcendence degree of the field extension MN ⊂ MN(f1(Z), . . . , fN ′(Z)), where f(Z) =

(f1(Z), . . . , fN ′(Z)). As a consequence, there exist integers 1 ≤ j1 < · · · < jm < N ′ such

that fj1
(Z), . . . , fjm(Z) form a transcendence basis of MN(f1(Z), . . . , fN ′(Z)) over MN. After

renumbering the coordinates Z ′ := (z ′, w ′) ∈ C
m × C

N ′−m and settingm ′ := N ′ −m, we

may assume that

f = (g, h) ∈ C
m
z ′ × C

m ′
w ′ , (6.2)

where g = (g1, . . . , gm) forms a transcendence basis of MN(f1, . . . , fN ′) over MN.

Since the components of the formal map h : (CN
Z , 0) → (Cm ′

w ′ , 0) are algebraically

dependent over MN(g), there exist monic polynomials Pj(T) ∈ MN(g)[T ], j = 1, . . . ,m ′,

such that if h = (h1, . . . , hm ′), then

Pj

(
hj

)
= 0, j = 1, . . . ,m ′, in MN(f). (6.3)

As a consequence, there exist nontrivial polynomials P̂j(T) ∈ C{Z}[g][T ], j = 1, . . . ,m ′,

such that

P̂j

(
hj

)
= 0, j = 1, . . . ,m ′. (6.4)
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For every j = 1, . . . ,m ′, we can write

P̂j(T) =
∑

ν≤kj

qjνT
ν, (6.5)

where each qjν ∈ C{Z}[g], qjkj
�≡ 0, and kj ≥ 1. Since each qjν is in C{Z}[g], we can also

write

qjν = qjν(Z) = Rjν

(
Z, g(Z)

)
, (6.6)

where Rjν(z, z ′) ∈ C{Z}[z ′].

Let ∆N
0 be a polydisc neighborhood of 0 in C

N such that the Zariski closure Zf

can be represented by an irreducible (over the ring C{Z}[Z ′]) closed analytic subset of

∆N
0 × C

N ′
(also denoted by Zf). We have the inclusion

Γf ⊂ Zf ⊂ C
N × C

N ′
. (6.7)

Define

P̃j(Z, z ′; T) :=

kj∑
ν=0

Rjν(Z, z ′)Tν ∈ O
(
∆N

0

)
[z ′][T ], j = 1, . . . ,m ′. (6.8)

It follows from (6.4), (6.5), and (6.6) that we have

P̃j

(
Z, g(Z);hj(Z)

) ≡ 0, in C[[Z]], j = 1, . . . ,m ′. (6.9)

Here each Rjν(Z, z ′) ∈ O(∆N
0 )[z ′], kj ≥ 1, and

Rjkj

(
Z, g(Z)

) �≡ 0. (6.10)

Moreover, since C{Z}[z ′][T ] is a unique factorization domain (see, e.g., [27]), we may as-

sume that the polynomials given by (6.8) are irreducible.

Consider the complex-analytic variety Vf ⊂ C
N × C

N ′
through (0, 0) defined by

Vf :=
{(
Z, z ′, w ′) ∈ ∆N

0 × C
m × C

m ′
: P̃j

(
Z, z ′;w ′

j

)
= 0, j = 1, . . . ,m ′}. (6.11)

By (6.9),Vf contains the graph Γf and hence the Zariski closure Zf. In fact, since by Lemma

5.1, dimC Zf = µp(f) = N +m, it follows from the construction that Zf is the (unique) ir-

reducible component of Vf (over C{Z}[Z ′]) containing Γf. Note that Vf is not irreducible in

general and, moreover, may have a dimension larger than µ(f).
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For j = 1, . . . ,m ′, let D̃j(Z, z ′) ∈ O(∆N
0 )[z ′] be the discriminant of the polynomial

P̃j(Z, z ′; T) (with respect to T). Consider the complex-analytic set

D̃ := ∪m ′
j=1

{(
Z, z ′

) ∈ ∆N
0 × C

m : D̃j

(
Z, z ′

)
= 0

}
. (6.12)

By the irreducibility of each polynomial P̃j(Z, z ′; T), we have D̃j(Z, z ′) �≡ 0 in ∆N
0 × C

m, for

j = 1, . . . ,m ′. Therefore from the algebraic independence of the components of the formal

map g over MN, it follows that the graph of g is not (formally) contained in D̃, that is,

D̃j

(
Z, g(Z)

) �≡ 0, for j = 1, . . . ,m ′. (6.13)

We also set

E := ∪m ′
j=1

{(
Z, z ′

) ∈ ∆N
0 × C

m : Rjkj

(
Z, z ′

)
= 0

}
. (6.14)

It is well known that E ⊂ D̃, and hence the graph of g is not contained in E too.

6.2 Description near smooth points

By the implicit function theorem, for any point (Z0, Z
′
0) ∈ Vf, Z

′
0 = (z ′0, w

′
0) ∈ C

m × C
m ′

,

with (Z0, z
′
0) �∈ D̃, there exist polydisc neighborhoods of Z0, z

′
0, andw ′

0, denoted by ∆N
Z0

⊂
∆N

0 ⊂ C
N, ∆m

z ′
0
⊂ C

m, ∆m ′
w ′

0
⊂ C

m ′
, respectively, and a holomorphic map

θ
(
Z0, Z

′
0; ·) : ∆N

Z0
× ∆m

z ′
0
−→ ∆m ′

w ′
0
, (6.15)

such that for (Z, z ′, w ′) ∈ ∆N
Z0

× ∆m
z ′

0
× ∆m ′

w ′
0
,

(Z, z ′, w ′) ∈ Vf ⇐⇒ w ′ = θ
(
Z0, Z

′
0;Z, z ′

)
. (6.16)

Note that if moreover (Z0, Z
′
0) ∈ Zf, then (6.16) is equivalent to (Z, z ′, w ′) ∈ Zf. For any

point (Z0, Z
′
0) ∈ Zf with (Z0, z

′
0) �∈ D̃, consider the complex submanifold Zf(Z0, Z

′
0) de-

fined by setting

Zf

(
Z0, Z

′
0

)
:= Zf ∩

(
∆N

Z0
× ∆m

z ′
0
× ∆m ′

w ′
0

)
. (6.17)

Note that for any point (Z0, Z
′
0) as above, by making the holomorphic change of coordi-

nates (Z̃, Z̃ ′) = (Z,ϕ(Z,Z ′)) ∈ C
N × C

N ′
where

ϕ(Z,Z ′) = ϕ
(
Z, (z ′, w ′)

)
:=
(
z ′, w ′ − θ

(
Z0, Z

′
0;Z, z ′

))
, (6.18)
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the submanifold Zf(Z0, Z
′
0) is given in these new coordinates by

Zf

(
Z0, Z

′
0

)
=

{(
Z̃, Z̃ ′) ∈ ∆N

Z0
× ∆m

z ′
0
× C

m ′
: Z̃ ′

m+1 = · · · = Z̃ ′
N ′ = 0

}
, (6.19)

where we write Z̃ ′ = (Z̃ ′
1, . . . , Z̃

′
N ′).

We summarize the above in the following proposition.

Proposition 6.1. Let f : (CN, 0) → (CN ′
, 0) be a formal map and Zf the Zariski closure of

the graph of f as defined in Section 5.1. Suppose that µ(f) < N + N ′. Then for any point

(Z0, Z
′
0) ∈ Zf with (Z0, z

′
0) �∈ D̃, where D̃ is given by (6.12), there exists a holomorphic

change of coordinates near (Z0, Z
′
0) of the form (Z̃, Z̃ ′) = (Z,ϕ(Z,Z ′)) ∈ C

N × C
N ′

such

that the complex submanifold Zf is given near (Z0, Z
′
0) by (6.19), withm = µ(f) −N. �

For (Z0, Z
′
0) ∈ Vf with (Z0, z

′
0) �∈ D̃ and (ζ, χ ′) ∈ (∆N

Z0
)∗ × (∆m

z ′
0
)∗, we define the

C
m ′

-valued holomorphic map

θ
(
Z0, Z

′
0; ζ, χ ′) := θ

(
Z0, Z

′
0; ζ, χ ′), (6.20)

where θ(Z0, Z
′
0; ·) is given by (6.15). The following lemma will be important for the proof

of Theorem 7.1.

Lemma 6.2. With the above notation, for any polynomial r(Z ′, ζ ′) ∈ C[Z ′, ζ ′], (Z ′, ζ ′) ∈
C

N ′ × C
N ′

, there exists a nontrivial polynomial R0(Z, ζ, z ′, χ ′; T) ∈ O(∆N
0 × ∆N

0 )[z ′, χ ′][T ],

T ∈ C, such that for any point (Z0, Z
′
0) ∈ Vf with (Z0, z

′
0) �∈ D̃,

R0

(
Z, ζ, z ′, χ ′; r

(
z ′, θ

(
Z0, Z

′
0;Z, z ′

)
, χ ′, θ

(
Z0, Z

′
0; ζ, χ ′))) ≡ 0, (6.21)

for (Z, z ′) ∈ ∆N
Z0

× ∆m
z ′

0
and (ζ, χ ′) ∈ (∆N

Z0
)∗ × (∆m

z ′
0
)∗. Moreover, R0 can be chosen with

the following property: for any real-analytic generic submanifold M ⊂ C
N through the

origin, R0(Z, ζ, z ′, χ ′; T) �≡ 0 for ((Z, ζ), z ′, χ ′, T) ∈ (M ∩ (∆N
0 × ∆N

0 )) × C
m × C

m × C, where

M is the complexification ofM as defined by (4.1). �

Proof. For (Z, z ′)∈∆N
0 ×C

m with (Z, z ′) �∈E, where E is given by (6.14), and for j=1, . . . ,m ′,

we denote by σ(j)
1 (Z, z ′), . . . , σ(j)

kj
(Z, z ′) the kj roots (counted with multiplicity) of the poly-

nomial P̃j(Z, z ′; T) given by (6.8). Similarly, for (ζ, χ ′) ∈ ∆N
0 ×C

m with (ζ, χ ′) �∈ E, σ
(j)
1 (ζ, χ ′),

. . . , σ
(j)
kj

(ζ, χ ′) denote the kj roots of the polynomial P̃j(ζ, χ ′; T) :=
∑kj

ν=0 Rjν(ζ, χ ′)Tν (ob-

tained from (6.8)). (Note that for any j = 1, . . . ,m ′ and for any 1 ≤ ν ≤ kj we have

σ(j)
ν (ζ, χ ′) = σ

(j)
ν (ζ, χ ′), which justifies the slight abuse of notation made here.) Fix
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r(Z ′, ζ ′) ∈ C[Z ′, ζ ′] and set for (Z, z ′) and (ζ, χ ′) as above

R1

(
Z, ζ, z ′, χ ′; T

)
:=

k1∏
l1=1

· · ·
km ′∏

lm ′=1

k1∏
n1=1

· · ·
km ′∏

nm ′=1

(
T − r

(
z ′, σ(1)

n1

(
Z, z ′

)
, . . . , σ(m ′)

nm ′

(
Z, z ′

)
,

χ ′, σ(1)
l1

(
ζ, χ ′), . . . , σ(m ′)

lm ′

(
ζ, χ ′))).

(6.22)

It follows from Newton’s theorem that (6.22) may be rewritten as

R1(Z, ζ, z ′, χ ′; T) = Tδ +
∑
ν<δ

Aν(Z, ζ, z ′, χ ′)Tν, (6.23)

for some positive integer δ, and where Aν is of the form

Aν(Z, ζ, z ′, χ ′) = Bν

(
z ′, χ ′,

((
Rjα(Z, z ′)
Rjkj

(Z, z ′)

)
α≤kj

,

(
Rjβ(ζ, χ ′)
Rjkj

(ζ, χ ′)

)
β≤kj

)
0≤j≤m ′

)
,

(6.24)

with Bν being polynomials in their arguments (depending only on the coefficients of

r(Z ′, ζ ′)). In view of (6.23) and (6.24), it is clear that there exists C(Z, ζ, z ′, χ ′) ∈ O(∆N
0 ×

∆N
0 )[z ′, χ ′] with C(Z, ζ, z ′, χ ′) �≡ 0 such that

R0(Z, ζ, z ′, χ ′; T) := C(Z, ζ, z ′, χ ′) · R1(Z, ζ, z ′, χ ′; T) ∈ O
(
∆N

0 × ∆N
0

)
[z ′, χ ′][T ]. (6.25)

(C is obtained by clearing denominators in (6.24) for all ν < δ, and hence is a product

of two nonzero terms, one in the ring O(∆N
0 )[z ′] and the other in O(∆N

0 )[χ ′].) Since for any

fixed (Z0, Z
′
0) ∈ Vf with (Z0, z

′
0) �∈ D̃ and for any (Z, z ′) ∈ ∆N

Z0
× ∆m

z ′
0
, (Z, z ′) �∈ E and the jth

component of θ(Z0, Z
′
0;Z, z ′) is a root of the polynomial P̃j(Z, z ′; T) by (6.16) and (6.11),

it follows that R0 satisfies (6.21). Finally, the last desired property of R0 is easily seen

from the explicit construction of the polynomial, that is, from the fact that C(Z, ζ, z ′, χ ′)

cannot vanish identically when restricted to (M ∩ (∆N
0 × ∆N

0 )) × C
m × C

m. The proof of

Lemma 6.2 is complete. �

6.3 Approximation by convergent maps

Since the graph of the formal map f is contained in Zf, by applying Artin’s approximation

theorem [1], for any nonnegative integer κ, there exists a convergent map fκ : (CN, 0) →
(CN ′

, 0) agreeing with f at 0 up to order κ such that the graph of fκ is contained in Zf. We
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may assume that the maps fκ are convergent in a polydisc neighborhood ∆N
0,κ ⊂ ∆N

0 of 0

in C
N. Following the splitting (6.2), we write fκ = (gκ, hκ) and set

Σκ :=
{
Z ∈ ∆N

0,κ :
(
Z, gκ(Z)

) �∈ D̃
}
,

Γfκ :=
{(
Z, fκ(Z)

)
: Z ∈ ∆N

0,κ

} ⊂ C
N × C

N ′
.

(6.26)

Observe that since Γg is not contained in D̃ (see Section 6.1), it follows that for κ large

enough, say, κ ≥ κ̃, the graph of gκ is not contained in D̃ too, and therefore ∆N
0,κ \ Σκ is

dense in ∆N
0,κ. We may therefore, in what follows, assume that κ̃ = 0. Note also, that since

the graph of fκ is contained in Zf, in view of (6.16), we have for any Z0 ∈ ∆N
0,κ \ Σκ

hκ(Z) = θ
(
Z0, f

κ
(
Z0

)
;Z, gκ(Z)

)
, (6.27)

for all Z in some (connected) neighborhoodΩκ
Z0

⊂ ∆N
Z0

∩ ∆N
0,κ of Z0.

7 Main technical result

With all the tools defined in Sections 5 and 6 at our disposal, we are now ready to prove

the following statement from which all theorems mentioned in the introduction will fol-

low. In what follows, we keep the notation introduced in Sections 5 and 6.

Theorem 7.1. Let f : (CN, 0) → (CN ′
, 0) be a formal map, Zf the Zariski closure of Γf as

defined in Section 5.1, and (fκ)κ≥0 the convergent maps given in Section 6.3 (associated

to f and Zf). Let M ⊂ C
N be a minimal real-analytic generic submanifold through the

origin. Assume that f sendsM intoM ′ whereM ′ ⊂ C
N ′

is a proper real-algebraic subset

through the origin. Then, shrinkingM around the origin if necessary, there exist a posi-

tive integer κ0 and an appropriate union Zf of local real-analytic irreducible components

of Zf ∩ (M× C
N ′

) such that the following hold:

(i) µ(f) < N+N ′ for µ(f) = dimZf;

(ii) for any κ ≥ κ0, Γfκ ∩ (M× C
N ′

) ⊂ Zf ⊂M×M ′, where Γfκ is given by (6.26);

(iii) Zf satisfies the following straightening property: for any κ ≥ κ0, there exists

a neighborhood Mκ of 0 in M such that for any point Z0 in a dense open

subset ofMκ, there exist a neighborhood Uκ
Z0

of (Z0, f
κ(Z0)) in C

N × C
N ′

and a holomorphic change of coordinates in Uκ
Z0

of the form (Z̃, Z̃ ′) =

Φκ(Z,Z ′) = (Z,ϕκ(Z,Z ′)) ∈ C
N × C

N ′
such that

Zf ∩Uκ
Z0

=
{
(Z,Z ′) ∈ Uκ

Z0
: Z ∈M, Z̃ ′

m+1 = · · · = Z̃ ′
N ′ = 0

}
, (7.1)

wherem = µ(f) −N. �
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For the proof of the above result, we will need the following key proposition.

Proposition 7.2. Under the assumptions of Theorem 7.1, shrinking M around the origin

if necessary, the following hold:

(i) µ(f) < N+N ′;

(ii) there exists a positive integer κ0 such that for all κ ≥ κ0 and for all points Z0 ∈
(M∩∆N

0,κ) \ Σκ, the real-analytic submanifold Zf(Z0, f
κ(Z0))∩ (M×C

N ′
)

is contained in M ×M ′. Here Σκ and Zf((Z0, f
κ(Z0))) are given by (6.26)

and (6.17), respectively, and ∆N
0,κ is a polydisc of convergence of fκ. �

Proof of Proposition 7.2(i). Since M ′ is a proper real-algebraic subset of C
N ′

, there ex-

ists a nontrivial polynomial ρ ′(Z ′, Z ′) ∈ C[Z ′, Z ′] vanishing on M ′. By assumption, f

sendsM intoM ′ and therefore we have ρ ′(f(Z), f(Z)) ≡ 0 for Z ∈M, or, equivalently,

ρ ′(f(Z), f(ζ)
)

= 0, (Z, ζ) ∈ M, (7.2)

where M is the complexification ofM as given by (4.1). It follows from Proposition 4.3(ii)

(applied to F(Z) := f(Z) = (f1(Z), . . . , fN ′(Z))) that the components f1(Z), . . . , fN ′(Z) sat-

isfy a nontrivial polynomial identity with coefficients in C{Z}. This implies that µ(f) <

N+N ′. The proof of Proposition 7.2(i) is complete. �

By Proposition 7.2(i), we may now assume that (6.1) holds and hence the argu-

ments of Section 6 apply. SinceM ′ is a real-algebraic subset of C
N ′

, it is given by

M ′ :=
{
Z ′ ∈ C

N ′
: ρ ′

1(Z ′, Z ′) = · · · = ρ ′
l(Z

′, Z ′) = 0
}
, (7.3)

where each ρ ′
j(Z

′, Z ′), for j = 1, . . . , l, is a real-valued polynomial in C[Z ′, Z ′].

Proof of Proposition 7.2(ii). By shrinkingM around the origin, we may assume thatM is

connected and is contained in ∆N
0 . We proceed by contradiction. Then, in view of (6.16),

(6.17), and (7.3), there exists j0 ∈ {1, . . . , l} and a subsequence (fsk)k≥0 of (fκ)κ≥0 such

that for any k, there exists Zk ∈M ∩ ∆N
0,sk

such that

ρ ′
j0

(
z ′, θ

(
Zk, fsk

(
Zk
)
;Z, z ′

)
, z ′, θ

(
Zk, fsk

(
Zk
)
;Z, z ′

)) �≡ 0, (7.4)

for (Z, z ′) ∈ (M ∩ ∆N
Zk) × ∆gsk (Zk). After complexification of (7.4), we obtain

ρ ′
j0

(
z ′, θ

(
Zk, fsk

(
Zk
)
;Z, z ′

)
, χ ′, θ

(
Zk, fsk

(
Zk
)
; ζ, χ ′)) �≡ 0, (7.5)
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for (Z, ζ) ∈ M∩ (∆N
Zk × (∆N

Zk)∗) and (z ′, χ ′) ∈ ∆gsk (Zk) × (∆gsk (Zk))∗. By Lemma 6.2 applied

to r(Z ′, ζ ′) := ρ ′
j0

(Z ′, ζ ′), there exists a nontrivial polynomial R0(Z, ζ, z ′, χ ′; T) ∈ O(∆N
0 ×

∆N
0 )[z ′, χ ′][T ] such that for any positive integer kwe have

R0

(
Z, ζ, z ′, χ ′; ρ ′

j0

(
z ′, θ

(
Zk, fsk

(
Zk
)
;Z, z ′

)
, χ ′, θ

(
Zk, fsk

(
Zk
)
; ζ, χ ′))) ≡ 0, (7.6)

for (Z, ζ) and (z ′, χ ′) as above. By Lemma 6.2, R0 does not vanish identically when re-

stricted to (M ∩ (∆N
0 × ∆N

0 )) × C
m × C

m × C and therefore we may write

R0(Z, ζ, z ′, χ ′; T) = Tη · R00(Z, ζ, z ′, χ ′; T), (7.7)

for ((Z, ζ), z ′, χ ′, T) as above and for some integer η and some polynomial R00(Z, ζ, z ′,

χ ′; T) ∈ O(∆N
0 × ∆N

0 )[z ′, χ ′][T ] satisfying

R00(Z, ζ, z ′, χ ′; 0) �≡ 0, (
(Z, ζ), z ′, χ ′) ∈ M × C

m × C
m. (7.8)

We also write

R00(Z, ζ, z ′, χ ′; T) = R00(Z, ζ, z ′, χ ′; 0) + T · P00(Z, ζ, z ′, χ ′; T), (7.9)

with P00(Z, ζ, z ′, χ ′; T) ∈ O(∆N
0 × ∆N

0 )[z ′, χ ′][T ]. In view of (7.6), (7.5), and (7.7), we obtain

R00

(
Z, ζ, z ′, χ ′; ρ ′

j0

((
z ′, θ

(
Zk, fsk

(
Zk
)
;Z, z ′

)))
,
(
χ ′, θ

(
Zk, fsk

(
Zk
)
; ζ, χ ′))) ≡ 0,

(7.10)

for (Z, ζ) ∈ M∩ (∆N
Zk × (∆N

Zk)∗) and (z ′, χ ′) ∈ ∆gsk (Zk)× (∆gsk (Zk))∗. Setting z ′ = gsk(Z) and

χ ′ = gsk(ζ) in (7.10), we obtain, in view of (6.27)

R00

(
Z, ζ, gsk(Z), gsk(ζ); ρ ′

j0

(
fsk(Z), fsk(ζ)

)) ≡ 0, (7.11)

for (Z, ζ) in some neighborhood of (Zk, Zk) in M and hence, by unique continuation, for

all (Z, ζ) ∈ M ∩ (∆N
0,sk

× (∆N
0,sk

)∗). In view of (7.9), (7.11) leads to the equality

R00

(
Z, ζ, gsk(Z), gsk(ζ); 0

)
= −ρ ′

j0

(
fsk(Z), fsk(ζ)

) · P00

(
Z, ζ, gsk(Z), gsk(ζ); ρ ′

j0

(
fsk(Z), fsk(ζ)

))
,

(7.12)
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for (Z, ζ) as above. Since f(M) ⊂ M ′, we have the formal identity ρ ′
j0

(f(Z)), f(ζ) = 0 for

(Z, ζ) ∈ M. Therefore, since fsk(Z) approximates f(Z) up to order sk ≥ k at 0, it follows

that

ρ ′
j0

(
fsk(Z), fsk(ζ)

)
= O(k), (Z, ζ) ∈ M. (7.13)

In view of (7.12), (7.13) implies that

R00

(
Z, ζ, gsk(Z), gsk(ζ); 0

)
= O(k) (7.14)

for (Z, ζ) ∈ M. Since for any k, gsk(Z) approximates g(Z) up to order sk ≥ k at 0, the only

possibility for (7.14) to hold is that

R00

(
Z, ζ, g(Z), g(ζ); 0

) ≡ 0, (Z, ζ) ∈ M. (7.15)

In view of (7.8) and (7.15), condition (ii) in Proposition 4.3 is satisfied for the compo-

nents g1(Z), . . . , gm(Z) of g(Z). By Proposition 4.3, there exists a nontrivial polynomial

∆(Z, z ′) ∈ C{Z}[z ′] such ∆(Z, g(Z)) ≡ 0. This contradicts the fact that g(Z) = (g1(Z), . . . ,

gm(Z)) is a transcendence basis of MN(f(Z)) over MN. This completes the proof of

Proposition 7.2. �

Proof of Theorem 7.1. In view of Proposition 7.2(i), we just need to prove parts (ii) and

(iii) of the theorem. We choose the integer κ0 given by Proposition 7.2(ii) and define Zf to

be the union of all local real-analytic irreducible components of Zf ∩ (M × C
N ′

) at (0, 0)

that contain the germ of Γfκ ∩ (M × C
N ′

) for some κ ≥ κ0. The inclusion Zf ⊂ M ×M ′

follows from the construction of Zf and Proposition 7.2(ii). This shows Theorem 7.1(ii).

Finally, by setting for any κ ≥ κ0,M
κ := M ∩ ∆N

0,κ, Theorem 7.1(iii) follows from Propo-

sitions 7.2(ii), 6.1, and the fact that the subset Σκ is nowhere dense in ∆N
0,κ. The proof of

Theorem 7.1 is complete. �

8 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Without loss of generality, we may assume that p and p ′ are the

origin in C
N and C

N ′
, respectively. In the case whereM is generic, Theorem 1.1 is then an

immediate consequence of Theorem 7.1(ii). It remains to consider the nongeneric case. If

M is not generic, using the intrinsic complexification ofM, we may assume, after a local

holomorphic change of coordinates near 0, that M = M̃ × {0} ⊂ C
N−r
z × C

r
w, for some

1 ≤ r ≤ N − 1 and some real-analytic generic minimal submanifold M̃ (see, e.g., [5]). By
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the generic case treated above, for any positive integer k, there exists a local holomorphic

map gk : (CN−r, 0) → (CN ′
, 0) defined in a neighborhood of 0 in C

N−r, sending M̃ intoM ′

and for which the Taylor series mapping at 0 ∈ C
N−r agrees with z 
→ f(z, 0) up to order

k. Let hk : (CN, 0) → (CN ′
, 0) be the polynomial mapping obtained by taking the Taylor

polynomial of order k at 0 of each component of the formal map f(z,w) − f(z, 0). Then by

setting for every nonnegative integer k, fk(z,w) := gk(z, 0)+hk(z,w), the reader can easily

check that the convergent map fk : (CN, 0) → (CN ′
, 0) satisfies all the desired properties.

The proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. Without loss of generality, we may assume that p and p ′ are the

origin in C
N and C

N ′
, respectively. Suppose that f is not convergent. Let µ(f) and (fκ)κ≥0

be given by Theorem 7.1. By Proposition 5.2,we havem = µ(f)−N > 0. Therefore Theorem

7.1(iii) implies that for κ large enough, fκ maps a dense subset of a neighborhood of 0

(which may depend on κ) into the subset E ′. Since E ′ is closed in M ′ (see, e.g., [12]), fκ

maps actually a whole neighborhood of 0 in M to E ′. Since for any κ, fκ agrees with f up

to order κ at 0, it follows that f sends M into E ′ as defined in Section 1. This completes

the proof. �
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