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Reflection Ideals and Mappings Between
Generic Submanifolds in Complex Space

By M.S. Baouendi, Nordine Mir, and Linda Preiss Rothschild

ABSTRACT. Results on finite determination and convergence of formal mappings between smooth
generic submanifolds itN are established in this article. The finite determination result gives suffi-
cient conditions to guarantee that a formal map is uniquely determined by its jet, of a preassigned order,
at a point. Convergence of formal mappings for real-analytic generic submanifolds under appropriate
assumptions is proved, and natural geometric conditions are given to assure that if two germs of such
submanifolds are formally equivalent, then, they are necessarily biholomorphically equivalent. It is also
shown that if two real-algebraic hypersurfaces@4’ are biholomorphically equivalent, then, they are
algebraically equivalent. All the results are first proved in the more general context of “reflection ideals”
associated to formal mappings between formal as well as real-analytic and real-algebraic manifolds.

1. Introduction and main results

In this article, we study formal mappings between smooth generic submanifdid$ amd
establish results on finite determination, convergence and local biholomorphic, and algebraic
equivalence. Our finite determination result gives sufficient conditions to guarantee that a formal
map as above is uniquely determined by its jet (of a preassigned order) at a point. For real-analytic
generic submanifolds, we prove convergence of formal mappings under appropriate assumptions
and also give natural geometric conditions to assure that if two germs of such submanifolds are
formally equivalent, then they are necessarily biholomorphically equivalent. If the submanifolds
are moreover real-algebraic, we address the question of deciding when biholomorphic equivalence
implies algebraic equivalence. In particular, we prove that if two real-algebraic hypersurfaces in
CN are biholomorphically equivalent, then they are in fact algebraically equivalent. All the results
are first proved in the more general context of “reflection ideals” associated to formal mappings
between formal as well as real-analytic and real-algebraic manifolds.

We now give precise definitions in order to state some of our main resultg: €& and
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p € CN'. Aformal mapH : (C¥, p) — (CV', p') is anN’-vector of formal power series in
Z — pwith H(p) = p’. The mapH(Z) = (H1(Z), ... , Hy/(2)) is calledfinite if the quotient
ring C[[Z — pll/(H(Z)) is finite dimensional as a vector space alewhere(H (Z)) is the ideal
generated by th&/;(Z) inC[[Z — p],j =1,..., N'. Inthecase&V = N', H is calledinvertible
if its Jacobian determinant does not vanistpat

Recall that a smooth submanifold c CV is calledgenericif it is locally defined by
the vanishing of smooth real-valued functionéZ, 2), ... , ry(Z, Z) with linearly independent
complex differential$r1(Z, Z), ... , dra(Z, Z). A generic submanifolds ¢ CV is said to be
of finite typeat p € M in the sense of Kohn [22] and Bloom—-Graham [14] if the Lie algebra
generated by th@, 1) and(1, 0) smooth vector fields tangentid spans the complexified tangent
space ofV at p.

A (holomorphic) formal vector field gt € CV is given by

N 9
X = 7)——
kZ:lak< Vozn

withai(Z2) e C[Z — pl,k=1,..., N. If M isageneric submanifold of real codimensibas
above, andy, ... , ry are smooth real-valued defining functionsMfnearp € M, we denote by
0(Z,2) = (p1(Z, Z), ... , pa(Z, Z)) the Taylor series ofy, ... , rq at p considered as formal
power series itfZ — p andZ — jp. A holomorphic formal vector fiel& atp € M is calledtangent
to M if

Xp)(2,2)=c(2.2)p(2,2) ,

wherec(Z, Z) is ad x d matrix with entries inC[Z — p, Z — p]l. Following Stanton [28], we
say that the submanifol®f is holomorphically nondegeneratd p € M if there is no nontrivial
formal holomorphic vector field gt tangent toM (see [6], Section 11.7).

Let M c CN andM’ c CV' be smooth generic submanifolds of codimensioandd’
throughp andp’, respectively andf : (CV, p) — (CV', p’) aformal map. We say thdf maps
M into M’ and writeH (M) Cc M’ if

o (H(Z), H(Z)) =a(2.2)p(2.2)

wherep(Z, Z) is thed-vector valued formal power series defined as abovearp), p'(Z', Z')
is thed’-vector valued corresponding series o', p’), anda(Z, Z) is ad’ x d matrix with
entries inC[Z — p, Z — p].

We are now ready to state some of the main results of this article. We will discuss previous
related work towards the end of this introduction. Our first two results deal with finite determi-
nation of formal mappings between smooth generic submanifol@d’iras well as convergence
of such mappings when the submanifolds are real-analytic.

Theorem 1.1. Let M, M’ C CV be smooth generic submanifolds of the same dimension
through p and p', respectively. Assume that M is of finite type at p and that M’ is holomorphically
nondegenerate at p’. Let H® : (CV, p) — (CV, p’) be a formal finite map sending M into M’.
Then, there exists an integer K such that if H : (CV, p) — (CV, p’) is another formal map
sending M into M’ with

0"H(p) =“H%(p), ol <K,

it follows that H = HP.
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We should mention that Theorem 1.1 is new eveH ifs assumed to be holomorphic and
M, M’ are real-analytic. As an application of Theorem 1.1, it follows for example thzk if
(M, p) — (M’, p) is a germ of a smooth CR diffeomorphism with and M’ satisfying the
assumptions of Theorem 1.1 andiif: (M, p) — (M’, p’) is another smooth CR map whose
Taylor polynomial of ordeK at p agrees with that of°, then, necessarily the entire Taylor series
at p of h andhC are the same.

Theorem1.2. LetM, M’ c CV be real-analytic generic submanifolds of the same dimension
through p and p', respectively. Assume that M is of finite type at p and that M’ is holomorphically
nondegenerate at p'. Then, any formal finite map H : (CV, p) — (CV, p') sending M into M’
is necessarily convergent.

Itis worth mentioning that the holomorphic nondegeneracy conditionin Theorems 1.1and 1.2
is necessary for the conclusions of those theorems to hold (see Section 15 for comments and
details).

We say that two germgV, p) and(M’, p’) of smooth generic submanifolds @" of the
same dimension afermally equivalenif there exists a formal invertible mafi : (CV, p) —
(CN, p") sendingM into M’. If M and M’ are real-analytic and the invertible map can be
chosen to be convergent, we say thet, p) and(M’, p’) arebiholomorphically equivalentTwo
formal mappingsi, H : (CN, p) — (CN', p’) are said tagree up ordek, wherex is a positive
integer, if their Taylor series gi agree up to ordet. The following theorem may be viewed
as an approximation result for formal mappings between real-analytic generic submanifolds by
convergent mappings, in the spirit of Artin’s approximation theorem [2].

Theorem 1.3. Let(M, p) and (M’, p') be two germs of real-analytic generic submanifolds in
CN of the same dimension with M of finite type at p. If H : (CN, p) — (CV, p’) is a formal
finite map sending M into M’ and if « is a positive integer, then there exists a convergent map
H* : (CN, p) - (CN, p’) which sends M into M’ and agrees with H up to order «.

We should point out that the assumptions of Theorem 1.3 do not imply that the given formal
map H is itself convergent. The following, which is an immediate corollary of Theorem 1.3,
concerns formal and biholomorphic equivalence.

Corollary 1.4. Let (M, p) and (M', p’) be two germs of real-analytic generic submanifolds
in CN of the same dimension with M of finite type at p. Then, (M, p) and (M', p') are formally
equivalent if and only if they are biholomorphically equivalent.

A convergent mappind : (CV, p) — (CV', p/) is calledalgebraicif each of its compo-
nents satisfies a non-trivial polynomial equation with holomorphic polynomial coefficients. A
germ of a real-analytic generic submanifoM, p) in CV is calledreal-algebraidf it is contained
in a real-algebraic subset 6V of the same real dimension as thatiéf We say that two germs
(M, p) and(M’, p') of real-algebraic generic submanifolds@¥ of the same dimension aad-
gebraically equivalenif there is a germ of an invertible algebraic mép: (CV, p) — (CV, p))
sendingM into M’. The following theorem can be viewed as an approximation result for local
holomorphic mappings between real-algebraic generic submanifolds by algebraic mappings.

Theorem 1.5. Let M, M’ c CN be two real-algebraic generic submanifolds of the same
dimension. Assume that M is connected and of finite type at some point. Letp € M, p’ € M’
and H : (CN, p) — (CV, p’) a germ of a holomorphic map sending M into M’ whose Jacobian
does not vanish identically. Then, for every positive integer k , there exists a germ of an algebraic
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holomorphic map H* : (CV, p) — (CN, p’) which sends M into M' and agrees with H up to
order k.

One should again note that the assumptions of Theorem 1.5 do not imply that the given
holomorphic mapH is itself algebraic. Theorem 1.5 immediately implies the following result
concerning biholomorphic and algebraic equivalence of generic real-algebraic submanifolds.

Corollary 1.6. Let M, M’ c CV be two real-algebraic generic submanifolds of the same
dimension. Assume that M is connected and of finite type at some point. Then, forevery p € M
and every p’ € M, the germs (M, p) and (M’, p') are biholomorphically equivalent if and only
if they are algebraically equivalent.

In the case of real-algebraic hypersurfaces, we are able to drop the finite type condition in
Corollary 1.6. In fact, we shall prove the following.

Corollary 1.7.  Two germs of real-algebraic hypersurfaces inC" are biholomorphically equiv-
alent if and only if they are algebraically equivalent.

For a positive integek and a pointp in CV, denote byG*(C", p) the jet group of ordek
of CV at p. An elementj(Z) of this group can be viewed as®'-valued polynomial inZ of
degree at mogt, fixing p, and with nonvanishing Jacobianat The multiplication of two such
elements consist of composition of mappings with the resulting polynomial truncated up to degree
k (see e. g., [19]). liM, p) is a germ of a smooth generic submanifolddff, we denote by
F(M, p) the group of formal invertible mappings : (CV, p) — (CV, p) sendingM into itself.
Moreover, if M is assumed to be real-analytic, then, the subgrouB(@f, p) consisting of those
mappings which are convergent will be denoted by@{it p), thestability groupof M at p. For
any formal mapH : (CV, p) — (CV', p/), we define its jetj’ H to be its Taylor polynomial of
degree atp. If N = N’, p = p’ andH is invertible, thenng may be considered as an element
of GK(CV, p). The following corollary is a consequence of Theorem 1.1 and Theorem 1.2.

Corollary 1.8. Let M c CV be a smooth generic submanifold with p € M. If M is of finite
type and holomorphically nondegenerate at p, then there exists a positive integer K such that
the mapping jX : F(M, p) — GX(CN, p) is injective. If, in addition, M is real-analytic, then,
F(M, p) = AUt(M, p).

We shall now briefly mention previous work closely related to the results in this article. For
the case of Levi nondegenerate real-analytic hypersurfaces, finite determination by their 2-jets and
convergence of formal invertible maps were established in the seminal article of Chern—Moser [16]
(see also earlier work of Cartan [15] and Tanaka [29]). The first and third authors, jointly with
Ebenfelt [3] recently proved the analogues of Theorems 1.1 and 1.2 under the more restrictive con-
dition thatM’ is essentially finite ap’, rather than just holomorphically nondegenerate. Earlier
work by the same authors on these topics appeared in [8, 9, 7]. The second author of this article
established Theorem 1.2 (actually the more general version, Theorem 2.6 below) for the case
of an invertible mapH between real-analytic hypersurfaces [24]. Theorem 2.6 was also proved
by the second author for invertible mappings between generic real-analytic submanifolds of any
codimension under the additional assumption that one of the manifolds is real-algebraic [25].
In another direction, Ebenfelt [18] obtained results on finite determination (not covered by The-
orem 1.1) for smooth CR mappings between smooth hypersurfaces. Lamel [23] proved finite
determination and convergence results for certain mappings between generic submanifolds of
different dimensions.
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Itfollows from [16] that if two germs of real-analytic Levinondegenerate hypersurfa@$ in
are formally equivalent, then they are biholomorphically equivalent. On the other hand, examples
due to Moser and Webster [27] show that there are pairs of real-analytic submanifolds which
are formally equivalent but are not biholomorphically equivalent. The first and third authors, in
joint work with Zaitsev [12] proved that, at “general” points, formal equivalence of real-analytic
submanifolds implies biholomorphic equivalence. Corollary 1.4 above establishes this result
for points not covered in previous work. A related question for real-algebraic submanifolds is
the following, which has been asked in [4]: If two germs of real-algebraic submanifolds are
biholomorphically equivalent, are they also algebraically equivalent? It is shown in [13] that at
“general” points the answer is positive. Corollaries 1.6 and 1.7 above give further positive results
for some classes of submanifolds, including all hypersurfaces. A related question is when a germ
of a holomorphic map sending one real-algebraic submanifold into another is itself algebraic.
The latter question has a long history. We mention here the work of Webster [30] for invertible
maps between Levi nondegenerate hypersurfaces, and, for more recent work, we refer the reader
to [20, 10, 26, 31], and [17].

Our approach in the proofs of the results of this article lies in the study of the so-called
“reflection ideal” associated to a triple/, M’, H), whereM and M’ are (germs of) smooth
generic submanifolds itY andC"’, respectively, and/ is a formal map sending/ into M’

Such an ideal lies in the ring of formal power seriesMn+ N’ indeterminates. (See Section 2

for precise definitions.) If the source generic submanifdlds of finite type, we establish finite
determination of reflection ideals associated to formal mappings (Theorem 2.5 below) with no
nondegeneracy condition on the target manifedd In fact, we prove such a result in the more
general setting of formal manifolds. When the generic submanifolds are real-analytic and the
source manifoldM is of finite type, we prove (Theorem 2.6 below) that the reflection ideal
has a set of convergent generators. If the generic submaniféldad M’ are moreover real-
algebraic, the mag is convergent, and the connected source manifblid of finite type at some

point, we prove (Theorem 2.7 below) that the reflection ideal has a set of algebraic generators.
An important ingredient for the proofs of the above three theorems is the use of iterated Segre
mappings, introduced in [10] (see also [5]), which has already been applied to various mapping
problems. Another important tool in the proofs is Artin’s approximation theorem [2] and an
algebraic version of the latter in [1].

An outline of the organization of this article is as follows. In Section 2 we state the more
general results on reflection ideals from which the theorems stated above in this introduction
will follow. Sections 4-9 are devoted to preliminaries needed for the proofs of Theorems 2.5,
2.6 and 2.7, which are given in Sections 10-12. Some remarks and open questions are given in
Section 15.

2. Manifold ideals and reflection ideals

Forx = (x1,...,xx) € C¥, we denote byC[[x] the ring of formal power series inand by
C{x}the subring of convergent ones. Moreover, we whfe} c C{x}forthe subring of algebraic
functions (also called Nash functions). Rfis any of the three rings defined above and R
is an ideal generated by (x), ... , sg(x), we shall use the notation(x) = (s1(x), ..., sq(x))
and write/ = (s(x)). Anideall C R is called amanifold idealif it has a set of generators
with linearly independent differentials at the origin. Observe that any two sets of such generators
have the same number of elements. This number is callecbitienensiorof 7. The following
elementary fact, whose proof is left to the reader, will be used implicitly throughout this article.

Lemma 2.1. LetI C R be a manifold ideal of positive codimension d.
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(i) Any set of d elements of I whose differentials are linearly independent at the origin
generate 1.

(iiy From any set of generators of I, one may extract a subset of d elements with linearly
independent differentials at the origin (which generate I by (i) ).

If RisC{x} (respectively4d{x}) and{s1(x), ..., sq(x)}is a set of generators @fin R, with
d the codimension of, then the equationsg;(x) = --- = s4(x) = 0 define a germ at 0 of a
complex-analytic (resp. complex-algebraic) submanifldf codimensioni. In general, we say
that a manifold ideal c C[[x] of codimensiorl defines dormal manifoldE c C* of dimension
k—d and writel = Z(X). (We should point out tha does not necessarily correspond to a subset
of C¥ but we shall use the notatidh ¢ C* for motivation.) If £ ¢ CF is a formal manifold of
dimensior, a parametrization of is a formal mappingC!, 0) > r — v(¢) € (C*, 0) such that
foranyh € Z(X), hov = 0and rkov/d9t(0) = .

If I ¢ C[[x] is anideal and" : ((Cﬁ‘c, 0) — ((Cfcl/, 0) is a formal map, then th@ushforward
F.(I) of I is defined to be the ideal iB[x'], x’ € C¥,

Fo(I):={heC[[x]]:hoFel}. (2.1)

If £ ¢ Ckandx’ c CK are formal manifolds with = Z(X) c C[[x] and!’ = Z(X') C Cl[x'],
then we say tha¥’ sendsX into X’ and write F(X) Cc X/ if I’ C F,(I).

For a formal mapF : ((Cﬁ, 0 — ((Cfcl,, 0), we denote by RKF the rank of the Jacobian

matrix  F/dx regarded as &[[x]-linear mappingCllx])* — (CIxI)¥. Hence RKF is the
largest integer such that there is anx r minor of the matrixd F /dx which is not 0 as a formal
power series i. Note that if F is convergent, then RF is the generic rank of the map.

Definition 2.2. Let ¥ c CFandx’ c C¥ be two formal manifolds of dimensioh !,
respectively and” : (C¥, 0) — (C*, 0) a formal map sending to ¥’. Then,F is said to be
(X, X')-nondegeneraté Rk F o v = I’ for some (and hence for all) parametrizatioof .

A formal vector fieldV in C* is aC-linear derivation ofC[[x] and hence is given by
s 5
V= ;u,mgj, ujx) € Cllxll, j=1.... k.

The vector fieldV is called tangent to a formal manifol c CF or, equivalently, to its ideal
Z(%2) ifand only if V(f) belongs taZ (%) for every f € Z(X).

Definition 2.3. Anideall c C[x] is said to beconvergen{resp.algebraid if / has a set of
convergent (resp. algebraic) generators.

For(Z,¢) € CN x CV, we define the involution : C[Z, ¢]] — C[Z, ¢l by o (f)(Z,¢)
= f(¢, Z), where f is the formal power series obtained frofrby taking complex conjugates
of the coefficients. Anidealy c C[Z,¢] is calledreal if o(f) € J for every f € J.
Sinceo is also an involution when restricted ©{Z, ¢} or A{Z, ¢}, a similar definition ap-
plies for ideals in these rings. A formal manifolet ¢ CV x CV is calledreal if its ideal
Z(M) is real. A formal real manifoldt ¢ CV x CV of codimensiond is calledgenericif
for some (and hence for any) vector éfgeneratorse(Z, ¢) = (p1(Z,¢), ..., pa(Z,)) of
Z(M), the rank of thel x N matrixdp/dZ(0) is d. To motivate this definition, le/ ¢ CN be
a smooth generic submanifold of codimensibthrough the origin with smooth local defining
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functionsr(Z, Z) = (ri(Z, Z), ... ,rqa(Z, Z)) whose Taylor expansions at zero @z, Z) =
(01(Z, Z), ..., pa(Z, Z)). Observe that the vector-valued formal power serig§Z, ¢) gen-
erate a real manifold ideal i6[[Z, ¢] whose formal manifold\t ¢ CV x CV is generic. If,
furthermore, M is real-analytic, theoM c CV x CV is a germ at 0 of a complex submanifold
of codimensiond, usually referred to as thmmplexificatiorof M.

For a formal generic manifoldt ¢ CV x CV, we define a manifold idedh(M) c C[Z]]
as the ideal generated by théz, 0) for all h € Z(M). The formal manifoldSo(M) c CV
associated to this ideal is called tleemal Segre varietpf M at 0. Observe that wheM is the
complexification of a real-analytic generic submanifdddc CV (through 0), therSo(M) is the
usual Segre variety o at 0.

For a formal mapH : (CY,0) — ((Cg,/,O), we define itscomplexificatior{ : (CY x
cY,0 — (C) x (Cé\f’, 0) to be the formal map given by
H(Z,¢) = (H(Z), H(©)) . (2.2)

In what follows, givenM c CV x CV¥ and M’ ¢ CN' x CV' two formal generic manifolds,
we will consider formal map# : (CV,0) — (CN', 0) such that their complexificatior, as

defined by (2.2), send into M’. It is easy to check that iff is such a mapping, theli sends
the formal Segre variet§y(M) into the formal Segre variet§o(M).

Definition 2.4. Let M c CV x CN and M’ c CV' x CY be two formal generic manifolds
andH : (CN,0) — ((CN/, 0) a formal map such that its complexificati@hmapsM into M’.
The mapH is callednot totally degeneraté H is (Sg(M), So(M’))-nondegenerate as defined
in Definition 2.2.

A formal (1,0)-vector fieldx in C) x C}' is given by

N
X =Y ajZ7¢)

j=1

3 -
iz aj(Z,8) €ClZ. ¢l j=1,....N. (2.3)

Similarly, a (0,1)-vector field” in C} x C}! is given by
al 9
Y=Zb,-(z,¢>8—C, bj(Z,§)eClZ, ¢l j=1,...,N. (2.4)
j=1 /

For a formal generic manifoldt ¢ CV x CV of codimensiord, we denote by, the Lie
algebra generated by the formal (1,0) and (0,1) vector fields tangewt. td he formal generic
manifold M is said to beof finite typdf the dimension ofyr( (0) overC is 2N —d, whereg A (0)
is the vector space obtained by evaluating the vector fielgs jrat the origin ofC%Y. Note that
if M c CV is a smooth generic submanifold through the origin, anttifc CY x CV is the
associated formal manifold as described above, theis of finite type if and only ifM is of
finite type in the sense of Kohn and Bloom—Graham.

Let H : (CN,0) — (CV', 0) be a formal mapping. For anideadlc C[Z’,¢'1,(Z',¢') €
CN x CN', we define/? ¢ C[Z, ¢'] to be the ideal generated by theH (Z), ;') forall h € J
i.e.,

JM:=(h(H(Z).¢):hel)cC[z¢]. (2.5)



550 M.S. Baouendi, Nordine Mir, and Linda Preiss Rothschild

Note that if J is generated by(Z’, ¢") = (s1(Z',¢"), ..., su(Z', &) in Cﬂz’, g/’]], thenJ 2
is generated by the componentsséf{ (Z), ¢') in C[Z,¢']. If M’ C (Cg, X (C?’, is a formal
generic submanifold of codimensiah, we write for simplicity of notation

=7 (M)" cC[z.¢]. (2.6)

where we have used the notation given in (2.5). It is easy to se@th# a manifold ideal of
codimensiord’ in C[Z, ¢']. If M’ andH are as above, then we refer to the idg&l as the
reflection ideal off (relative toM’). If (M’, O) is a germ of a real-analytic generic submanifold

of C¥ andH : (C¥,0) — (CV', 0) is a formal map, we again defi®” by (2.6), whereM’

is the complexification of/’. We should observe that if, in additioH, is convergent, then the
reflection ideal defines a germ of a complex manifold which coincides with the zero set of the
so-called “reflection functionZ +— p’(H(Z), ¢') for an appropriate choice of defining functions

0 (Z',7") of M' (seee.g., [11, 21, 24]).

Our first result in this section establishes finite determination of reflection ideals for formal
mappingsH such that their complexificatior¥g defined in (2.2) send a formal generic manifold
M into M’. Note that in Theorem 2.5, no nondegeneracy condition is imposed on the formal
manifold M’.

Theorem 2.5. Let M c CN x CN and M’ ¢ CV" x CN' be formal generic manifolds with
M of finite type. Let H : (CN,0) — (CN ', 0) be a formal map such that its complexification
HO sends M into M'. Assume furthermore that H® is not totally degenerate as in Definition 2.4.
Then, there exists a positive integer Ko such that if H : (CV,0) — (CV § 0) is a formal map with
H(M) c M’ and jé( °H = jé( °H O, it follows that the corresponding reflection ideals defined
by (2.6) are the same i. e.,

TH — 7H° 2.7)

If (M,0) and(M’, 0) are germs of real-analytic generic submanifold€h andC"’, re-
spectively, andd : (CV,0) — (€', 0) is a formal mapping sendinyy into M’ as defined in
Section 1, then its complexificatidd sendsM into M’, whereM and M’ are the complexifica-
tions of M and M’, respectively. The second main result of this section establishes convergence
of reflection ideals for formal mappings between real-analytic generic submanifolds, with no
nondegeneracy condition imposed on the target manisid

Theorem 2.6. Let (M,0) and (M’, 0) be germs of real-analytic generic submanifolds in
CN and CV', respectively and H : (CN,0) — (CN', 0) a formal mapping sending M into M'.
Assume that M is of finite type at O and H is not totally degenerate. Then, the reflection ideal
TH | as defined by (2.6), is convergent.

The last result of this section establishes algebraicity of reflection ideals for local holomor-
phic mappings between real-algebraic generic submanifolds, with no nondegeneracy condition
imposed on the target manifold’.

Theorem 2.7. Let M, M’ c CV be real-algebraic generic submanifolds of codimension d
through the origin and H : (CV,0) — (CV, 0) be a germ of a holomorphic map sending M into
M’. Assume that the Jacobian of H does not vanish identically and that there is no germ of a
nonconstant holomorphic function h : (CV,0) — C with h(M) C R. Then, the reflection ideal
T, as defined by (2.6), is algebraic.
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In view of Proposition 6.1 (iii) below, Theorem 2.7 in the case whdrend M’ are real-
algebraic hypersurfaces @", is contained in [26].

Remark 2.8. Evenifallthe assumptions of Theorem 2.6 are satisfied, the fact that the reflection
ideal Z# is convergent does not imply that the formal mAgs convergent. For example, let
M = M’ be the real-algebraic hypersurface of finite type through the orig@i¥igiven by

Im Zz = |Z1Z2/2.

For any nonconvergent formal power serig¥) = h(Z1, Z2, Z3) vanishing at the origin, let
H : (C3,0) — (C3, 0) be the formal invertible map given by

H(Z1, Z2, Z3) = (Zle”(zk Zoe @), 23) .

In this example, the formal mafi sendsM into itself and is not convergent, but one can easily
checkthatits reflectionidedl” is convergent. (This factalso follows from Theorem 2.6.) Similar
considerations can be made in the algebraic case relative to Theorem 2.7. Proposition 2.12 below
gives an additional condition o’ which guarantees that the convergenceZéf implies that

H is convergent.

The following proposition, which justifies the notion of convergent reflection ideals intro-
duced here, will be used for the proofs of Theorems 1.3 and 1.5.

Proposition 2.9. Let (M’, 0) be a germ of a generic real-analytic (resp. real-algebraic) sub-
manifold of codimension d’ in CN" and H : (CN,0) — (CV',0) a formal map. Then, the
reflection ideal T is convergent (resp. algebraic) if and only if there exists a convergent (resp.
algebraic) map H: (CN,0) - ((CN/, 0) such that TH = TH. More precisely, if T" is conver-
gent (resp. algebraic), then for any positive integer «, there exists a convergent (resp. algebraic)
map H* : (CN,0) — (CV', 0) agreeing up to order k with H such that TH = TH".

If M c CN x CV is a formal generic manifold, we say th&t is holomorphically nonde-
generatdf there is no nontrivial (1,0) vector field of the form (2.3) tangenttbwith coefficients
a;(Z,¢) =aj(Z)independentof for j = 1,..., N. Note thatif(M, 0) is a germ of a smooth
generic submanifold it€", then M is holomorphically nondegenerate in the sense defined in
Section 1 if and only if its associated formal generic manifdids holomorphically nondegener-
ate as defined here. M1 is the complexification of a germ of a real-analytic generic submanifold
(M, 0)in CV, thenM is holomorphically nondegenerate as defined here if and only if there is no
germ of a nontrivial (1,0) vector field of the form (2.3) tangent\tbwith convergent coefficients
a;j(Z,¢) =aj(Z)independentof for j =1,..., N (seee. g., [6]).

Theorem 2.5 will be used in conjunction with the following finite determination result to
prove Theorem 1.1.

Proposition 2.10. Let M’ c CY" x CV' be a holomorphically nondegenerate formal generic
manifold and H® : (CN,0) — (CV', 0) a formal map with Rk H® = N’. Then, there exists a
positive integer K such thatif H : (CV,0) — (CV', 0) is a formal map with j& H = j& H® and

TH = TH® [as defined in (2.6)], it follows that H = HP.

In the case of a real-analytic generic submanifold and holomorphic mappings, we have the
following geometric interpretation of the equality (2.7) of reflection ideals. In view of Proposi-
tion 2.11 below, Theorem 2.5 can, then, be seen as a finite determination result for Segre varieties.
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Proposition 2.11. Let (M, 0) be a germ of a real-analytic generic submanifold in CN' with
real-analytic local defining functions r'(Z', Z'). Assume that H, H® : (CN,0) — (CV’, 0) are
germs of holomorphic mappings. Then, the following two conditions are equivalent:

(i) 79 = IHO, where the ideals T and TH® are defined by (2.6).

(i) For Z near the origin, the Segre varieties of M’ relative to the points H(Z) and H%(Z)
are the same. More precisely, there exists open neighborhoods of O, U and U’ in CN
and CN /, respectively such that for all Z € U,

SH(z) = Spo(z) » (2.8)
where Sy (z) ={Z' € U' : r'(Z', H(Z)) = 0}, with a similar definition for Sy,

Proposition 2.11 will not be used in the remainder of the article and its proof is left to the
reader. The last result of this section connects the convergence of the reflectio idaathe
convergence of the mappirfd.

Proposition 2.12. Let (M’, 0) be a germ of a generic real-analytic holomorphically nonde-
generate submanifold of codimension d’ in CN " IfH : (CN,00 > (CV | 0) is a formal map
with RK H = N’ such that its reflection ideal T, as defined by (2.6), is convergent, then H is
convergent.

Remark 2.13. We should point out that a statement similar to Proposition 2.12 holds in the
algebraic case. Indeed,(iM’, 0) is a germ of a generic real-algebraic holomorphically nonde-
generate submanifold of codimensighin CV" and if H : (C¥, 0) — (CV’, 0) is a formal map
with Rk H = N’ such that its reflection idedl” is algebraic, thetH is algebraic. This fact will

not be used in this article.

The proofs of Propositions 2.9, 2.10, and 2.12 will be given in Section 13.

3. Further results on finite determination, convergence, and approximation of
mappings

The following finite determination result, which is a generalization of Theorem 1.1, will be
a consequence of Theorem 2.5 and Proposition 2.10.

Theorem3.1. LetM c CN xCN and M’ ¢ CN' x CN' be formal generic manifolds with M
of finite type and M’ holomorphically nondegenerate. Let H® : (CV, 0) — (CN ', 0) be a formal
map such that its complexification H° sends M into M'. Assume furthermore that HO is not
totally degenerate as in Definition 2.4 and that Rk H® = N’. Then, there exists a positive integer
K such thatif H : (CN,0) — (CN/, 0) is a formal map with H(M) Cc M’ and j(fH = j(fHO,
it follows that H = HP.

Similarly, the following convergence result, which is a generalization of Theorem 1.2, will
be a consequence of Theorem 2.6 and Proposition 2.12.

Theorem 3.2. Let (M, 0) and (M’, 0) be germs of real-analytic generic submanifolds in CV
and CV, respectively and H : (CN,0) — (CV ',0) a formal mapping sending M into M’.
Assume that M is of finite type at O and that M’ is holomorphically nondegenerate at 0. If H is
not totally degenerate and Rk H = N’, then H is convergent.
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Remark 3.3. We should point out that the assumptions of Theorem 3.2 are less restrictive than
those of Theorem 1.2, even in the case whdrand M’ are real-analytic hypersurfaces in the
same spac€”. (The same can also be said about Theorems 3.1 and 1.1.) For instance, given a
no3ntrivia| convergent power serias. (C, 0) — (C, 0), consider the following hypersurfaces in

C=:

M = {Z eC3:Imz3 = ‘Z%Z2)2 + |h(Zl)|2} ,
3.1)
M = [Z’ eC3:Im Z5= ‘Ziz/z‘z"‘ ‘h (le)‘z} :

Observe that the convergent mappi@P, 0) > Z — H(Z) := (Z1, Z1Z», Z3) € (C3,0)
sendsM into M’. Moreover,M and M’ are of finite type and holomorphically nondegenerate
at the origin. Note also thd¥ is not totally degenerate and R = 3 but A is not finite. We
should point out that the convergence of formal mappings betweandM’ satisfying the latter
conditions follows from Theorem 3.2, but does not follow from Theorem 1.2 nor from previously
known results. (Indeed, sindg and M’ are not essentially finite at the origin, the result in [3]
does not apply, nor does the one in [25] if the functtois chosen not be algebraic.)

The following approximation result generalizes Theorem 1.3.

Theorem 3.4. Let (M,0) and (M’,0) be two germs of real-analytic generic submanifolds
in CN and CV', respectively, with M of finite type at 0. If H : (CV,0) — (CN',0) is a not
totally degenerate formal map sending M into M’ and if k is a positive integer, then there exists
a convergent map H< : (CN,0) — (CV ', 0) which sends M into M’ and agrees with H up to
order k.

4. |deals in jet spaces

Given nonnegative integefsk, r, with k, r > 1, we denote bwé((C", C") the jet space at
the origin of order! of holomorphic mappings frori* to C”. An element; of Jé(C", C") can
be written as a polynomial mapping

Aq
ix= > X% AgeC. (4.1)

aeNk, O<|a|<I

We think of the coefficients\ := (Aq)o<ja|<i; Ao € C", as linear coordinates in the finite
dimensional vector spad%((Ck, C") and we identifyj with A. We write Ay = (Aq.i)1<i< fOr
anya € N, |a| < 1. We also use the splitting

A= <A0, A) ;A= (A1) - (4.2)

Using the coordinates, we identify J\(C*, C") with C*¥ wherem = dimg J4(Ck, C"). For a
formal mapF : (C*, 0) — (C", 0), we write /. F and j* F for the vectors of formal series
JLF = (3VF(x))

JLF = (3VF(x)) (4.3)

O<fv|=<l” I<p|=l -

Here, forv € N, 3V F(x) € (C[x])" andx e C*. If s is another positive integer ang :
(JH(Ck, €, 00 — (J5(CF, C%),0) is a formal map, we take coordinatés = (A,),<; and
A = (A}« for JA(CK, C) andJ)(C*, C*), respectively. Herep, € C”, A/, € C*. We then
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write , = A/, o n; that is, the mapy is given byA’ = n(A). Hence, fov € N¥, [v| < 1, 7, is
thev-th component of), i. e.,

o : (Jg, (c", @f) ,o) > (C0), =) - (4.4)

If Risaring andl’ € CY, as usual we denote §[T] the ring of polynomials irl" with
coefficients inR. If A = (Ag, A) are coordinates idé((C", C")asin (4.1) and (4.2), the subring
CIAoI[A] := (CIAoI)[A] of the ringC AT will play a crucial role in the rest of this article.
For instance, ift € C[Agll[A] andF : (Ck, 0) — (C’, 0) is a formal map, then(jch) is awell
defined formal power series @[ x] while for a general: € C[A]], one cannot define i

We have the following uniqueness result.

Lemma 4.1. If A = (Ao, A) are coordinates in Jé((Ck, C") as in (4.1) and (4.2) and if
u e C[[Ao]][[\] is a formal power series satisfying

u (j,{F) —0, in Cx], (4.5)
for any formal power series mapping F : (CK, 0) — (C”, 0), thenu = 0 (in CIAoNAD).

Proof. We shall define a polynomial map
Q: (Jé ((Ck,(Cr) X(Ck,O) — (Jé ((Ck,(Cr),O) (4.6)

asfollows. IfA = (A,)}y<;,v € Nk, A, € C", are coordinates on the source jet spg€*, C")
asin (4.1)x = (x1,...,xx) € CkandA = (Aw)je|<t are coordinates on the target jet space
JA(CK, C"), theng is defined by

A=gAx)=0"|x1 D Awx’ . 4.7)

O<|v|<! 0<|a|<l
We claim that the generic rank @f Rk ¢, is equal ton, the dimension oflé((Ck, C") overC.
For this, let

(A, x) := | x10¢ Z Ayx’

O=|v|=! 0<la|<!

First note that Rkp is greater or equal to the generic rank £{inof them x m matrix A(x) :=
d . - . .
%(A, x). Moreover, it is not difficult to see that the generic rank of the matrix) is the same

L~ g . ~ . .
as that of the matriA (x) := B—Z(A,x). Since forx; # 0, the rank ofA(x) is clearlym, it
follows that Rkg = m. This proves the claim.

Lindeed, given two formal power serigix) € Cl[lx — xo]l andg(y) € Cl[y — yoll, the compositiorg o f as a
power series inx is well defined provided (xg) = yg. However, ifg is a polynomial then the composition is
always well defined without the assumptigixg) = yo.
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Given a formal power serias € C[[A]], sincep(0) = 0, we can consider the composition
(vo@)(A, x) as a formal power series A, x]. We write

o)A, x)= Y vp(A)xP, wvgeClA]. (4.8)
BeNk

Observe that ib is in the subrin@[[Ao]][[\] C C[A] then for eactg e N¥, vg is a polynomial
inA,i.e.,(vogp)(A,x) e C[A][x]. Letu be as in Lemma 4.1 satisfying (4.5). For any vector
a = (a)p<1 € C" = JH(CK, C"), by (4.5) With F (x) = x1 ) |,|<; avx", We obtain

w(11F) = u(p@. ) = Y up(@i? =0, inClxl. (4.9)
BeNk

As a consequence, we havg(a) = for any g € N and any vector in C™. Sinceug is a
polynomial, it follows thatug = 0 and hence the formal power seri@so ¢)(A, x) is zero in
C[A][x] c C[A, x]. To conclude that is identically zero, by e. g., Proposition 5.3.5 of [6], it
suffices to use the fact that Rk= m. This completes the proof of Lemma 4.1. L]

Proposition 4.2. Let I, r,s be nonnegative integers withr,s > 1, and let ¢ : (C",0) —
(C%, 0) be a formal map. Then, there exists a unique formal map

0 (4 (ch ), 0) — (4 (ct ). 0) (4.10)

whose components are in (CI[Ao]][zA\], with A = (Ao, A) the coordinates of Jé((Ck, C") introduced
in (4.1) and (4.2), such that for any formal map F : (CK,0) — (C", 0)

ji@o ) =g (jLF) . (4.11)

Moreover, if we write ¢(A) = (¢ (A))UENk jv|<i» then for each v, ¢(l)(A) depends only
on (Ay)e<v. Finally, if r = s and ¢ : (C",0) — (C’,0) is invertible, then so is p®
(YT T, 0) > (YT, ), 0 and (¢D) L = (¢~ H.

Proof. The existence of the maf” and its properties follow easily from the chain rule. The
uniqueness of such a map is a consequence of Lemma 4.1. The proof of the last statement of the
proposition is straightforward and left to the reader. L]

Remark 4.3. Let ¢ and¢” be as in Proposition 4.2. It follows from (4.11) and the other
properties ofp") that for any formal mag : (CX x C{, 0) — (C%, 0), we have the equality of
vector valued formal power series@jx, ¢]]

@G0 =9? (116, D) . (412)

Here, asin (4.3)j!G(x, ) = (3"G(x, 1)< Hence, (4.11) appears as a special case of (4.12),
without an additional formal parameter

Foranyideal C C[ly], y € C", and any nonnegative integetrd, withk > 1, we define an
idealI® < C[Aoll[A], whereA = (Ao, A) are coordinates off,(C*, C") asin (4.1) and (4.2),
as follows:

1D = {h € C[[Ao]][ ] (] ) =0 forall F : (((Ik,O) — ((C’,,O
' ' ! (4.13)
suchthatto F =0, forallu e I} .
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We have the following proposition.

ProposiAtion 4.4. IfI c Cly] is a manifold ideal of codimension d, then the ideal I C
CIAoll[A] defined by (4.13) is also a manifold ideal. Moreover, if t]ze manifold ideal I is
generated by p1(y), ..., p4(y) in C[ly]l, then the ideal IO in CIAQNIA] is generated by the
components of pf)(A), ey p((;)(A) , where ,0;1) is given by Proposition 4.2.

Proof. Recall by Proposition 4.2 that an invertible formal map (C’,, 0) — ((CQ,, 0) induces
a formal invertible mapy® : (J5(Ck, C"), 00 — (JH(C*, C"),0). We leave it to the reader to
check that the equality

(v®) a® = @uan® (414)

follows from Proposition 4.2, where the pushforward of an ideal is given by (2.b).(3f), .. .,
pa(y) are generators of the manifold idesl we may choose a formal invertible map :

((C;,O) — ((C;,, 0) such thaty;. = Y¥;(y) = pj(y) for j =1,...,d and hence the manifold

idealy, (1) C C[y'] is generated by the coordinate functiogs. .. , y;. We takeA = (Ao, A)
for coordinates in the source jet spalée(ck, C"yandA’ = (A}, A’) for coordinates in the target

one, as in (4.1) and (4.2). Itis, then, easy to check that the igeal))) c C[AI[A']is the
manifold ideal generated by the coordinate functiong’i) forO<|a| <landi =1,...,d.

It follows from (4.14) that’ © ¢ C[Aoll[A] is a manifold ideal and is generated by ﬂngz (A)
forO < |a| <landi =1,...,d. Since by constructiog; (y) = p;(y),i = 1,...,d, the last
part of the proposition follows. L]

5. Generators of the idealZ(M')®

. . . . . ’ ! . .
In this section, we consider a formal generic manitéitd ¢ CY, x C¥ of codimension?’.
Z ¢

Let
o ((Cg,/ X (Cév,,, O) — ((Cd/, 0)

be a formal mapping such that(M") = (0'(Z',¢") = (p1(Z', &), ... . p(Z', ) In CIZ',
¢’T. We define

p(Z.¢)=p(¢.2). (5.1)
Since Z(M’) is real, the idealZ(M’) c C[Z’, ¢'] is also generated by the components of
p'(Z', ).
Given a formal mapH : (CY,0) — (C¥/,0), we define two formal mapping8p’ :
(Ch x (Cév,’, 0) — (C%,0) andp™ : (C}, x cy,0 — (€', 0) as follows
Bo'(2,¢") = p' (H(2). &), p"(2.5) =0 (Z HO)) . (5.2)
Similarly, we define
B'(2,¢) =5 (H2). &), p7(2.5) =5 (2 HO)) . (5.3)

Note that by the reality condition, we have

U (z,¢) =p" (¢, Z) . (5.4)
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Observe also that the componentsf(Z, ;) generate the reflection ided” c C[Z, ¢'] as
defined by (2.6).

Throughout the rest of this section and Sections 6-9, we fix a nonnegative ihtSjece
o, 0 ((Cg// x (C?{/, 0) — ((Cd/,0>
are formal mappings, by Proposition 4.2 there exist unique formal mappings
PUCRFICE (Jé ((CN, cM x CN’) , o) - (Jé (ch, cd’) , o) (5.5)
such that for every formal mapping
F=(F%F?): (c}.0) - (¢} xc¥.0) (5.6)
one has
jy (0 o F)=p' O (J4F).  jL (7 o F) =5 (jyF). (5.7)
If A = (Ag)aj<i, o € NV, are the coordinates given by (4.1) on the jet space
B(cy ey <) =u(cy.cl) x s (ch e, (5.8)

then, we writeA = (A%, A?) according to the splitting (5.8). Thus, we haté = (Al) 4|,
i =1,2,a € NV, Asin (4.2), we continue to use the splittilg = (A%, A’) with A’ =
(Afx)ls‘odf;, i = 1,2. Sincel(M’) is generated either by the componentsptfZ’, ¢’) or
by those of3’(Z’, ¢'), it follows from Proposition 4.4 that the ideatAM")® in C[Aoll[A] is
generated either by the component6f (A) or by the components gf ¥ (A).

We shall now give a more explicit expression fgf) (A). As in (4.4), we writep’® =
(o) D)< andp’® = (5, D), <. For any formal mapping (Z) as in (5.6), by (5.7), the chain
rule, and (5.2), one has for amye NV, |v| <1,

o () = 2 [ (P )] = Lo [ (. )]

2 P <<8MF1(Z))1S|M|§V> e (F>.2). 9

aeNN'| peNN
[Bl+le|<|v], B<v

where theP, 4 are universal scalar polynomials depending only\oand N’ (independent of
andp’). Note that we also have

Pooy = 1. (5.10)

As in (5.2), one should regamﬂﬁis a power series mapping of the indetermina#s¢); this
is the meaning of the derivativ,e(g,za{ﬂ in (5.9). For anye € NV, any8 € N and for any
formal mapF?2 : (CV,0) — (CV', 0), we have, again by the chain rule,

p/i;ﬂ (Z,¢) = Z Rgy. ((88F2(§))1<|8|<|ﬁ|) /)/z/aw (Z/, FZ(C)) ,  (5.12)

neNN' | ju|<|B|
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where theRg,, are universal scalar polynomials depending only\oandN’ (independent of 2
andp’). Again, as in (5.1), one should regardas a power series mapping of the indeterminates
(Z',¢’). Moreover, one haggo = 1 andRgo = O for all 8 # 0. As a consequence of (5.9)
and (5.11) and using the notation (4.3), we have for any formal magpiag as in (5.6)

0 (L FY 4 F?)

= 3 Pup (15FY) X Rou(1F?) b (FA@). F2(@)) . (512)
aeNN, geNN neNN’
|Bl+le| <[v], B<v [ul=IBl
Hence, by the uniqueness in Proposition 4.2, we ha@inoll[A], A = (AL, A2), forv e NV,
vl <1,

PO (Al, A2) = Y P (Al) > Rpu ([\2> Py (Aé, A%) . (5.13)

ozeNN/, ﬁeNN }LENN/
|Bl+l|=v], B=v [nl=IBI

Using”'/(Z, F2(Z)) [given by (5.2)] instead op’*>(F1(Z), Z) in carrying out the calculation
in (5.9), one is led to the following expressiongf’) (A, A?):

L (Al, Az) = Y P (AZ) S Ry (Al) Pn e (Aé, A%) . (5.14)

aeNN/. ﬁeNN ueNN
[Bl+lal=|v], B=v Inl=1Bl

where the polynomial®,.s and Rg,, are the same as those in (5.13). Of course, the expres-
sions (5.13) and (5.14) also hold fpf replaced bys’ as well, since the components gfare
also generators af (M).

We summarize the above in the following lemma.

Lemma5.1. Let M’, p’ and §' be as above. Then, the ideal in C[Ag]l[A] generated by the
components of p'(A) is the same as the ideal generated by the components of 5’V (A), and
both coincide with Z(M')D). Furthermore, the components p{,(l)(A) are given either by (5.13)
or by (5.14)

We should mention that in what follows, we will use the expression (5.13}'fand the
expression (5.14) fop’, for a specific choice of’.

Remark 5.2. As in (5.11), for anye € NV, any 8 € N and for any formal mag?! :
(CN,0) — (CV',0), we have

Vo) (), ) dee (F0.0) | 619

weNN" | |ul<|B|

where the universal polynomial®g,, are the same as those in (5.11). Observe that (5.15) has
already been used in provin (5.14).

6. Properties of reflection ideals and their generators

As in Section 5, we consider a formal generic manifaitd C (C%’f X C?’,/ of codimension

d’. Since M’ is generic, we may assume by using the formal implicit function theorem that
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Z =, w)eC" xC¥ ¢ = (x,17) e C" x C¥ withn' = N’ — d, and that the ideal
Z(M"inC[Z, ¢'] is given by

IM) =W -0 (), (6.1)

whereQ’ : ((C’;,’ X (C?’ 0 — ((Cd/, 0) is a formal mapping. Note that singe!’ is real, we also
have

IM)=(r"-0 (x.2)) . (6.2)
For the rest of this article, we make the following choice of generatorg {dvt’)

o' (Z.¢)=7-0(x.2Z). (6.3)
Hence, in view of (5.1), we have

P2 =w -0 () (6.4)

We have the following proposition which holds for this choice of generatof&(d#’).

Proposition 6.1. Let M’ C (Cg,, X Cé\i/ be a formal generic manifold of codimension d’ and

H,HO : (CN,0) - (CV',0) be two formal mappings. Let I be the reflection ideal defined
by (2.6) and "p’ be the formal map given by (5.2) with the choice of p’ given by (6.3). Then,
the following hold.

. 0 0,

) I =1" = "'z.¢)="p"Z.0).

(i) The reflectionideal T" is convergent (as in Definition 2.3) if and only if the components
of Hp/(Z, ¢') are convergent power series.

(iii)  The reflection ideal T is algebraic (as in Definition 2.3) if and only if the components
of Hp/(Z, ¢') are algebraic functions.

Proof. (i) Since Z = (Hp'(Z, ¢")), it follows that #p’(Z, ') = Hy'(z, ¢’y implies the
equality of the ideal* and Z#°. Conversely, ifZH = TH° then there exists@ x d’ matrix
a(Z, ¢") with entries inC[[Z, ¢'] such that

Hy(z,¢)=a(2,) Hp'(2,¢) . (6.5)
Puttingr’ = Q'(x’, H%(2)) in (6.5) and making use of (5.2) and (6.3), we obtain B4ty ’,
HO(Z)) = Q'(x'. H(Z)) and hencep'(Z. ¢') = ¥ /(2. ¢").

(ii) Since ! = (Hp'(Z, ¢')), if the components ofp’(Z, ¢) are convergent, thed” is
convergent. Conversely, if? is convergent, then, by Definition 2.3 and Lemma 2.1 (i), there
existrj(Z,¢') € C{Z,¢'}, j = 1,...,d’, with linearly independent differentials at O such that

IH = (r) = (r1,... ,rg) InC[Z, ¢']. As a consequence, there exist'a< d’ invertible matrix
a(Z, ¢") with entries inC[[Z, ¢'] such that
r(z.0)=a(z.0) %' (2.¢')=a(2.0') (- Q' (x'. H()) . (6.6)

and hence)r/37’(0) is invertible. By the implicit function theorem, one sees that the equation
r(Z, x’, ") = 0 has a unique convergent solutioh= u(Z, x’). It follows from (6.6) that
0'(x', H(Z)) = u(Z, x') and hence thalp’(Z, ¢’) is a convergent power series mapping. This
completes the proof of (ii).

(iii) The proof of this case is similar to that of part (ii) above by making use of the algebraic
version of the implicit function theorem. L]
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7. ldeals associated to formal generic manifolds and mappings

In this section, we consider two formal generic manifolds ¢ CJ x CC?’ and M’ C
(Cg,/ X (Cé",/ of codimension/ andd’ respectively. We writ&V =n +d andN' =n' +d’. Asin
Section 6, we continue to use the choice of generata¥g.6f’) given by (6.3) and (6.4).

By the implicit function theorem, there exists a formal mapping
ay
. N n N —
y:(CY xCL0) > (CX.0), k=@ =n. (7.2)
such that for any: € Z(M),

h()’(fv [), ;) =0 s
and hence, by the reality 0¥, we also have

h(Z,7(Z,1) =0. (7.2)

Observe that each of the formal mappin@®’ x C*,0) > (Z,t) — (Z,7(Z,t)) and(CN x
C", 0 > (¢, 1) — (y(,1),¢) is a parametrization of the formal generic manifold. If,
moreoverM c CVN x CV is the complexification of a generic real-analytic (resp. real-algebraic)
submanifold through the origin i@", then one can chooseto be convergent (resp. algebraic).
As in [5], we shall call a formal map satisfying the above propertiesSegre variety mapping
relative toM. Note that the formal magC”, 0) > ¢ — y (0, t) is a parametrization afg(M),

the formal Segre variety oM at 0 as defined in Section 2. In the rest of this article, we shall fix
such a mapy.

For a formal mapH : (CV,0) — ((CN/, 0) and the fixed nonnegative integemwe define
two formal mappings

ol ), ¢(H; ) (J(l) (CN,(CN/) x CY x (C;’,O) — J} ((CN, (Cd/> ,

as follows. Considep’® (A, A%) andp'® (A1, A?) as defined in (5.5), with the choice pf
andp’ made in (6.3) and (6.4). Taking? = 05 (H(y(Z,1)))|aj<1 We set

o (H: AL Z,1) o= 0 (A%, (0% (A (7(Z.1) 0y ) - (7.3)
and
P (H; ALz, t) = 5O (Al’ (01 72, ’)))|a|sz> ' 7.0

Observe that each component of the right-hand side of (7.3) and (7.4) is a formal power series
whichisinC[A}, Z, tT[AY]. Here we recallthar® = (A}, A1) are coordinates aff(CY, CV')
asin (4.1) and (4.2).

We shall write, as in (4.4)!!!(H; ) = (ol)(H; -));,)<; and use a similar notation for
¢"I(H; -). We shall now compute theth componengl!(H; -). It follows from (7.4) and (5.13),
with p’ replaced byp’, that

Gl (H; ALz, t)

= > Pup(AY) X Reulih (A G@Z.0)) Byog (83 A G Z.10)) . (75)
aeNN, geNN ueNN’
[Bl+lal<[v]. B<v Iul=1Bl
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where jL,(H(7(Z,1))) = 35[H (7 (Z,1)D1<s1<- By the chain rule, a computation similar
to (5.11) shows that one has

5161 _ 3
=5 020 (2 72 0)] = Y Rey (5 (H FZ.00)) By (2. B F(Z.17)

weNN
InI=IBl

(7.6)

where the universal polynomial®s,, are the same as those in (5.11). On the other hand, by the
chain rule (again considering” as a power series mapping of the indeterming#s¢)), we
also have

B . , o
m[p’;a (Zz'.y(z, t))] = Y (2,00 s (2, 7(2,1)) (7.7)
181<18]

Here, the formal power series mags : ((C]}’ x C, 0) — C depend only on the Segre variety
mappingy and not on the mappingf. Moreover, ify is convergent (resp. algebraic), then the
cps are also convergent (resp. algebraic). As a consequence of (7.5), (7.6), and (7.7), we obtain

P (H; AL Z,t) = Y Pug ([\1) > eps(Z. 0 s (Ag,y(z,t)) . (78)
aeNN/, BeNN [8]<|BI
[Bl+le|=|v], B=<v

If H : (CY,00 - (CY,0) is a formal map such that its complexificatié : (€Y x

Z/ 9
CY,0) — (C}, x CY', 0) given by (2.2) sends into M, then it follows from (7.2) that

W(H(Z),H[{y(Z,1))=0, VW eI(M). (7.9)

Taking 4’ in (7.9) to be any of the components pf(Z’, ¢") or 5'(Z’, ¢’) and making use of
Remark 4.3, we obtain

PO (it (20 7% (A (Z.0))) =0, 50 (jLH @), j5 (A 7(Z.10)) =0. (7.10)
HenceAl = j’ZH is a solution of each of the systems of equations
ol (H; Al Z, t) -0, ¢! (H; Al Z, t) —0, (7.11)

whereg!!l(H; -) and@!l (H; -) are defined by (7.3) and (7.4) respectively.

We summarize the above in the following lemma.

Lemma7.1. LetH : (CY,0) — ((Cg,/, 0) and ¢"1(H; -) and ¢'"N(H; -) be the formal series
given by (7.3)and (7.4) respectively. Then, the ideal in C[A}, Z, t][A1) generated by the com-
ponents offp[l] (H; A t) is the same as that generated by the components of(ﬁ[l] (H; ALz, 1).
Moreover, the components of $''(H; A1, Z, t) are given by formula (7.8). If, in addition, the
complexification H of H, as given by (2.2), maps M into M’, then A* = leH is a solution of
each of the two systems of equations in (7.11)
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8. Iterated Segre mappings and associated ideals

Inthis section, we assume th&t and M’ are given formal generic manifolds as in Section 7.
We continue to use the choice of generalgi&’, ¢’) ands’'(Z’, ¢’) given in (6.3) and (6.4) for
the idealZ(M'). If y is a Segre variety mapping relativetd as defined in (7.1), we define, as
in [5], theiterated Segre mappindselative toM) as follows. First, we sei® := 0 € CV. For
any positive integey, v/ : (C", 0) — (CV, 0) is the formal mapping defined inductively by

v/ (tl,... ,tf> =y (1-)1'—1 (tl,... ,tj_l),tj>, Lo e, (8.1)

In what follows, it will be convenient to introduce for a given positive integéine notation

.= (tl,... ,tj> ,

considered as a variable @ . With this notation, we may rewrite (8.1) in the form

v (t[./]) —y (1—,1'—1 (,U—l]) , ,./) _

It follows from (7.2) and (8.1) that for any € Z(M) and any nonnegative integgrwe have
h (vj (t[j]) ias (t[f+l])) —0. (8.2)

If H:(CN,0) - (CV',0)is aformal mapping ang is a fixed honnegative integer, we
define two formal mappings
I H ), GIH: ) - (U5 (CV, ) x €U 0) — g (e, )
as follows:
bl (H; AL ,[j+2]> — lll (H; AL pitt (t[-/+1]),tf'+2> (8.3)
and similarly,

G (b, W42 o g (1 T, o (1) 5 @

Here we recall that the formal mapping8!(H; -) and@!!!(H; -) are given by (7.3) and (7.4),
respectively. Hence the componentsydf-/!(H; -) and ¢/[/1(H; .) are formal power series
in the ring CIAS, tU+N[AY] = CIAS, 12, ..., t/F2][A1]. It follows from the definition of
yl-l(H; -) and from (7.8) that one has the following identity for everg NV, |v| <1,

G-l (H; AL t[j+2]>

= X () T () s (572(2)) 09
aeNN' | geNN [81=<IBI
I8+l <Ivl. p<v
Here we have used (8.1) in the foirt2(tl/+2l) = y (v/+1(:L+1) 1i+2) and Seuéa(t[‘i+2]) =
cps (WITL(lIH), 17+2) where thergs are as in (7.8). Note that since thg are independent of
H,soare tha//%. Moreover, if M is the complexification of a real-analytic (resp. real-algebraic)
generic submanifold ofV through the origin, then we may assume that the formal power series
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uéé in (8.5) are convergent (resp. algebraic). The following lemma is then a consequence of
Lemmas 5.1 and 7.1 as well as the above construction.
Lemma8.1. The ideals (y!"/\(H; AL, tli+2))) and (J;UJI(H; AL t[-/+2])) inCIAJ, 1421

[Al] are the same. In particular, let
s+ (€'02,0) > s (V. V) |

be a formal map with S(tV+2) = (So(s/+2), StV +2)) as in (4.2) and So(0) = O. Then,
AY = S@U*2y js a solution of wU-7I(H; AL, 1li+2ly = 0 if and only if it is a solution of
vlbil(H; AL, 1421y = 0. Moreover, if H : (CV,0) — ((CN,, 0) is a formal map such that its
complexification H sends M into M’, then

= () (0 (), o9

is a solution of the systems of equations

] (H; AL, t[j+2]) =0, ¢l (H; AL, z[f+21) =0. (8.7)

We need the following lemma concerning the iterated Segre mappings of

Lemma 8.2. Lety(¢,t) be a Segre variety mapping relative to the generic formal manifold
M c CN x CN as defined in (7.1)and v/ the iterated Segre mappings as defined in (8.1). Then,
for every nonnegative integer j, there exists a unique formal mapping€/ : (C*"U+D 0) — (C", 0)
such that

pit+2 (,L/+1], gl (,[j+11)> — (,[j]) ' (8.8)

Moreover, if the formal mapping y is convergent (resp. algebraic), then £/ is convergent (resp.
algebraic).

Proof.  SinceM is generic, by making use of the implicit function theorem we can assume
thatZ = (z, w) € C" x C4, whered is the codimension ofM andn = N — d, and that
Z(M) is generated by the componentswf— Q(z, ¢) whereQ : (C*tV 0) — (C4,0) is a
formal mapping. IfM is the complexification of a real-analytic (resp. real-algebraic) generic
submanifoldM c C¥, then the formal mag is convergent (resp. algebraic). By the reality of
M, one has

Q(z. 1. 0x.zow)) =w. (8.9)

Corresponding to the splitting = (z, w), we may writey (¢,1) = (u(Z, 1), v(¢, 1)), with
w: (CN*" 0) — (C*, 0) andv : (CN*t" 0) — (C?,0). By the definition of a Segre variety
mappingy, we necessarily have

Y& 1) = (u&, 1), Q& 1),%)) . (8.10)

Since rk 9y /9t(0) = n, the matrixow/d¢(0) is invertible. As a consequence of the implicit
function theorem, there exist a formal mapping (CV*", 0) — (C", 0) such that

wy(Z,t),7n(Z,1) =z, whereZ = (z,w). (8.11)
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It follows from (8.9), (8.10), and (8.11) that(y (Z, 1), #(Z, t)) = Z. The lemma follows by
takingg/ (tU+1) .= m (vl (/U1 1711 2 ]

If j is a nonnegative integétis the previously fixed nonnegative integer, @hd (CV, 0) —
(CN', 0) is a formal map, then for € NV, |[v| <, ande € N”, we define formal mappings

OLI\H; ), OLJ(H: - - (Jé (CN,CN’) x ChU+D o) o (8.12)
by
O (H; AL ) = 5 pyll ) (H; A, 1172))

O (H; AL U = 5 gl (H: A, 1U72))

v,€

it2=Fi(fli+1)

(8.13)

i+2=Ei L+’

wherey!"J1(H: ) = (i) (H; )< and @1 (H: ) = G5/ (H )< are defined by (8.3)
and (8.4), respectively, and the mapis given by Lemma 8.2. Observe that each component
of ©LJ1(H; ) and®/1(H: ) is a formal power series A, (V+HI][AY. We have the
following lemma concerning the formal power series mapMd](H; ).

Lemma 8.3. Foranyv € NV, |v| <[ and any e € N", the following holds.

BlL! (H; Al,t[j—i-l]) =Y ol (Al,t[j—kl]) 5’5,%5 (A%’ 5 (ﬂj])) , (8.14)

181 <I+le|

where each a){;ewS (AL, 1U+1y e Cey U AL is independent of the formal mapping H. Here,
oM (Z', ¢) is considered as a formal power series mapping in the indeterminates (Z', ¢). More-
over, if the Segre Variety mapping y relative to M is convergent (resp. algebraic), then each

formal power series w! (A1 L+ js in C{eU+I[AL] (resp. A{tUTH[AL]).

Proof. The proofis animmediate consequence of (8.5), the definition cﬁ)ﬁ‘g@(H; -) given
in (8.13), and (8.8). L]

The formal power series given by (8.13) will not be used until Section 10. Their importance
lies in the following remark.

Remark 8.4. Lets : (C"V+D,0) — Jh(CN,CN') be a formal mapping such th&§(0) = 0

whereS (1) = (8, (U+)) < = (SoeV+1), S¢eli+1)) asin (4.2). Thenpa® = s(li+1)

is a solution of the system of equation¥-/1(H; A1, :/12) = 0if and only if it is a solution of
the system of equatior®/ (H; AL, t+1l) = 0 for allv € NV, [v] </, and alle € N". This

is an immediate consequence of the fact tat/t1l) is independent of the indeterminate2

and the definition (8.13) of th®'"/1(H: -).

9. Properties of solutions of the systeng'>/1(H; AL, ¢li+2l) = 0

The following technical lemma will be essential for the proofs of Theorems 2.5, 2.6, and 2.7.

2|f one takgsu'(;, 1) =t, wherewu (¢, t) is the component of (¢, t) as in (8.10), then the reader can check that
one hag/ (lU+1) = ¢/,
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Lemma 9.1. Let M c CN x CN and M’ c CN' x CN' be formal generic manifolds and
H:(CN,0) — ((CNl, 0) a formal map such that its complexification H : (CN xCV, 0) — ((CN, X
CN', 0) sends M into M'. Assume that H is not totally degenerate as in Definition 2.4. Let1, j
be nonnegative integers and y!'"/1(H; -) the formal map given by (8.3). Let S : (C"U*D 0) —
JcN, CN"), So(0) = 0, be a formal map and assume that A* = S(:lV+1) = (8, (tU+1)),, < =
(So(tli+1), §(:Li+1y) js a formal solution of the system

-] (H; AL t[j+2]> -0. (9.1)

Then, the following holds. For everyv € NV, |v| <1,

W EHE).0) = T RGO (5().0) . 0

[wl=Iv]

where p’ and flp' are given by (6.3) and (5.2). respectively, and the R,,, are the universal poly-
nomials given in (5.11) Here p'(Z',¢’) and fp’(Z, ¢") are considered as formal power series
mappings in the indeterminates (Z',¢') and (Z,¢') respectively. If, moreover, S(tU+1) =
((8“ HO (vj+1(t[j+1]))) for some formal map H® : (CN,0) — (CN',0), then (9.2) for
|v| <1 is equivalent to

Hyl <U1'+1 (,[j+1]> , g/) — HYy, <U1+1 (t[j+1]) , ;/) . (9.3)

] <l

Proof. Inwhat follows, we use the coordinatgs= (z’, w’), ¢’ = (x/, ) asin the beginning
of Section 6 and write

H(Z) = (f(Z),8(Z)), withz = f(Z) andw’ = g(Z) . (9.4)

For the proof of (9.2), we proceed by induction prj and we start first by proving (9.2) for
v = 0. Note that sinceA’ = S(t/*1) is a solution of the system (9.1), it follows that

w([)l’j](H; S(tL+1y ¢li+2ly = 0. The latter equation is equivalent to

Py (So (,ml]) H ({)HZ (z'f+2'))> —0. (9.5)
Observe that sinc mapsM into M’, we have by making use of (7.9) and (8.1) that
o (H <vj+1 (,[j+1]>> H (,;j+2 (t[f'+2]>>> —0. (9.6)
It follows from (9.4), (9.5), (9.6), and (6.3) that
o' (f (5”2 (z[f+2])) , So(t[f+1])) =0 (f ({;HZ (,[j+2]>) H (Uj+1 (z“+1]))> . (9.7)
To show that (9.2) holds for = 0, in view of (5.2) and (6.3), we must show that

O )= (rn (@) oo

For this, by e. g., Proposition 5.3.5 of [6], it suffices to show thatiRkhe rank of the formal
map

B (ClUEP.0) - (U <, 0) (9.9)
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given by B(tl/+2l)y .= ((U+U | 7(glit2:li+2yy)) isn(j + 1) + n’. The latter follows from the
fact thatH is not totally degenerate. Indeed, sin€ér) = y (0, 1) is a parametrization of the
formal Segre variet§o(M), it follows from Definition 2.4 that RkH o v! = 1’ . Hence we also
have RK f o v} = n’. From this, we easily obtain that R = n(j + 1) + n’. This completes
the proof of (9.2) fon =0

It follows from (5.14) and the definition of th¢!":/1(H; -) given in (8.3) that the following
identity holds for alv € NV, |v| <1,

Yl (H; AL t[j+21)

= Y Pu (ﬁ (t[j+2])) 3 Ren ([\1) Py (A(l,,mo (t[-f+21)) . (9.10)

aeNN | BeNN eNN
[Bl+la|=|v], B=v Iu\<|ﬁ|

where

e (10°2) 2= 03 [ G200 ooy oo

7 (142) = (g (1072))
1<|e|=l

In view of (5.10), we may rewrite (9.10) as follows

Yl (H; A% 2) = 3 Ry, (BY) i (A5 mo (172))

[LENN
[ul=v|

+ Y Puﬂ( (t[/+2]>> S Ren ([\1) Pyigra (A(l),mo<t[j+2]>) 9.12)

aeNN'| geNN ueNN
|Bl+lel<[v], B<v |ul=IBl

(9.11)

Lete € NV, 0 < |¢| <, and assume that (9.2) holds for alle NV with |v| < [¢]. We
now show that (9.2) holds far = €. SinceAl = S(:l/+1) is a solution of the system (9.1), it
follows from (9.12), withv replaced by, that we have

5 o (5(0) o () (7))
Z Peaﬂ( (t[H_z)) 0.13)

lnl=lel
[Bl+la|<l€]
B<e

I (g(ml])) Pyigro (S()(,ml]),m() (t[j+2]>)) )

/LENN
Inl=IBl

On the other hand, using the notation

(P = @ ). () (), @20

it follows from Lemma 8.1 than! = (e, (1 +1)) )4 </ is also a solution of (9.1) and hence,
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from (9.12), we obtain

3 R, <é (tmu)) P (eo (t[j+1]),m0 (,[j+2]))>

/LENN,
[l =<le]

=— > Pup (ﬁi(z[/’m))

[Bl+]al<|e]
B<e

5 i ¢ () s () o (972 . 39

ueNN/
Inl=IBI

By (5.15) with F1 = H, Z replaced byw/+1(:l/*t1) and¢’ replaced bynq(s1/+2)), we have for
anyp e NV |8 <l and anyw € NV,

Ho' 1o (vf+1 (;UH]) . mo (;U+2]))

= Z R,gu(é (t[j+1])) ’O/Z“"(/a (eo (t[j+l]) , mo (t[j+2])> . (9.16)
neNN'jul<|Bl

By the induction hypothesis, singe < ¢ in the right-hand side of (9.15), we have, after differ-
entiating (9.2) (withv = B) with respect ta:’ and replacing’ by mo(1/12)),

o 45 gra (Uj+1 (t[j+1]> Mo (t[j+2]>)

=Y R (S () g (50 () o (10°7)) . @.17)
neNV, |ul<|Bl
It follows from (9.13), (9.15), (9.16), and (9.17) that

5 s () i (50 (9°) o (49

/lENN,

Iul=<lel
= Z Rey (é (t[j+1]>) Pyn (eo (t[Hl]) , mo (t[HZ]))) . (9.18)

MENN/
[l =<lel

Using (9.16) with8 = ¢ and«e = 0, we obtain that (9.18) implies
Hy' . (ijrl (t[j+l]) mo (t[j+2])) _
5 R (5(9)) s (S0 (10°9) o (1072))) . (e.29)

MGNN/
Inl=<lel

To prove (9.2) forv = €, we must show that (9.19) still holdssfo(:l/+2) = A (372 li+2ly)
is replaced by an arbitra/ = (x', 1) € CVN'. Observe that fop. € NV, || > 0, we have in
view of (6.3),0,,.(Z',¢) = =0%,(x', Z') := au(Z', x") and since| > 0, p/ 1 (Z, ) =
=035 [Q'(x', H(Z))] := be(Z, x). Recall also that since # 0, R.g = O (see Section 5).
Hence, (9.19) may be rewritten in the form

be (vj+1 <t[j+l]) , F@it? (t[j+2])>)
_ Z Rep (S (,[./+11)) a, (So (,[/+1]) i (5”2 (,[,/+2])>) . (9.20)

ueNN/
O<ul=lel
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and we must show that (9.20) still holds wifti/+2(:l/+2])) replaced by an arbitrary’ € C"'.
For this, one can apply the same rank argument using the Bndgfined in (9.9) which was
already used in the case= 0. This completes the proof of (9.2).

To complete the proof of Lemma 9.1, it suffices to observe that the equivalence of (9.2)
and (9.3) follows from (5.15).

10. Proof of Theorem 2.5

For the proof of Theorem 2.5, we shall need Proposition 10.1 given below. We assume that
M, M’ and the iterated Segre mappingsare as in Sectin 8 and continue to use the notation of
that section. In particular, we still assume tpatZ’, ¢') andg’(Z’, ¢') are the special choice of
generators ofZ (M) given by (6.3) and (6.4).

Proposition 10.1. LetM c CN xCN and M’ ¢ CN'xCN' be formal generic manifolds. Let
HO: (CV,0) — (CV', 0) be a formal mapping such its complexification H° sends M into M.
Assume that HO is not totally degenerate (as in Definition 2.4). Then, for every pair of nonnegative
integers [, j, there exists a positive integer K = K(HY, 1, j) suchthatifH : (CV,0) — ((CN/, 0
is a formal map whose complexification H maps M into M’ and such that

HYy s (vj (t[j]> , g/) — Hy s (vf (r[ﬂ) : g/), 15| < K, (10.1)
then,
HY! s (vj+l (t[j+l]> : g/) = Hy s (vf+1 (z[f“]) , ;/), 18] <1. (10.2)

Here Hp/(Z, ¢y and "%/ (Z, ¢') are the formal mappings given by (5.2) with the choice (6.3) of

/

0.

Proof.  We fix the pair of nonnegative integets;j. In the ringR := C[AJ, (U+I[AY],
whereAl = (A}, AY) are coordinates od}(CV, CV') as in (4.1) and (4.2), we consider the
ideal 7 generated by the components of the formal mappings

@gef] (HO; Al,t[j+l]>, veNV, |v| <, eeN",

where the(:)[vlj!](Ho; -) are given by (8.13). Sinck is Noetherian, there exists a positive integer
L = L(HY,1, j) such that the idea¥ is generated by the components of the formal mappings

Bl (HO; AL r[f'“]), veNV, <l eeN", |e|<L.

We claim that the conclusion of Proposition 10.1 holds with:= L + [. Indeed, let
H : (CN,0) — (CV',0) be a formal map whose complexification setdsinto M’ and such
that (10.1) holds (with this choice &f). We must prove that (10.2) holds. By (5.4), we have

Pz )= (c.2). FT(Z.0) =" (¢.Z) . (10.3)

and hence it follows from (10.1) that

P (z’, 5/ (;Ul)) = 5 (z’, ol (t[j]>), aeNV 15| <K, (10.4)
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where we have considergtf (Z', ¢) andﬁ’Ho(Z’, ¢) as formal mappings in the indeterminates
(Z’,¢) asin (5.3). As a consequence of (10.4), (8.14) and the choi&e bffollows that

el (H; AL, t[j+1]) =l (HO; AL t'f'“‘) L i<l le|<L. (10.5)
By Lemma 8.1,
A= ((a“H) (vf'+1 (t[j"'l])))la‘q (10.6)

is aformal solution of the system of equatiaié /1 (H; A, t[/+2l) = 0, and hence by Remark 8.4
(since (10.6) is independent of the indeterminglte?), it is also a solution of the system of
equations®/1(H; A, tU+1y = 0 for |v| < I and alle € N". From (10.5), we conclude
that (10.6) is also a solution of the system of equations

(:)E)l;gj] (HO; Al, t[j+l]) — O, |l)| < 17 |6| <L.

By the choice ofL, it follows that the formal power series mapping given by (10.6) is a solution
of the system of equations

el (HO; AL t[j+1]> =0, |v|<I, VeeN'.

Again making use of Remark 8.4, we conclude that (10.6) is a formal solution of the system of
equationsy " /1(HO; AL, 2y = 0 and hence, by Lemma 8.1, also a solution of the system
of equationsy - /1(HO; A1, 1li+2l)y = 0. We may now apply Lemma 9.1 witH and H? inter-
changed and witts (/L/+11) = ((3"‘H)(vf+1(t[f+1])))|a|<l to conclude that (9.3) holds, which is

the desired conclusion (10.2) of Proposition 10.1. L]

Proof of Theorem 2.5. Since M is of finite type, it follows from Theorem 2.3 in [5]
(see also [7]) and the definition of finite type given in Section 2, that there exists an integer
jo, 2 < jo < d + 1, whered is the codimension aM such that Rkv/© = N. By applying
Proposition 10.1jp times, we conclude that there exists an intekjgi= Ko(H°) > 03 such that

if H:(CV,0 — (CV,0) is aformal map whose complexificatids sendsM into M’ and

such that

'y (0.8) = /s (v.67). 181 = Ko, (10.7)
then,

HC/’O/ (Ujo (tljol) i i/) — Hy (vjo (,ljo]) i €/> ) (10.8)
Recall thaw® = 0 € CV, and hence we may rewrite (10.7) in the form

0 [0 (H@).8)] 0= 3 [0 (H@.¢')]| . 18I =Ko. (10.9)

3To find Ko, we proceed as follows. We define inductively a finite sequence of nonnegative infégers
0 < g < jo, by puttingK j, = 0 andk, = K(H® K,11.9) whereK (H?, 1, j) is the integer given by
Proposition 10.1.
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It is, then, clear that iff is a formal map such th&{ sendsM into M’ with jé(OH = jé{°H0,
then (10.9) and hence (10.7) and (10.8) hold. SincayRk= N, it follows e. g., from Proposi-
tion 5.3.5 of [6] that (10.8) implies

Hp (2, ') = "' (2,¢') . (10.10)

From the definition of the reflection idedl” given in (2.6), we conclude that (10.10) implies
that the reflection idealg” and Z#° are the same. The proof of Theorem 2.5 is completel

11. Proof of Theorem 2.6

In this section, we consider two gerro®, 0) and(M’, 0) of real-analytic generic subman-
ifolds in C¥ andC"’, respectively. We lett ¢ CJ x CY and M’ ¢ C}, x (Cév,’ be their
complexifications. For generatorsBfM'), we take a convergent mappip Z’, ¢') asin (6.3).

We shall also use the corresponding notation#@Z’, ¢’) given by (6.4). Moreover, we choose

a convergent Segre variety mappingelative toM as defined in (7.1); hence the corresponding
iterated Segre mappingg defined in (8.1) are also convergent. Using the notation of Section 8,
we have the following proposition.

Proposition 11.1. Let (M, 0) and (M’, O) be germs of generic real-analytic submanifolds in
CN and CN' of codimension d and d', respectively. Let H : (CN,0) — (CN/, 0) be a formal
map sending M into M’'. Assume that H is not totally degenerate (as in Definition 2.4). Then,
for every nonnegative integer j, the following holds. If

Ho' 46 (vf (t[j]) , ;’) e ((C [t[j], ;’])d/, Vg e NV, (11.1)
then,
Ho' 4o (vf+1 (z[f“]) , ;’) e (<C {r[f+11, ;/})d/, Vg e NV . (11.2)

Here f/(Z, ¢") is the formal mapping given by (5.2) relative to the choice of the convergent
mapping p'(Z', ') given by (6.3).

Proof. We fix a pair of nonnegative integels;j, and we shall prove that if (11.1) holds, then,

. . 4 d
Hyl (v]+l (t[]+1]> : g/) c ((C {t““', g/}) . WweNY, pl<i.  (113)
The proposition will clearly follow.
It follows from (11.1) and (5.4) that one has

s (z’, o/ (zU])) c (<c {z/, z[ﬂ})d/, vwe NV (11.4)

wheres'® (7', ¢) is the formal mapping given by (5.3). It follows from Lemma 8.3 and (11.4) that
the components of the formal power series mappi@ld! (H; AL, /i) forv e NV, |v| <1,
ande € N", [defined by (8.13)], are in the rinG{A3, 1/ T1}[A1]. (We should observe at this
point that the components of the formal mappinds’! (H; A1, :l/12), defined in (8.4), are not
yet known to be convergent.) By Lemma 8.1, it follows tiadt = ((8 H)(v/ ™1 (/1))
is a formal solution of the system of equations

la|<I

Al (H; AL t[j+2]) —0, (11.5)
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and hence by Remark 8.4, it is also a formal solution of the system of equations
el (H; AL t[j+l]> =0, | <l eeN". (11.6)
Since the mapping& ,[,ljé”(H; -) are convergent, it follows from Artin’s approximation theorem

[2], Theorem (1.2), that there exists a convergent solution of (11.6) givettby S(:l/+1) =
(So(tV+H), §1H)), where

S: ((C"<-/+1>, o) — J} (CN, CN’), S(0) = jLH . (11.7)

Since the convergent mappirysl/ %) is independent of the variabld*2, it follows from
Remark 8.4 than! = s(l/+1) is also a solution of the system of equations given by (11.5).
Hence, by Lemma 8.1A1 = 5(:l/+1) is a solution of the system of equations

il (H; Al,tu+21> 0.

We may now apply Lemma 9.1 for the convergent soluiarity +11) to obtain (9.2). To conclude
that (11.3) holds, it suffices to observe that the right-hand side of (9.2) is a convergent map. This
completes the proof of Proposition 11.1. L]

Proof of Theorem 2.6. SinceM is of finite type at 0, by Theorem 10.5.5 of [6] (see also [10]
and [5]), there exists an integks, 2 < ko < 2(d + 1) (whered is the codimension o#f) such
that in any neighborhootf of 0 € C"%0, there exists(gk"] € U such that

rk ;t”[—,i: (tgkol) =N, ko (tg‘o]) —0. (11.8)

Sincev® = 0 € CV, we observe that for any multiindgke NV,

o' 25 (vo, c/) = [0 (HZ),¢)]l,0€ (C{c)", vBeNV. (11.9)

Applying Proposition 11.%q times, we conclude in particular that
d/
Hpy! (uko (tlkol) , ;’) c ((C [t[kO], ;/}) . (11.10)

Hence there exists an open neighborhdodk V < C™o x CN' of 0 where the mapping
By’ (vko(ttkoly ¢') is convergent. If we c:hoo%0 € U such that (11.8) holds and apply the
rank theorem, we obtain that the mappifig’(Z, ¢) is convergent. By the definition of the
reflection idealZ" given in (2.6) and Definition 2.3, it follows thaf’! is convergent. This
completes the proof of Theorem 2.6. L]

Remark 11.2. Asmentioned in Section 1, Theorem 2.6 was first proved in [24] for an invertible
formal mapH and in the case wher® andM’ are real-analytic hypersurfacesi®' . We should

point out here that the techniques used in this article are somewhat different from those of [24].
For instance, the use of Cauchy estimates was a crucial tool in [24], but is not needed in our
approach in this article. We should also note that Corollary 7.4 and Theorem 7.1 in [24], which
are proved there in the case of invertible formal mappings between real-analytic hypersurfaces of
finite type, can be extended to the case of finite formal mappings between generic real-analytic
submanifolds of finite type of ¥ by making use of Theorem 2.6. We do not give any further
details.
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12. Proof of Theorem 2.7

In this section, we consider two germ&f, 0) and (M’, 0) of real-algebraic generic sub-
manifolds inC" andC"’, respectively. We let c C¥ x CY and M’ C CY x (Cé",/ be their
complexifications. For generators B{M’), we take the components of an algebraic mapping
o' (Z', "y asin (6.3). We also use the corresponding notatiogf@z’, ¢’) given by (6.4). More-
over, we choose an algebraic Segre variety mappimnglative toM as defined in (7.1); hence
the corresponding iterated Segre mappingslefined in (8.1) are also algebraic. We have the
following analog of Theorem 2.6 for generic real-algebraic submanifolds.

Theorem 12.1. Let(M, 0) and (M’, O) be germs of real-algebraic generic submanifolds in C
and CN' respectively and H : (CN,0) — (CV', 0) a formal map sending M into M'. Assume
that M is of finite type at O and H is not totally degenerate. Then, the reflection ideal T, as
defined by (2.6), is algebraic.

This theorem will be used in the proof of Theorem 2.7 in the case wHegea convergent
mapping. The proof of Theorem 12.1 follows the same lines as that of Theorem 2.6, by making
use of the following analog of Proposition 11.1 in the algebraic setting.

Proposition 12.2. Let (M, 0) and (M’, 0) be germs of generic real-algebraic submanifolds in
CN and CN' of codimension d and d’ respectively. Let H : (CV,0) — (CV ' 0) be a formal
map sending M into M’'. Assume that H is not totally degenerate (as in Definition 2.4). Then,
for every nonnegative integer j, the following holds. If

Hol g (w’ (z'il) , g/) c (A{t'“, g/})d,, VB e NV (12.1)
then,
Hy by (Uj+1 (ﬂ””) , §/> c (A {t[j+1]’ (})dl’ Vg e NV . (12.2)

Here Hp/(Z,¢") is the formal mapping given by (5.2) relative to the choice of the algebraic
mapping p'(Z', ¢) given by (6.3).

Proof.  The proof of this proposition follows very closely that of Proposition 11.1. One has
to note that all the convergent mappings involved in the latter are also algebraic in the present
case. Also, the convergent soluti§iel/+11) of the system (11.6), given in (11.7) and obtained

by making use of Artin’'s approximation theorem, can be chosen to be algebraic. Indeed, in
the present case, the mappings involved in (11.6) are algebraic and another version of Artin’s
approximation theorem [1] yields a solution which is also algebraic. We omit further details.

Proof of Theorem 2.7. Choosel/, U’ ¢ CV, two open polydiscs centered at the origin such
that H is holomorphic inU andH (U N M) c U’ N M’. We may assume that the real-algebraic
generic submanifold?’ C (C]%’/ is given byp’(Z’, Z') = 0 where

F(2.2)=w—-0(,2), Z =(,w)eC"xC’, (12.3)
with 5/(Z’, ¢’) a C? valued algebraic map defined 87 x U’. Here we recall thatl is the

codimension o (and ofM’) andn = N — d. Equivalently,M’ is also given by’ (Z’, Z') = 0
where

o' (2.2)=w"-0Q'(.2) . (12.4)
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To prove Theorem 2.7, by Proposition 6.1 (iii), it suffices to show that the convergent generators
Hy'(z, ¢') of the reflection idedl ¥ are algebraic, where we have used the notation given by (2.6)
and (5.2). Since the Jacobianféfis notidentically zero and there is no germ at 0 of a nonconstant
holomorphic functiork : (CV,0) — C with (M) C R, it follows that there existpg € U N M

such thatV is of finite type atpg and the Jacobian @f at pg is not zero (see e. g., Lemma 13.3.2

of [6]). Putpy := H(po) € U' N M'. We define the translation maps,(2) := Z — po and
gppb(Z’) = Z' — py. We putM p, = @p, (M) andM;;é, = (ppé(M’). Observe thad andM;E)

are real-algebraic generic submanifolds through the origitMwith M, of finite type at 0. We
also define

v v v

H (Z) = <¢176 oHo (p;ol) (Z) (12.5)

for Z close enough to the origin i@ . We can regard{ as a germ at the origin of a biholomor-

phism sending the gerii/,,,, 0) onto(M;, , 0). Note also that the germM;/ , 0) is defined by
o 0 0

3/(Z', Z") = 0 where

/3/("/’ E/) = 4w, — Q/ <X/+z;6’2/+p6> 7 g./ _ (X/’ f/) cC" x 4 ’ (12.6)

with p,, = (z/,,w’,) € C" x C?. It follows from Theorem 12.1 and Proposition 6.1 (iii) that
0 Po Po

the convergent mappiny’(Z, &) = 3/ (H(Z), £y is in (A{Z, £))?, i. e., that the components
of the map

N n N4 N =/ 7 (7 / d
(€ xC0)5(2.7) > O (# +2,, f (Z) + pp) e C
are inA{Z, ¢}. In view of (12.5), we conclude that the map
(¥ < (po.2y)) 2 (Zx) = O (X, H(Z) e T
is algebraic i. e., each component of this map satisfies a non-trivial polynomial equation with

polynomial coefficients foZ nearpg andy’ nearZ’p/ . By unique continuation, the same equations
0

hold for(Z, x’) close to 0c CN*". This shows that the components’ef (Z, /) are inA{Z, ¢’}
which gives the desired conclusion of Theorem 2.7. L]

13. Proofs of Propositions 2.9, 2.10, and 2.12 and Theorems 3.1 and 3.2

In this section, we consider a formal generic manifoitd C (CQ’,/ X (Cé\f' of codimension?’

and we assume that the idgalM’) is generated by the components of the formal mag’, ¢’)
given by (6.3). We write

Pz =1-0(x.2)=1-> q(Z)x"“. (13.1)
aeN"
where thez (Z') = (q1.4(Z"), ... . g «(Z")) are in(C[Z'? andn’ = N' —d'.

The proof of the following criterion for holomorphic nondegeneracy of formal generic man-
ifolds is left to the reader (see e. g., [28] and [6], Chapter 11, for the case wéris the
complexification of a real-analytic generic submanifold).
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Lemma 13.1. The formal generic manifold M’ as above is holomorphically nondegenerate if

and only if there existal, ... ,aN, e N and j1, ..., jnr € {1,...,d'} such that
aqjl ol / . /
det( —2—(2') #£0, in C[Z'], (13.2)
aZm 1<l,m<N’

where the formal power series g, (Z') are given by (13.1)
We also need the following lemma for the proof of Proposition 2.10.

Lemma 13.2. Let R(x,y) = (R1(x,y),...,R-(x,y)) € (C[lx, yD", x € C4, y € C", and
h0: (C4,0) — (C’, 0) be a formal map such that

(i) R(x,h%x)) =0,

. <3R,’ 0 )

(i) det| —(x, h°(x)) £ 0.
dy;j

1<i,j<r

Then, there exists a positive integer k = k(h®) such that the following holds. Ifh : (C4,0) —
(C", 0) is a formal map such that R(x, h(x)) =0 andjc])‘h = jgho, then necessarily h(x) = hO(x).

Proof. We may write

R(x,y) — R(x,t) = P(x,y,t)-(y — 1) (13.3)

. o o . oR
where P is anr x r matrix with entries inC[[x, y, ¢] satisfyingP(x, y,y) = B_(X’ y). By
y

assumption, we know that dét(x, h°(x), h°(x)) # 0. This implies that one can find an integer
k such thatifi : (C4,0) — (C’, 0) is a formal mapping which agrees up to ordavith #°, then
det P(x, hO(x), h(x)) # 0. If, in addition,k satisfiesk (x, i (x)) = 0, it follows from (13.3) that
P(x, hOx), h(x))- (h°(x) —h(x)) = 0inC[[x]]. Since detP (x, h°(x), h(x)) # 0, we conclude
thath(x) = h%(x) and hence the lemma follows. L]

Proof of Proposition 2.10. Firstobserve thatiff, H° : (CV, 0) — (CV', 0) are two formal
mappings withZ? = I”O, then by Proposition 6.1 (i) and in view of (13.1), necessarily for any
a € N, gy 0 H= gy o H®. SinceM’ is holomorphically nondegenerate, we may choose
ol . o e NV andjy, ..., jy € {1,...,d'} asin Lemma 13.1. Forany=1,..., N/,

we define a formal mag; : (CV x cv, 0) — (C, 0) as follows

RI(Z.7) = a0 (Z) = dja (HOD) (13.4)

Observe thatR;(Z, H°(Z)) = 0, for I = 1,..., N’, and moreover, since RK® = N’, by
(13.2) and e. g., Proposition 5.3.5 in [6], we have
0qg :
det(M (HO(Z))> 20, (13.5)

/
aZm 1<l,m<N’

or equivalently,
det( — - (z, H (Z)) £0.
aZm 1<l,m<N’

By Lemma 13.2, there exists a positive integet k(H°) such that ifH : (CV,0) — (CN', 0
is a formal map satisfying®/(Z, H(Z)) = 0, for/ = 1,...,N’, and j§H = j5HO, then
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H = H°. On the other hand, as mentioned in the beginning of the prodf/if = IHO,
thenR;(Z, H(Z)) = R(Z,H°(Z)) = 0, forl = 1,...,N’. This completes the proof of
Proposition 2.10. L]

Proof of Proposition 2.9. SinceM’ is real-analytic, we may assume that the corresponding
formal mappings’(Z’, ¢’) andg,(Z’) given in (13.1) are convergent. First, note if there exists
a convergent mapl : (CV,0) — (CV', 0) such thatZ¥ = ZH, then, sinceZ” is convergent,
soisZH. Now, assume thal” is convergent. By Proposition 6.1 (i) and in view of (13.1),

ra(Z) := qu(H(Z)) (13.6)

is a convergent mapping for all € N*'. By Artin’s approximation theorem [2], Theorem (1.2),
for any positive integet, there exists a convergent mags : (CV, 0) — (CV', 0) which agrees
with H up to orderx and such thag, (H* (Z)) = ro(Z), foralla € N"'. It follows from (13.1)
and (13.6) thap’(H*(Z), ¢") = p'(H(Z), ¢") and hence

" = (o' (H(2), 1)) = (o' (H*(2), ) =T .
This completes the proof of Proposition 2.9 in the convergent case. In the casétliereal-

algebralc they, (Z’) given by (13.1) are algebralc As before, if there exists an algebraic map

H:(CN,0) = (€', 0) suchthatZt = 7 then, sinceZ” is algebraic, so i< . Moreover,
it follows from the algebraic version of Artin’s theorem [1] that, in this case, one can clidose
as above to be algebraic so tHEf = Z*. The proof of the proposition is now complete ]

For the proof of Proposition 2.12, we need the following lemma whose proof is in the spirit
of that of Lemma 13.2 but also makes use of Artin’s approximation theorem [2]. We refer the
reader to Proposition 4.2 of [24] for the proof of this lemma.

Lemma 13.3. Let R(x,y) = (R1(x,¥),...,R-(x,y)) € (C{x,y})",x € C4,y € C", and
oR

h: (C1,00 — (C",0) a formal map satisfying R(x, h(x)) = 0. Ifdet(a—(x, h(x))) # 0in
y

CI[[x]1], then h(x) is convergent.

Proof of Proposition 2.12. By Proposition 6.1 (i), if Z" is convergent, then, in view
of (13.1), it follows that for any € N andj =1,...,d’, the formal power serieg o(Z) :=
qj.«(H(Z)) is convergent. Sinc&f’ is holomorphically nondegenerate, we may chaoke . .,

oV e NY andjy, ..., jy €{1,...,d'}asin Lemma 13.1. Forary= 1, ..., N, we define
a convergent mag, : (CV¥ x CV',0) — (C, 0) as follows
RI(Z.Z'):=q;4 (Z')—r1j.a(2). (13.7)

Observe thak;(Z, H(Z)) = 0,1l =1, ..., N’, and moreover, since RK = N’, by (13.2) and
e. g., Proposition 5.3.5 in [6], we have

det( i (7 ))) £0, (13.8)

1<l,m<N’

oR
det( /l , ) #0.
8Zm 1<l,m<N’

We may now apply Lemma 13.3 to conclude ti&ais convergent. The proof of Proposition 2.12
is complete. L]

or equivalently,
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Proof of Theorems 3.1 and 3.2. Theorem 3.1 is a consequence of Theorem 2.5 and Propo-
sition 2.10, while Theorem 3.2 follows from Theorem 2.6 and Proposition 2.12. L]

14. Proofs of Theorems 1.1, 1.2, 1.3, 1.5, and 3.4 and Corollaries 1.7 and 1.8

We begin with the following lemma, which will be used in the proofs in this section.

Lemma 14.1. Let M, M’ c CN x CV be two formal generic manifolds of the same codi-
mensiond and H : (CN,0) — (CV, 0) a formal finite map. Then, Rk H = N. Moreover, if the
complexification H of H maps M into M’, then H is not totally degenerate.

Proof. The proof that RKH = N is standard (see e. g., Theorem 5.1.37 of [6]). To prove the
second part of the lemma, it suffices to show that(if, r) is a Segre variety mapping as defined

in (7.1) relative taM, then RK(H o v1) = n, wheren = N — d andv(r) = ¥ (0, 1) asin (8.1).

We claim that the formal mapl o v! is finite. Indeed, it is a composition of the finite map

and of the formal map® whose rank at 0 ia and hence is finite. The claim follows from the
fact that the composition of two formal finite mappings is again finite. (This could be seen by
e. g., making use of Proposition 5.1.5 of [6].) As before, the factkhat?! is finite implies that

Rk (H o v1) = n, which completes the proof of the lemma. L]

Proof of Theorem 1.1. Without loss of generality, we may assume that= p’ = 0.
SinceM, M’ c CV are smooth generic submanifolds through the origin, we can consider the
associated formal generic manifoldg, M’ ¢ CV x CV as described in Section 2. In this case,
the complexificatiort of any formal mapH : (CV, 0) — (CV, 0) sendingM into M’ sendsM

into M’. Since the given formal mag? is finite, it follows from Lemma 14.1 that® is not
totally degenerate and RK? = N. Theorem 1.1 is then a consequence of Theorem 3.1]

Proof of Theorem 1.2. Without loss of generality, we may assume that p’ = 0. Since
the given formal mag# is finite, it follows from Lemma 14.1 thall is not totally degenerate
and RKH = N. Theorem 1.2 is then a consequence of Theorem 3.2, L]

For the proofs of Theorems 1.3 and 1.5, we need the following lemma.

Lemma 14.2. LetI C C[Z,¢] and J C C[Z', '] be two ideals and H, H : (CY,0) —

(Cg,, , 0) be two formal mappings. Let H, H be the complexifications of H and H, respectively
as defined in (2.2). Assume that:

() J is areal ideal;
(i) J C Hi(I), where H.(I), the pushforward of I by H as defined by (2.1);

(i) JH c JH, where the ideals JH, JH < C[[Z, ¢']] are defined by (2.5)

Then, J C H.(I).

Proof. Letsi(Z',¢'),...,sm(Z',¢") be generators aof in C[Z/, ¢']. As usual, we write
s(Z',¢") = (s1(Z, ¢, ... sm(Z',2))) andJ = (s(Z/,¢')). We set

5(2,¢)=5(¢.2) . (14.1)

By the reality ofJ, it follows that we also havd = (5(Z’, ¢’)). Hence there exists an x m
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matrix with entries inC[[Z’, ¢’ such that
s(Z.¢)=u(z.0)5(2.¢) . (14.2)

Note that in view of (2.5), the ideals” andJ* are generated by the components@ (2), ¢’)
ands(H (Z), ¢’) respectively inC[Z, ¢']. Hence, by the inclusion (iii), we have

s (I:I(Z), ;’) =a(z.¢)s(HZ).¢) | (14.3)

wherea(Z, ¢’) is anm x m matrix with entries inC[[Z, ¢']. By taking complex conjugates, it
follows from (14.3) that we also have

(@), 7)) =a(6.7)5(A©). 7)) . (14.4)

To prove the lemma, we must show that the componentﬂé(Z),E(;)) are in/. For this,
using (14.3), (14.2), (14.1), and (14.4), we have

s(H@), H(Z)) (14.5)

By (ii), the components of(H (Z), H(¢)) are inI and hence, by (14.5), so are the components
of s(H(Z), H(¢)). The proof of the lemma is complete. [

The following lemma is an immediate consequence of Lemma 14.2.

Lemma 14.3. Let M C CN x CN and M’ ¢ CV'" x CN' be two formal generic manifolds
and H, H :V((CN ,0) — (CV',0) be two formal mappings whose complexifications are denoted
by H and H, respectively. Assume that H sends M into M’ and that the reflection ideals T

and TH are the same. Then, H also sends M into M.

Proof of Theorem 3.4. SinceM is of finite type at 0 and the formal mai is not totally
degenerate, by Theorem 2.6, the reflection idelis convergent. By Proposition 2.9, for any
positive integek, there exists a convergent mags : (CV, 0) — (CV, 0) which agrees withH
up to orderc such thatZ” = 7H*, By Lemma 14.3, it follows that/* mapsM into M’ and
henceH* mapsM into M’. The proof of Theorem 3.4 is complete. L]

Proof of Theorem 1.3. Without loss of generality, we may assume tpat p’ = 0. Since
the given formal maH is finite, it follows from Lemma 14.1 thall is not totally degenerate.
Theorem 1.3 is, then, a consequence of Theorem 3.4. L]

Proof of Theorem 1.5. Without loss of generality, we may assume tpat= p’ = 0.
SinceM is connected and of finite type at some point, by Lemma 13.3.2 of [6], there is no germ
of a nonconstant holomorphic functidn: (CV,0) — C with #(M) c R. It follows from
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Theorem 2.7 that the reflection ideaf! of the given local holomorphic maf is algebraic. By
Proposition 2.9, for any positive integerthere exists an algebraic maf : (CV, 0) — (CV, 0)
which agrees withH up to orderx such thatZ” = 77*. By Lemma 14.3, it follows that(*
mapsM into M’ and hence?* mapsM into M’. The proof of Theorem 1.5 is complete. []

Proof of Corollary 1.7. Let(M, p) and(M’, p’) be two germs of biholomorphically equiva-
lent real-algebraic hypersurfacesGf . If there is no point of finite type i/ arbitrarily close to
p,then(M, p) is Levi-flat and so isM’, p’). Hence both(M, p) and(M’, p’) are algebraically
equivalentto areal hyperplaneG' . If M contains points of finite type arbitrarily closepothen
we may apply Corollary 1.6 to conclude th@t, p) and(M’, p’) are algebraically equivalent.
The proof of Corollary 1.7 is complete. L]

Proof of Corollary 1.8. By Theorem 1.1 with M, p) = (M’, p’) andH® = Id, the identity
map of(CV, p), there exists a positive integ&rsuch that ifH : (CV, p) — (CV, p) is aformal
map sending! into itself with j K # = jX 1d, thenH = Id. LetH*, H? : (CV, p) — (CV, p)
be two invertible formal mappings sendidg into itself and such thaijl = j,{{HZ. If
H = H'o (H%™, thenH is formal map sendingM, p) into itself such thatj X H = jX 1d.
HenceH = H'o(H?) ! =1d,i.e.,H! = H?. The second part of Corollary 1.8 is an immediate
application of Theorem 1.2. L]

15. Remarks and open problems

As mentioned in Section 1, holomorphic nondegeneracy is necessary for the conclusions
of Theorems 1.1 and 1.2 to hold. Indeed(M, p) is a germ of a smooth generic submanifold
in CY which is holomorphically degenerate af then for any positive integek, there exist a
formal invertible mappingd : (CV, p) — (CV, p) sendingM into itself and agreeing with
the identity map Id up to ordeK at p but such thatd # Id (see [8] Theorem 3 and [7]
Theorem 2.2.1). Similarly, ifM, p) is a germ of a real-analytic generic submanifolddf
which is holomorphically degeneratetthen there exist (infinitely many) nonconvergent formal
invertible self-mappings ofM, p) (see [9]).

In constrast to holomorphic nondegeneracy, the finite type conditionin Theorems 1.1 and 1.2
does not seem to be necessary. More precisely, we conjecture the followimfy.CIfC" is a
connected holomorphically nondegenerate real-analytic generic submanifold of finite type at
some point, then for any € M, Aut (M, p) = F(M, p). Here, we recall that AutM, p) is the
stability group ofiM, p) andF (M, p) is the group of formal invertible self-mappings@#, p).

This question is open even for Levi-nonflat real analytic hypersurfac@$.ifVe also conjecture
that if M is as above, then for evegy € M, there exists a positive integ& = K (p) such that
the jet mapping X : Aut (M, p) — G¥(CV, p) is injective, whereGX (CV, p) is the jet group
of orderK at p. It follows from Corollary 1.8 that the above conjectures hold for all poinis
a Zariski open subset af.

Another question concerning the structurefafM, p) is the following. Under the assump-
tions of Corollary 1.8, is the image of the group homomorphjgm F(M, p) — GX(C¥, p)
a closed Lie subgroup of the jet grogf (CV, p), for some suitable integéf ? The question is
open even whei is real-analytic, in which casé (M, p) = Aut (M, p), by Corollary 1.8. It
is known that the answer is positiveM is finitely nondegenerate and of finite typepatsee [9]
for the hypersurface case and [32] for higher codimension). In fact it is shown in [7] that in this
case the image is actually a totally real algebraic Lie subgro@p*afC”, p) for a precise value
of K.
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Finally, concerning algebraic equivalence, in view of Corollary 1.7, one is led to conjecture

that biholomorphic equivalence implies algebraic equivalence for germs of real-algebraic sub-
manifolds inC". To the knowledge of the authors, the question is still open even for germs of
generic real-algebraic submanifolds of codimension higher than one.
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