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Generic Submanifolds in Complex Space

By M.S. Baouendi, Nordine Mir, and Linda Preiss Rothschild

ABSTRACT. Results on finite determination and convergence of formal mappings between smooth
generic submanifolds inCN are established in this article. The finite determination result gives suffi-
cient conditions to guarantee that a formal map is uniquely determined by its jet, of a preassigned order,
at a point. Convergence of formal mappings for real-analytic generic submanifolds under appropriate
assumptions is proved, and natural geometric conditions are given to assure that if two germs of such
submanifolds are formally equivalent, then, they are necessarily biholomorphically equivalent. It is also
shown that if two real-algebraic hypersurfaces inC

N are biholomorphically equivalent, then, they are
algebraically equivalent. All the results are first proved in the more general context of “reflection ideals”
associated to formal mappings between formal as well as real-analytic and real-algebraic manifolds.

1. Introduction and main results

In this article, we study formal mappings between smooth generic submanifolds inC
N and

establish results on finite determination, convergence and local biholomorphic, and algebraic
equivalence. Our finite determination result gives sufficient conditions to guarantee that a formal
map as above is uniquely determined by its jet (of a preassigned order) at a point. For real-analytic
generic submanifolds, we prove convergence of formal mappings under appropriate assumptions
and also give natural geometric conditions to assure that if two germs of such submanifolds are
formally equivalent, then they are necessarily biholomorphically equivalent. If the submanifolds
are moreover real-algebraic, we address the question of deciding when biholomorphic equivalence
implies algebraic equivalence. In particular, we prove that if two real-algebraic hypersurfaces in
C
N are biholomorphically equivalent, then they are in fact algebraically equivalent. All the results

are first proved in the more general context of “reflection ideals” associated to formal mappings
between formal as well as real-analytic and real-algebraic manifolds.

We now give precise definitions in order to state some of our main results. Letp ∈ C
N and
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p′ ∈ C
N ′

. A formal mapH : (CN, p) → (CN
′
, p′) is anN ′-vector of formal power series in

Z − p with H(p) = p′. The mapH(Z) = (H1(Z), . . . , HN ′(Z)) is calledfinite if the quotient
ring C[[Z−p]]/(H(Z)) is finite dimensional as a vector space overC, where(H(Z)) is the ideal
generated by theHj(Z) in C[[Z−p]], j = 1, . . . , N ′. In the caseN = N ′,H is calledinvertible
if its Jacobian determinant does not vanish atp.

Recall that a smooth submanifoldM ⊂ C
N is calledgeneric if it is locally defined by

the vanishing of smooth real-valued functionsr1(Z, Z̄), . . . , rd(Z, Z̄) with linearly independent
complex differentials∂r1(Z, Z̄), . . . , ∂rd(Z, Z̄). A generic submanifoldM ⊂ C

N is said to be
of finite typeat p ∈ M in the sense of Kohn [22] and Bloom–Graham [14] if the Lie algebra
generated by the(0,1)and(1,0) smooth vector fields tangent toM spans the complexified tangent
space ofM atp.

A (holomorphic) formal vector field atp ∈ C
N is given by

X =
N∑
k=1

ak(Z)
∂

∂Zk

with ak(Z) ∈ C[[Z−p]], k = 1, . . . , N . If M is a generic submanifold of real codimensiond as
above, andr1, . . . , rd are smooth real-valued defining functions ofM nearp ∈ M, we denote by
ρ(Z, Z̄) = (ρ1(Z, Z̄), . . . , ρd(Z, Z̄)) the Taylor series ofr1, . . . , rd atp considered as formal
power series inZ−p andZ̄− p̄. A holomorphic formal vector fieldX atp ∈ M is calledtangent
toM if

(Xρ)
(
Z, Z̄

) = c
(
Z, Z̄

)
ρ

(
Z, Z̄

)
,

wherec(Z, Z̄) is ad × d matrix with entries inC[[Z − p, Z̄ − p̄]]. Following Stanton [28], we
say that the submanifoldM is holomorphically nondegenerateatp ∈ M if there is no nontrivial
formal holomorphic vector field atp tangent toM (see [6], Section 11.7).

Let M ⊂ C
N andM ′ ⊂ C

N ′
be smooth generic submanifolds of codimensiond andd ′

throughp andp′, respectively andH : (CN, p) → (CN
′
, p′) a formal map. We say thatH maps

M intoM ′ and writeH(M) ⊂ M ′ if

ρ′ (H(Z),H(Z)) = a
(
Z, Z̄

)
ρ

(
Z, Z̄

)
,

whereρ(Z, Z̄) is thed-vector valued formal power series defined as above for(M, p), ρ′(Z′, Z̄′)
is thed ′-vector valued corresponding series for(M ′, p′), anda(Z, Z̄) is a d ′ × d matrix with
entries inC[[Z − p, Z̄ − p̄]].

We are now ready to state some of the main results of this article. We will discuss previous
related work towards the end of this introduction. Our first two results deal with finite determi-
nation of formal mappings between smooth generic submanifolds inC

N , as well as convergence
of such mappings when the submanifolds are real-analytic.

Theorem 1.1. Let M,M ′ ⊂ C
N be smooth generic submanifolds of the same dimension

throughp andp′, respectively. Assume thatM is of finite type atp and thatM ′ is holomorphically
nondegenerate at p′. Let H 0 : (CN, p) → (CN, p′) be a formal finite map sending M into M ′.
Then, there exists an integer K such that if H : (CN, p) → (CN, p′) is another formal map
sending M into M ′ with

∂αH(p) = ∂αH 0(p), |α| ≤ K ,

it follows that H = H 0.
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We should mention that Theorem 1.1 is new even ifH is assumed to be holomorphic and
M,M ′ are real-analytic. As an application of Theorem 1.1, it follows for example that ifh0 :
(M, p) → (M ′, p′) is a germ of a smooth CR diffeomorphism withM andM ′ satisfying the
assumptions of Theorem 1.1 and ifh : (M, p) → (M ′, p′) is another smooth CR map whose
Taylor polynomial of orderK atp agrees with that ofh0, then, necessarily the entire Taylor series
atp of h andh0 are the same.

Theorem 1.2. LetM,M ′ ⊂ C
N be real-analytic generic submanifolds of the same dimension

throughp andp′, respectively. Assume thatM is of finite type atp and thatM ′ is holomorphically
nondegenerate at p′. Then, any formal finite map H : (CN, p) → (CN, p′) sending M into M ′
is necessarily convergent.

It is worth mentioning that the holomorphic nondegeneracy condition in Theorems 1.1 and 1.2
is necessary for the conclusions of those theorems to hold (see Section 15 for comments and
details).

We say that two germs(M, p) and(M ′, p′) of smooth generic submanifolds inCN of the
same dimension areformally equivalentif there exists a formal invertible mapH : (CN, p) →
(CN, p′) sendingM into M ′. If M andM ′ are real-analytic and the invertible mapH can be
chosen to be convergent, we say that(M, p) and(M ′, p′) arebiholomorphically equivalent.Two
formal mappingsH, Ȟ : (CN, p) → (CN

′
, p′) are said toagree up orderκ, whereκ is a positive

integer, if their Taylor series atp agree up to orderκ. The following theorem may be viewed
as an approximation result for formal mappings between real-analytic generic submanifolds by
convergent mappings, in the spirit of Artin’s approximation theorem [2].

Theorem 1.3. Let (M, p) and (M ′, p′) be two germs of real-analytic generic submanifolds in
C
N of the same dimension with M of finite type at p. If H : (CN, p) → (CN, p′) is a formal

finite map sending M into M ′ and if κ is a positive integer, then there exists a convergent map
Hκ : (CN, p) → (CN, p′) which sends M into M ′ and agrees with H up to order κ .

We should point out that the assumptions of Theorem 1.3 do not imply that the given formal
mapH is itself convergent. The following, which is an immediate corollary of Theorem 1.3,
concerns formal and biholomorphic equivalence.

Corollary 1.4. Let (M, p) and (M ′, p′) be two germs of real-analytic generic submanifolds
in C

N of the same dimension withM of finite type at p. Then, (M, p) and (M ′, p′) are formally
equivalent if and only if they are biholomorphically equivalent.

A convergent mappingH : (CN, p) → (CN
′
, p′) is calledalgebraicif each of its compo-

nents satisfies a non-trivial polynomial equation with holomorphic polynomial coefficients. A
germ of a real-analytic generic submanifold(M, p) in C

N is calledreal-algebraicif it is contained
in a real-algebraic subset ofC

N of the same real dimension as that ofM. We say that two germs
(M, p) and(M ′, p′) of real-algebraic generic submanifolds ofC

N of the same dimension areal-
gebraically equivalentif there is a germ of an invertible algebraic mapH : (CN, p) → (CN, p′)
sendingM intoM ′. The following theorem can be viewed as an approximation result for local
holomorphic mappings between real-algebraic generic submanifolds by algebraic mappings.

Theorem 1.5. Let M,M ′ ⊂ C
N be two real-algebraic generic submanifolds of the same

dimension. Assume that M is connected and of finite type at some point. Let p ∈ M , p′ ∈ M ′
and H : (CN, p) → (CN, p′) a germ of a holomorphic map sending M into M ′ whose Jacobian
does not vanish identically. Then, for every positive integer κ , there exists a germ of an algebraic
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holomorphic map Hκ : (CN, p) → (CN, p′) which sends M into M ′ and agrees with H up to
order κ .

One should again note that the assumptions of Theorem 1.5 do not imply that the given
holomorphic mapH is itself algebraic. Theorem 1.5 immediately implies the following result
concerning biholomorphic and algebraic equivalence of generic real-algebraic submanifolds.

Corollary 1.6. Let M,M ′ ⊂ C
N be two real-algebraic generic submanifolds of the same

dimension. Assume thatM is connected and of finite type at some point. Then, for every p ∈ M
and every p′ ∈ M ′, the germs (M, p) and (M ′, p′) are biholomorphically equivalent if and only
if they are algebraically equivalent.

In the case of real-algebraic hypersurfaces, we are able to drop the finite type condition in
Corollary 1.6. In fact, we shall prove the following.

Corollary 1.7. Two germs of real-algebraic hypersurfaces in C
N are biholomorphically equiv-

alent if and only if they are algebraically equivalent.

For a positive integerk and a pointp in C
N , denote byGk(CN, p) the jet group of orderk

of C
N atp. An elementj (Z) of this group can be viewed as aCN -valued polynomial inZ of

degree at mostk, fixing p, and with nonvanishing Jacobian atp. The multiplication of two such
elements consist of composition of mappings with the resulting polynomial truncated up to degree
k (see e. g., [19]). If(M, p) is a germ of a smooth generic submanifold inC

N , we denote by
F(M, p) the group of formal invertible mappingsH : (CN, p) → (CN, p) sendingM into itself.
Moreover, ifM is assumed to be real-analytic, then, the subgroup ofF(M, p) consisting of those
mappings which are convergent will be denoted by Aut(M, p), thestability groupofM atp. For
any formal mapH : (CN, p) → (CN

′
, p′), we define its jetjkpH to be its Taylor polynomial of

degreek atp. If N = N ′,p = p′ andH is invertible, then,jkpH may be considered as an element
of Gk(CN, p). The following corollary is a consequence of Theorem 1.1 and Theorem 1.2.

Corollary 1.8. Let M ⊂ C
N be a smooth generic submanifold with p ∈ M . If M is of finite

type and holomorphically nondegenerate at p, then there exists a positive integer K such that
the mapping jKp : F(M, p) → GK(CN, p) is injective. If, in addition, M is real-analytic, then,
F(M, p) = Aut(M, p).

We shall now briefly mention previous work closely related to the results in this article. For
the case of Levi nondegenerate real-analytic hypersurfaces, finite determination by their 2-jets and
convergence of formal invertible maps were established in the seminal article of Chern–Moser [16]
(see also earlier work of Cartan [15] and Tanaka [29]). The first and third authors, jointly with
Ebenfelt [3] recently proved the analogues of Theorems 1.1 and 1.2 under the more restrictive con-
dition thatM ′ is essentially finite atp′, rather than just holomorphically nondegenerate. Earlier
work by the same authors on these topics appeared in [8, 9, 7]. The second author of this article
established Theorem 1.2 (actually the more general version, Theorem 2.6 below) for the case
of an invertible mapH between real-analytic hypersurfaces [24]. Theorem 2.6 was also proved
by the second author for invertible mappings between generic real-analytic submanifolds of any
codimension under the additional assumption that one of the manifolds is real-algebraic [25].
In another direction, Ebenfelt [18] obtained results on finite determination (not covered by The-
orem 1.1) for smooth CR mappings between smooth hypersurfaces. Lamel [23] proved finite
determination and convergence results for certain mappings between generic submanifolds of
different dimensions.
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It follows from [16] that if two germs of real-analytic Levi nondegenerate hypersurfaces inC
N

are formally equivalent, then they are biholomorphically equivalent. On the other hand, examples
due to Moser and Webster [27] show that there are pairs of real-analytic submanifolds which
are formally equivalent but are not biholomorphically equivalent. The first and third authors, in
joint work with Zaitsev [12] proved that, at “general” points, formal equivalence of real-analytic
submanifolds implies biholomorphic equivalence. Corollary 1.4 above establishes this result
for points not covered in previous work. A related question for real-algebraic submanifolds is
the following, which has been asked in [4]: If two germs of real-algebraic submanifolds are
biholomorphically equivalent, are they also algebraically equivalent? It is shown in [13] that at
“general” points the answer is positive. Corollaries 1.6 and 1.7 above give further positive results
for some classes of submanifolds, including all hypersurfaces. A related question is when a germ
of a holomorphic map sending one real-algebraic submanifold into another is itself algebraic.
The latter question has a long history. We mention here the work of Webster [30] for invertible
maps between Levi nondegenerate hypersurfaces, and, for more recent work, we refer the reader
to [20, 10, 26, 31], and [17].

Our approach in the proofs of the results of this article lies in the study of the so-called
“reflection ideal” associated to a triple(M,M ′, H), whereM andM ′ are (germs of) smooth
generic submanifolds inCN andC

N ′
, respectively, andH is a formal map sendingM intoM ′.

Such an ideal lies in the ring of formal power series inN + N ′ indeterminates. (See Section 2
for precise definitions.) If the source generic submanifoldM is of finite type, we establish finite
determination of reflection ideals associated to formal mappings (Theorem 2.5 below) with no
nondegeneracy condition on the target manifoldM ′. In fact, we prove such a result in the more
general setting of formal manifolds. When the generic submanifolds are real-analytic and the
source manifoldM is of finite type, we prove (Theorem 2.6 below) that the reflection ideal
has a set of convergent generators. If the generic submanifoldsM andM ′ are moreover real-
algebraic, the mapH is convergent, and the connected source manifoldM is of finite type at some
point, we prove (Theorem 2.7 below) that the reflection ideal has a set of algebraic generators.
An important ingredient for the proofs of the above three theorems is the use of iterated Segre
mappings, introduced in [10] (see also [5]), which has already been applied to various mapping
problems. Another important tool in the proofs is Artin’s approximation theorem [2] and an
algebraic version of the latter in [1].

An outline of the organization of this article is as follows. In Section 2 we state the more
general results on reflection ideals from which the theorems stated above in this introduction
will follow. Sections 4–9 are devoted to preliminaries needed for the proofs of Theorems 2.5,
2.6 and 2.7, which are given in Sections 10–12. Some remarks and open questions are given in
Section 15.

2. Manifold ideals and reflection ideals

Forx = (x1, . . . , xk) ∈ C
k, we denote byC[[x]] the ring of formal power series inx and by

C{x} the subring of convergent ones. Moreover, we writeA{x} ⊂ C{x} for the subring of algebraic
functions (also called Nash functions). IfR is any of the three rings defined above andI ⊂ R

is an ideal generated bys1(x), . . . , sd(x), we shall use the notations(x) = (s1(x), . . . , sd(x))

and writeI = (s(x)). An ideal I ⊂ R is called amanifold idealif it has a set of generators
with linearly independent differentials at the origin. Observe that any two sets of such generators
have the same number of elements. This number is called thecodimensionof I . The following
elementary fact, whose proof is left to the reader, will be used implicitly throughout this article.

Lemma 2.1. Let I ⊂ R be a manifold ideal of positive codimension d.
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(i) Any set of d elements of I whose differentials are linearly independent at the origin
generate I .

(ii) From any set of generators of I , one may extract a subset of d elements with linearly
independent differentials at the origin (which generate I by (i)).

If R is C{x} (respectivelyA{x}) and{s1(x), . . . , sd(x)} is a set of generators ofI in R, with
d the codimension ofI , then the equationss1(x) = · · · = sd(x) = 0 define a germ at 0 of a
complex-analytic (resp. complex-algebraic) submanifold6 of codimensiond. In general, we say
that a manifold idealI ⊂ C[[x]] of codimensiond defines aformal manifold6 ⊂ C

k of dimension
k−d and writeI = I(6). (We should point out that6 does not necessarily correspond to a subset
of C

k but we shall use the notation6 ⊂ C
k for motivation.) If6 ⊂ C

k is a formal manifold of
dimensionl, a parametrization of6 is a formal mapping(Cl ,0) 3 t → v(t) ∈ (Ck,0) such that
for anyh ∈ I(6), h ◦ v = 0 and rk∂v/∂t (0) = l.

If I ⊂ C[[x]] is an ideal andF : (Ckx,0) → (Ck
′
x′ ,0) is a formal map, then thepushforward

F∗(I ) of I is defined to be the ideal inC[[x′]], x′ ∈ C
k′ ,

F∗(I ) := {
h ∈ C

[[
x′]] : h ◦ F ∈ I} . (2.1)

If 6 ⊂ C
k and6′ ⊂ C

k′ are formal manifolds withI = I(6) ⊂ C[[x]] andI ′ = I(6′) ⊂ C[[x′]],
then we say thatF sends6 into6′ and writeF(6) ⊂ 6′ if I ′ ⊂ F∗(I ).

For a formal mapF : (Ckx,0) → (Ck
′
x′ ,0), we denote by RkF the rank of the Jacobian

matrix ∂F/∂x regarded as aC[[x]]-linear mapping(C[[x]])k → (C[[x]])k′ . Hence RkF is the
largest integerr such that there is anr × r minor of the matrix∂F/∂x which is not 0 as a formal
power series inx. Note that ifF is convergent, then RkF is the generic rank of the mapF .

Definition 2.2. Let 6 ⊂ C
k and6′ ⊂ C

k′ be two formal manifolds of dimensionl, l′,
respectively andF : (Ck,0) → (Ck

′
,0) a formal map sending6 to 6′. Then,F is said to be

(6,6′)-nondegenerateif Rk F ◦ v = l′ for some (and hence for all) parametrizationv of 6.

A formal vector fieldV in C
k is aC-linear derivation ofC[[x]] and hence is given by

V =
k∑
j=1

uj (x)
∂

∂xj
, uj (x) ∈ C[[x]], j = 1, . . . , k .

The vector fieldV is called tangent to a formal manifold6 ⊂ C
k or, equivalently, to its ideal

I(6) if and only if V (f ) belongs toI(6) for everyf ∈ I(6).

Definition 2.3. An idealI ⊂ C[[x]] is said to beconvergent(resp.algebraic) if I has a set of
convergent (resp. algebraic) generators.

For (Z, ζ ) ∈ C
N × C

N , we define the involutionσ : C[[Z, ζ ]] → C[[Z, ζ ]] by σ(f )(Z, ζ )
:= f̄ (ζ, Z), wheref̄ is the formal power series obtained fromf by taking complex conjugates
of the coefficients. An idealJ ⊂ C[[Z, ζ ]] is called real if σ(f ) ∈ J for every f ∈ J .
Sinceσ is also an involution when restricted toC{Z, ζ } or A{Z, ζ }, a similar definition ap-
plies for ideals in these rings. A formal manifoldM ⊂ C

N × C
N is calledreal if its ideal

I(M) is real. A formal real manifoldM ⊂ C
N × C

N of codimensiond is calledgenericif
for some (and hence for any) vector ofd generatorsρ(Z, ζ ) = (ρ1(Z, ζ ), . . . , ρd(Z, ζ )) of
I(M), the rank of thed ×N matrix∂ρ/∂Z(0) is d. To motivate this definition, letM ⊂ C

N be
a smooth generic submanifold of codimensiond through the origin with smooth local defining
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functionsr(Z, Z̄) = (r1(Z, Z̄), . . . , rd(Z, Z̄)) whose Taylor expansions at zero areρ(Z, Z̄) =
(ρ1(Z, Z̄), . . . , ρd(Z, Z̄)). Observe that thed vector-valued formal power seriesρ(Z, ζ ) gen-
erate a real manifold ideal inC[[Z, ζ ]] whose formal manifoldM ⊂ C

N × C
N is generic. If,

furthermore,M is real-analytic, thenM ⊂ C
N × C

N is a germ at 0 of a complex submanifold
of codimensiond, usually referred to as thecomplexificationof M.

For a formal generic manifoldM ⊂ C
N ×C

N , we define a manifold idealI0(M) ⊂ C[[Z]]
as the ideal generated by theh(Z,0) for all h ∈ I(M). The formal manifoldS0(M) ⊂ C

N

associated to this ideal is called theformal Segre varietyof M at 0. Observe that whenM is the
complexification of a real-analytic generic submanifoldM ⊂ C

N (through 0), thenS0(M) is the
usual Segre variety ofM at 0.

For a formal mapH : (CNZ ,0) → (CN
′

Z′ ,0), we define itscomplexificationH : (CNZ ×
C
N
ζ ,0) → (CN

′
Z′ × C

N ′
ζ ′ ,0) to be the formal map given by

H(Z, ζ ) := (H(Z), H̄ (ζ )) . (2.2)

In what follows, givenM ⊂ C
N × C

N andM′ ⊂ C
N ′ × C

N ′
two formal generic manifolds,

we will consider formal mapsH : (CN,0) → (CN
′
,0) such that their complexificationsH, as

defined by (2.2), sendM into M′. It is easy to check that ifH is such a mapping, thenH sends
the formal Segre varietyS0(M) into the formal Segre varietyS0(M′).

Definition 2.4. Let M ⊂ C
N × C

N andM′ ⊂ C
N ′ × C

N ′
be two formal generic manifolds

andH : (CN,0) → (CN
′
,0) a formal map such that its complexificationH mapsM into M′.

The mapH is callednot totally degenerateif H is (S0(M), S0(M′))-nondegenerate as defined
in Definition 2.2.

A formal (1,0)-vector fieldX in C
N
Z × C

N
ζ is given by

X =
N∑
j=1

aj (Z, ζ )
∂

∂Zj
, aj (Z, ζ ) ∈ C[[Z, ζ ]], j = 1, . . . , N . (2.3)

Similarly, a (0,1)-vector fieldY in C
N
Z × C

N
ζ is given by

Y =
N∑
j=1

bj (Z, ζ )
∂

∂ζj
, bj (Z, ζ ) ∈ C[[Z, ζ ]], j = 1, . . . , N . (2.4)

For a formal generic manifoldM ⊂ C
N × C

N of codimensiond, we denote bygM the Lie
algebra generated by the formal (1,0) and (0,1) vector fields tangent toM. The formal generic
manifoldM is said to beof finite typeif the dimension ofgM(0) overC is 2N−d, wheregM(0)
is the vector space obtained by evaluating the vector fields ingM at the origin ofC2N . Note that
if M ⊂ C

N is a smooth generic submanifold through the origin, and ifM ⊂ C
N × C

N is the
associated formal manifold as described above, thenM is of finite type if and only ifM is of
finite type in the sense of Kohn and Bloom–Graham.

LetH : (CN,0) → (CN
′
,0) be a formal mapping. For an idealJ ⊂ C[[Z′, ζ ′]], (Z′, ζ ′) ∈

C
N ′ × C

N ′
, we defineJH ⊂ C[[Z, ζ ′]] to be the ideal generated by theh(H(Z), ζ ′) for all h ∈ J

i. e.,

JH := (
h

(
H(Z), ζ ′) : h ∈ J ) ⊂ C

[[
Z, ζ ′]] . (2.5)
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Note that ifJ is generated bys(Z′, ζ ′) = (s1(Z
′, ζ ′), . . . , sm(Z′, ζ ′)) in C[[Z′, ζ ′]], thenJH

is generated by the components ofs(H(Z), ζ ′) in C[[Z, ζ ′]]. If M′ ⊂ C
N ′
Z′ × C

N ′
ζ ′ is a formal

generic submanifold of codimensiond ′, we write for simplicity of notation

IH := I (M′)H ⊂ C
[[
Z, ζ ′]] . (2.6)

where we have used the notation given in (2.5). It is easy to see thatIH is a manifold ideal of
codimensiond ′ in C[[Z, ζ ′]]. If M′ andH are as above, then we refer to the idealIH as the
reflection ideal ofH (relative toM′). If (M ′,0) is a germ of a real-analytic generic submanifold
of C

N ′
andH : (CN,0) → (CN

′
,0) is a formal map, we again defineIH by (2.6), whereM′

is the complexification ofM ′. We should observe that if, in addition,H is convergent, then the
reflection ideal defines a germ of a complex manifold which coincides with the zero set of the
so-called “reflection function”Z 7→ ρ′(H(Z), ζ ′) for an appropriate choice of defining functions
ρ′(Z′, Z̄′) of M ′ (see e. g., [11, 21, 24]).

Our first result in this section establishes finite determination of reflection ideals for formal
mappingsH such that their complexificationsH defined in (2.2) send a formal generic manifold
M into M′. Note that in Theorem 2.5, no nondegeneracy condition is imposed on the formal
manifoldM′.

Theorem 2.5. Let M ⊂ C
N × C

N and M′ ⊂ C
N ′ × C

N ′
be formal generic manifolds with

M of finite type. Let H 0 : (CN,0) → (CN
′
,0) be a formal map such that its complexification

H0 sends M into M′. Assume furthermore thatH 0 is not totally degenerate as in Definition 2.4.
Then, there exists a positive integerK0 such that ifH : (CN,0) → (CN

′
,0) is a formal map with

H(M) ⊂ M′ and jK0
0 H = j

K0
0 H 0, it follows that the corresponding reflection ideals defined

by (2.6)are the same i. e.,

IH = IH0
. (2.7)

If (M,0) and(M ′,0) are germs of real-analytic generic submanifolds inC
N andC

N ′
, re-

spectively, andH : (CN,0) → (CN
′
,0) is a formal mapping sendingM intoM ′ as defined in

Section 1, then its complexificationH sendsM intoM′, whereM andM′ are the complexifica-
tions ofM andM ′, respectively. The second main result of this section establishes convergence
of reflection ideals for formal mappings between real-analytic generic submanifolds, with no
nondegeneracy condition imposed on the target manifoldM ′.

Theorem 2.6. Let (M,0) and (M ′,0) be germs of real-analytic generic submanifolds in
C
N and C

N ′
, respectively and H : (CN,0) → (CN

′
,0) a formal mapping sending M into M ′.

Assume that M is of finite type at 0 and H is not totally degenerate. Then, the reflection ideal
IH , as defined by (2.6), is convergent.

The last result of this section establishes algebraicity of reflection ideals for local holomor-
phic mappings between real-algebraic generic submanifolds, with no nondegeneracy condition
imposed on the target manifoldM ′.

Theorem 2.7. Let M,M ′ ⊂ C
N be real-algebraic generic submanifolds of codimension d

through the origin and H : (CN,0) → (CN,0) be a germ of a holomorphic map sendingM into
M ′. Assume that the Jacobian of H does not vanish identically and that there is no germ of a
nonconstant holomorphic function h : (CN,0) → C with h(M) ⊂ R. Then, the reflection ideal
IH , as defined by (2.6), is algebraic.
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In view of Proposition 6.1 (iii) below, Theorem 2.7 in the case whereM andM ′ are real-
algebraic hypersurfaces inCN , is contained in [26].

Remark 2.8. Even if all the assumptions of Theorem 2.6 are satisfied, the fact that the reflection
ideal IH is convergent does not imply that the formal mapH is convergent. For example, let
M = M ′ be the real-algebraic hypersurface of finite type through the origin inC

3 given by

Im Z3 = |Z1Z2|2 .
For any nonconvergent formal power seriesh(Z) = h(Z1, Z2, Z3) vanishing at the origin, let
H : (C3,0) → (C3,0) be the formal invertible map given by

H(Z1, Z2, Z3) =
(
Z1e

h(Z), Z2e
−h(Z), Z3

)
.

In this example, the formal mapH sendsM into itself and is not convergent, but one can easily
check that its reflection idealIH is convergent. (This fact also follows from Theorem 2.6.) Similar
considerations can be made in the algebraic case relative to Theorem 2.7. Proposition 2.12 below
gives an additional condition onM ′ which guarantees that the convergence ofIH implies that
H is convergent.

The following proposition, which justifies the notion of convergent reflection ideals intro-
duced here, will be used for the proofs of Theorems 1.3 and 1.5.

Proposition 2.9. Let (M ′,0) be a germ of a generic real-analytic (resp. real-algebraic) sub-
manifold of codimension d ′ in C

N ′
and H : (CN,0) → (CN

′
,0) a formal map. Then, the

reflection ideal IH is convergent (resp. algebraic) if and only if there exists a convergent (resp.

algebraic) map Ȟ : (CN,0) → (CN
′
,0) such that IH = IȞ . More precisely, if IH is conver-

gent (resp. algebraic), then for any positive integer κ , there exists a convergent (resp. algebraic)
map Hκ : (CN,0) → (CN

′
,0) agreeing up to order κ with H such that IH = IHκ

.

If M ⊂ C
N × C

N is a formal generic manifold, we say thatM is holomorphically nonde-
generateif there is no nontrivial (1,0) vector field of the form (2.3) tangent toM with coefficients
aj (Z, ζ ) = aj (Z) independent ofζ for j = 1, . . . , N . Note that if(M,0) is a germ of a smooth
generic submanifold inCN , thenM is holomorphically nondegenerate in the sense defined in
Section 1 if and only if its associated formal generic manifoldM is holomorphically nondegener-
ate as defined here. IfM is the complexification of a germ of a real-analytic generic submanifold
(M,0) in C

N , thenM is holomorphically nondegenerate as defined here if and only if there is no
germ of a nontrivial (1,0) vector field of the form (2.3) tangent toM with convergent coefficients
aj (Z, ζ ) = aj (Z) independent ofζ for j = 1, . . . , N (see e. g., [6]).

Theorem 2.5 will be used in conjunction with the following finite determination result to
prove Theorem 1.1.

Proposition 2.10. Let M′ ⊂ C
N ′ × C

N ′
be a holomorphically nondegenerate formal generic

manifold and H 0 : (CN,0) → (CN
′
,0) a formal map with Rk H 0 = N ′. Then, there exists a

positive integerK such that ifH : (CN,0) → (CN
′
,0) is a formal map with jK0 H = jK0 H

0 and

IH = IH0 [as defined in (2.6)], it follows that H = H 0.

In the case of a real-analytic generic submanifold and holomorphic mappings, we have the
following geometric interpretation of the equality (2.7) of reflection ideals. In view of Proposi-
tion 2.11 below, Theorem 2.5 can, then, be seen as a finite determination result for Segre varieties.
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Proposition 2.11. Let (M ′,0) be a germ of a real-analytic generic submanifold in C
N ′

with
real-analytic local defining functions r ′(Z′, Z̄′). Assume that H,H 0 : (CN,0) → (CN

′
,0) are

germs of holomorphic mappings. Then, the following two conditions are equivalent:

(i) IH = IH0
, where the ideals IH and IH0

are defined by (2.6).

(ii) For Z near the origin, the Segre varieties of M ′ relative to the points H(Z) and H 0(Z)

are the same. More precisely, there exists open neighborhoods of 0, U and U ′ in C
N

and C
N ′

, respectively such that for all Z ∈ U ,

SH(Z) = SH0(Z) , (2.8)

where SH(Z) = {Z′ ∈ U ′ : r ′(Z′, H(Z)) = 0}, with a similar definition for SH0(Z).

Proposition 2.11 will not be used in the remainder of the article and its proof is left to the
reader. The last result of this section connects the convergence of the reflection idealIH to the
convergence of the mappingH .

Proposition 2.12. Let (M ′,0) be a germ of a generic real-analytic holomorphically nonde-
generate submanifold of codimension d ′ in C

N ′
. If H : (CN,0) → (CN

′
,0) is a formal map

with Rk H = N ′ such that its reflection ideal IH , as defined by (2.6), is convergent, then H is
convergent.

Remark 2.13. We should point out that a statement similar to Proposition 2.12 holds in the
algebraic case. Indeed, if(M ′,0) is a germ of a generic real-algebraic holomorphically nonde-
generate submanifold of codimensiond ′ in C

N ′
and ifH : (CN,0) → (CN

′
,0) is a formal map

with Rk H = N ′ such that its reflection idealIH is algebraic, thenH is algebraic. This fact will
not be used in this article.

The proofs of Propositions 2.9, 2.10, and 2.12 will be given in Section 13.

3. Further results on finite determination, convergence, and approximation of
mappings

The following finite determination result, which is a generalization of Theorem 1.1, will be
a consequence of Theorem 2.5 and Proposition 2.10.

Theorem 3.1. Let M ⊂ C
N×C

N and M′ ⊂ C
N ′ ×C

N ′
be formal generic manifolds with M

of finite type and M′ holomorphically nondegenerate. LetH 0 : (CN,0) → (CN
′
,0) be a formal

map such that its complexification H0 sends M into M′. Assume furthermore that H 0 is not
totally degenerate as in Definition 2.4 and that Rk H 0 = N ′. Then, there exists a positive integer
K such that if H : (CN,0) → (CN

′
,0) is a formal map with H(M) ⊂ M′ and jK0 H = jK0 H

0,
it follows that H = H 0.

Similarly, the following convergence result, which is a generalization of Theorem 1.2, will
be a consequence of Theorem 2.6 and Proposition 2.12.

Theorem 3.2. Let (M,0) and (M ′,0) be germs of real-analytic generic submanifolds in C
N

and C
N ′

, respectively and H : (CN,0) → (CN
′
,0) a formal mapping sending M into M ′.

Assume that M is of finite type at 0 and that M ′ is holomorphically nondegenerate at 0. If H is
not totally degenerate and Rk H = N ′, then H is convergent.
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Remark 3.3. We should point out that the assumptions of Theorem 3.2 are less restrictive than
those of Theorem 1.2, even in the case whereM andM ′ are real-analytic hypersurfaces in the
same spaceCN . (The same can also be said about Theorems 3.1 and 1.1.) For instance, given a
nontrivial convergent power seriesh : (C,0) → (C,0), consider the following hypersurfaces in
C

3:

M :=
{
Z ∈ C

3 : ImZ3 =
∣∣∣Z2

1Z2

∣∣∣2 + |h(Z1)|2
}
,

M ′ :=
{
Z′ ∈ C

3 : ImZ′
3 = ∣∣Z′

1Z
′
2

∣∣2 + ∣∣h (
Z′

1

)∣∣2} . (3.1)

Observe that the convergent mapping(C3,0) 3 Z 7→ H(Z) := (Z1, Z1Z2, Z3) ∈ (C3,0)
sendsM into M ′. Moreover,M andM ′ are of finite type and holomorphically nondegenerate
at the origin. Note also thatH is not totally degenerate and RkH = 3 butH is not finite. We
should point out that the convergence of formal mappings betweenM andM ′ satisfying the latter
conditions follows from Theorem 3.2, but does not follow from Theorem 1.2 nor from previously
known results. (Indeed, sinceM andM ′ are not essentially finite at the origin, the result in [3]
does not apply, nor does the one in [25] if the functionh is chosen not be algebraic.)

The following approximation result generalizes Theorem 1.3.

Theorem 3.4. Let (M,0) and (M ′,0) be two germs of real-analytic generic submanifolds
in C

N and C
N ′

, respectively, with M of finite type at 0. If H : (CN,0) → (CN
′
,0) is a not

totally degenerate formal map sending M into M ′ and if κ is a positive integer, then there exists
a convergent map Hκ : (CN,0) → (CN

′
,0) which sends M into M ′ and agrees with H up to

order κ .

4. Ideals in jet spaces

Given nonnegative integersl, k, r, with k, r ≥ 1, we denote byJ l0(C
k,Cr ) the jet space at

the origin of orderl of holomorphic mappings fromCk to C
r . An elementj of J l0(C

k,Cr ) can
be written as a polynomial mapping

j (X) =
∑

α∈Nk, 0≤|α|≤l

3α

α! X
α, 3α ∈ C

r . (4.1)

We think of the coefficients3 := (3α)0≤|α|≤l , 3α ∈ C
r , as linear coordinates in the finite

dimensional vector spaceJ l0(C
k,Cr ) and we identifyj with 3. We write3α = (3α,i)1≤i≤r for

anyα ∈ N
k, |α| ≤ l. We also use the splitting

3 =
(
30, 3̂

)
, 3̂ = (3α)1≤|α|≤l . (4.2)

Using the coordinates3, we identifyJ l0(C
k,Cr ) with C

m
3 wherem = dimC J

l
0(C

k,Cr ). For a
formal mapF : (Ck,0) → (Cr ,0), we writej lxF and̂ lxF for the vectors of formal series

j lxF := (
∂νF (x)

)
0≤|ν|≤l , ̂ lxF := (

∂νF (x)
)
1≤|ν|≤l . (4.3)

Here, forν ∈ N
k, ∂νF (x) ∈ (C[[x]])r andx ∈ C

k. If s is another positive integer andη :
(J l0(C

k,Cr ),0) → (J l0(C
k,Cs),0) is a formal map, we take coordinates3 = (3ν)|ν|≤l and

3′ = (3′
ν)|ν|≤l for J l0(C

k,Cr ) andJ l0(C
k,Cs), respectively. Here,3ν ∈ C

r ,3′
ν ∈ C

s . We then
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write ην = 3′
ν ◦ η; that is, the mapη is given by3′ = η(3). Hence, forν ∈ N

k, |ν| ≤ l, ην is
theν-th component ofη, i. e.,

ην :
(
J l0

(
C
k,Cr

)
,0

)
→ (

C
s ,0

)
, η = (ην)|ν|≤l . (4.4)

If R is a ring andT ∈ C
q , as usual we denote byR[T ] the ring of polynomials inT with

coefficients inR. If 3 = (30, 3̂) are coordinates inJ l0(C
k,Cr ) as in (4.1) and (4.2), the subring

C[[30]][3̂] := (C[[30]])[3̂] of the ringC[[3]] will play a crucial role in the rest of this article.
For instance, ifu ∈ C[[30]][3̂] andF : (Ck,0) → (Cr ,0) is a formal map, thenu(j lxF ) is a well
defined formal power series inC[[x]] while for a generalu ∈ C[[3]], one cannot define it.1

We have the following uniqueness result.

Lemma 4.1. If 3 = (30, 3̂) are coordinates in J l0(C
k,Cr ) as in (4.1) and (4.2) and if

u ∈ C[[30]][3̂] is a formal power series satisfying

u
(
j lxF

)
= 0, in C[[x]] , (4.5)

for any formal power series mapping F : (Ck,0) → (Cr ,0), then u = 0 (in C[[30]][3̂]).

Proof. We shall define a polynomial map

ϕ :
(
J l0

(
C
k,Cr

)
× C

k,0
)

→
(
J l0

(
C
k,Cr

)
,0

)
(4.6)

as follows. IfA = (Aν)|ν|≤l , ν ∈ N
k,Aν ∈ C

r , are coordinates on the source jet spaceJ l0(C
k,Cr )

as in (4.1),x = (x1, . . . , xk) ∈ C
k and3 = (3α)|α|≤l are coordinates on the target jet space

J l0(C
k,Cr ), thenϕ is defined by

3 = ϕ(A, x) :=

∂αx


x1

∑
0≤|ν|≤l

Aνx
ν







0≤|α|≤l
. (4.7)

We claim that the generic rank ofϕ, Rk ϕ, is equal tom, the dimension ofJ l0(C
k,Cr ) overC.

For this, let

ϕ̃(A, x) :=

x1∂

α
x


 ∑

0≤|ν|≤l
Aνx

ν







0≤|α|≤l
.

First note that Rkϕ is greater or equal to the generic rank (inx) of them × m matrix1(x) :=
∂ϕ

∂A
(A, x). Moreover, it is not difficult to see that the generic rank of the matrix1(x) is the same

as that of the matrix̃1(x) := ∂ϕ̃

∂A
(A, x). Since forx1 6= 0, the rank of1̃(x) is clearlym, it

follows that Rkϕ = m. This proves the claim.

1Indeed, given two formal power seriesf (x) ∈ C[[x − x0]] andg(y) ∈ C[[y − y0]], the compositiong ◦ f as a
power series inx is well defined providedf (x0) = y0. However, ifg is a polynomial then the composition is
always well defined without the assumptionf (x0) = y0.
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Given a formal power seriesv ∈ C[[3]], sinceϕ(0) = 0, we can consider the composition
(v ◦ ϕ)(A, x) as a formal power series inC[[A, x]]. We write

(v ◦ ϕ)(A, x) =
∑
β∈Nk

vβ(A)x
β, vβ ∈ C[[A]] . (4.8)

Observe that ifv is in the subringC[[30]][3̂] ⊂ C[[3]] then for eachβ ∈ N
k, vβ is a polynomial

in A, i. e.,(v ◦ ϕ)(A, x) ∈ C[A][[x]]. Let u be as in Lemma 4.1 satisfying (4.5). For any vector
a = (aν)|ν|≤l ∈ C

m ∼= J l0(C
k,Cr ), by (4.5) withF(x) = x1

∑
0≤|ν|≤l aνxν , we obtain

u
(
j lxF

)
= u(ϕ(a, x)) =

∑
β∈Nk

uβ(a)x
β = 0, in C[[x]] . (4.9)

As a consequence, we haveuβ(a) = for anyβ ∈ N
k and any vectora in C

m. Sinceuβ is a
polynomial, it follows thatuβ ≡ 0 and hence the formal power series(u ◦ ϕ)(A, x) is zero in
C[A][[x]] ⊂ C[[A, x]]. To conclude thatu is identically zero, by e. g., Proposition 5.3.5 of [6], it
suffices to use the fact that Rkϕ = m. This completes the proof of Lemma 4.1.

Proposition 4.2. Let l, r, s be nonnegative integers with r, s ≥ 1, and let φ : (Cr ,0) →
(Cs ,0) be a formal map. Then, there exists a unique formal map

φ(l) :
(
J l0

(
C
k,Cr

)
,0

)
→

(
J l0

(
C
k,Cs

)
,0

)
(4.10)

whose components are in C[[30]][3̂], with3 = (30, 3̂) the coordinates of J l0(C
k,Cr ) introduced

in (4.1)and (4.2), such that for any formal map F : (Ck,0) → (Cr ,0)

j lx(φ ◦ F) = φ(l)
(
j lxF

)
. (4.11)

Moreover, if we write φ(l)(3) = (φ
(l)
ν (3))ν∈Nk,|ν|≤l , then for each ν, φ(l)ν (3) depends only

on (3α)α≤ν . Finally, if r = s and φ : (Cr ,0) → (Cr ,0) is invertible, then so is φ(l) :
(J l0(C

k,Cr ),0) → (J l0(C
k,Cr ),0) and (φ(l))−1 = (φ−1)(l).

Proof. The existence of the mapφ(l) and its properties follow easily from the chain rule. The
uniqueness of such a map is a consequence of Lemma 4.1. The proof of the last statement of the
proposition is straightforward and left to the reader.

Remark 4.3. Let φ andφ(l) be as in Proposition 4.2. It follows from (4.11) and the other
properties ofφ(l) that for any formal mapG : (Ckx × C

q
t ,0) → (Cry,0), we have the equality of

vector valued formal power series inC[[x, t]]
j lx(φ(G(x, t))) = φ(l)

(
j lxG(x, t)

)
. (4.12)

Here, as in (4.3),j lxG(x, t) = (∂νxG(x, t))|ν|≤l . Hence, (4.11) appears as a special case of (4.12),
without an additional formal parametert .

For any idealI ⊂ C[[y]], y ∈ C
r , and any nonnegative integersk, l, with k ≥ 1, we define an

idealI (l) ⊂ C[[30]][3̂], where3 = (30, 3̂) are coordinates onJ l0(C
k,Cr ) as in (4.1) and (4.2),

as follows:

I (l) :=
{
h ∈ C[[30]]

[
3̂

] : h(j lxF ) = 0 for all F : (
C
k
x,0

) → (
C
r
y,0

)
such thatu ◦ F = 0, for all u ∈ I

}
.

(4.13)
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We have the following proposition.

Proposition 4.4. If I ⊂ C[[y]] is a manifold ideal of codimension d, then the ideal I (l) ⊂
C[[30]][3̂] defined by (4.13) is also a manifold ideal. Moreover, if the manifold ideal I is
generated by ρ1(y), . . . , ρd(y) in C[[y]], then the ideal I (l) in C[[30]][3̂] is generated by the
components of ρ(l)1 (3), . . . , ρ

(l)
d (3) , where ρ(l)j is given by Proposition 4.2.

Proof. Recall by Proposition 4.2 that an invertible formal mapψ : (Cry,0) → (Cr
y′ ,0) induces

a formal invertible mapψ(l) : (J l0(Ck,Cr ),0) → (J l0(C
k,Cr ),0). We leave it to the reader to

check that the equality (
ψ(l)

)
∗ (I

(l)) = (ψ∗(I ))(l) (4.14)

follows from Proposition 4.2, where the pushforward of an ideal is given by (2.1). Ifρ1(y), . . . ,
ρd(y) are generators of the manifold idealI , we may choose a formal invertible mapψ :
(Cry,0) → (Cr

y′ ,0) such thaty′
j = ψj (y) = ρj (y) for j = 1, . . . , d and hence the manifold

idealψ∗(I ) ⊂ C[[y′]] is generated by the coordinate functionsy′
1, . . . , y

′
d . We take3 = (30, 3̂)

for coordinates in the source jet spaceJ l0(C
k,Cr ) and3′ = (3′

0, 3̂
′) for coordinates in the target

one, as in (4.1) and (4.2). It is, then, easy to check that the ideal(ψ∗(I ))(l) ⊂ C[[3′
0]][3̂′] is the

manifold ideal generated by the coordinate functions(3′
α,i) for 0 ≤ |α| ≤ l andi = 1, . . . , d.

It follows from (4.14) thatI (l) ⊂ C[[30]][3̂] is a manifold ideal and is generated by theψ(l)α,i(3)
for 0 ≤ |α| ≤ l andi = 1, . . . , d. Since by constructionψi(y) = ρi(y), i = 1, . . . , d, the last
part of the proposition follows.

5. Generators of the idealI(M′)(l)

In this section, we consider a formal generic manifoldM′ ⊂ C
N ′
Z′ × C

N ′
ζ ′ of codimensiond ′.

Let
ρ′ :

(
C
N ′
Z′ × C

N ′
ζ ′ ,0

)
→

(
C
d ′
,0

)
be a formal mapping such thatI(M′) = (ρ′(Z′, ζ ′)) = (ρ′

1(Z
′, ζ ′), . . . , ρ′

d ′(Z′, ζ ′)) in C[[Z′,
ζ ′]]. We define

ρ̃′ (Z′, ζ ′) := ρ′ (ζ ′, Z′) . (5.1)

Since I(M′) is real, the idealI(M′) ⊂ C[[Z′, ζ ′]] is also generated by the components of
ρ̃′(Z′, ζ ′).

Given a formal mapH : (CNZ ,0) → (CN
′

Z′ ,0), we define two formal mappingsHρ′ :
(CNZ × C

N ′
ζ ′ ,0) → (Cd

′
,0) andρ′H : (CN ′

Z′ × C
N
ζ ,0) → (Cd

′
,0) as follows

Hρ′ (Z, ζ ′) := ρ′ (H(Z), ζ ′) , ρ′H (
Z′, ζ

) := ρ′ (Z′, H(ζ )
)
. (5.2)

Similarly, we define

Hρ̃′ (Z, ζ ′) := ρ̃′ (H(Z), ζ ′) , ρ̃′H (
Z′, ζ

) := ρ̃′ (Z′, H(ζ )
)
. (5.3)

Note that by the reality condition, we have

Hρ̃′ (Z, ζ ′) =ρ′H (
ζ ′, Z

)
. (5.4)
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Observe also that the components ofHρ′(Z, ζ ′) generate the reflection idealIH ⊂ C[[Z, ζ ′]] as
defined by (2.6).

Throughout the rest of this section and Sections 6–9, we fix a nonnegative integerl. Since

ρ′, ρ̃′ :
(
C
N ′
Z′ × C

N ′
ζ ′ ,0

)
→

(
C
d ′
,0

)
are formal mappings, by Proposition 4.2 there exist unique formal mappings

ρ′(l), ρ̃′(l) :
(
J l0

(
C
N,CN

′ × C
N ′)

,0
)

→
(
J l0

(
C
N,Cd

′)
,0

)
(5.5)

such that for every formal mapping

F =
(
F 1, F 2

)
:
(
C
N
Z ,0

)
→

(
C
N ′
Z′ × C

N ′
ζ ′ ,0

)
, (5.6)

one has

j lZ
(
ρ′ ◦ F ) = ρ′(l) (j lZF)

, j lZ
(
ρ̃′ ◦ F ) = ρ̃′(l) (j lZF)

. (5.7)

If 3 = (3α)|α|≤l , α ∈ N
N , are the coordinates given by (4.1) on the jet space

J l0

(
C
N
Z ,C

N ′
Z′ × C

N ′
ζ ′

)
= J l0

(
C
N
Z ,C

N ′
Z′

)
× J l0

(
C
N
Z ,C

N ′
ζ ′

)
, (5.8)

then, we write3 = (31,32) according to the splitting (5.8). Thus, we have3i = (3iα)|α|≤l ,
i = 1,2, α ∈ N

N . As in (4.2), we continue to use the splitting3i = (3i0, 3̂
i) with 3̂i =

(3iα)1≤|α|≤l , i = 1,2. SinceI (M′) is generated either by the components ofρ′(Z′, ζ ′) or
by those ofρ̃′(Z′, ζ ′), it follows from Proposition 4.4 that the idealI (M′)(l) in C[[30]][3̂] is
generated either by the components ofρ′(l)(3) or by the components of̃ρ′(l)(3).

We shall now give a more explicit expression forρ′(l)(3). As in (4.4), we writeρ′(l) =
(ρ′
ν
(l))|ν|≤l andρ̃′(l) = (ρ̃′

ν
(l))|ν|≤l . For any formal mappingF(Z) as in (5.6), by (5.7), the chain

rule, and (5.2), one has for anyν ∈ N
N , |ν| ≤ l,

ρ′
ν
(l)

(
j lZF

1, j lZF
2
)

= ∂ν

∂Zν

[
ρ′ (F 1(Z), F 2(Z)

)]
= ∂ν

∂Zν

[
ρ′F 2

(
F 1(Z), Z

)]
=

∑
α∈NN

′
, β∈NN

|β|+|α|≤|ν|, β≤ν

Pναβ

((
∂µF 1(Z)

)
1≤|µ|≤|ν|

)
ρ′F 2

Z′αζβ
(
F 1(Z), Z

)
,

(5.9)

where thePναβ are universal scalar polynomials depending only onN andN ′ (independent ofF
andρ′). Note that we also have

Pν0ν ≡ 1 . (5.10)

As in (5.2), one should regardρ′F 2
as a power series mapping of the indeterminates(Z′, ζ ); this

is the meaning of the derivativeρ′F 2

Z′αζβ in (5.9). For anyα ∈ N
N ′

, anyβ ∈ N
N and for any

formal mapF 2 : (CN,0) → (CN
′
,0), we have, again by the chain rule,

ρ′F 2

Z′αζβ
(
Z′, ζ

) =
∑

µ∈NN
′
, |µ|≤|β|

Rβµ

((
∂δF 2(ζ )

)
1≤|δ|≤|β|

)
ρ′
Z′αζ ′µ

(
Z′, F 2(ζ )

)
, (5.11)
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where theRβµ are universal scalar polynomials depending only onN andN ′ (independent ofF 2

andρ′). Again, as in (5.1), one should regardρ′ as a power series mapping of the indeterminates
(Z′, ζ ′). Moreover, one hasR00 = 1 andRβ0 = 0 for all β 6= 0. As a consequence of (5.9)
and (5.11) and using the notation (4.3), we have for any formal mappingF(Z) as in (5.6)

ρ′
ν
(l)

(
j lZF

1, j lZF
2
)

=
∑

α∈NN
′
, β∈NN

|β|+|α|≤|ν|, β≤ν

Pναβ

(
̂ lZF

1
) ∑
µ∈NN

′
|µ|≤|β|

Rβµ

(
̂ lZF

2
)
ρ′
Z′αζ ′µ

(
F 1(Z), F 2(Z)

)
. (5.12)

Hence, by the uniqueness in Proposition 4.2, we have inC[[30]][3̂],3 = (31,32), for ν ∈ N
N ,

|ν| ≤ l,

ρ′
ν
(l)

(
31,32

)
=

∑
α∈NN

′
, β∈NN

|β|+|α|≤|ν|, β≤ν

Pναβ

(
3̂1

) ∑
µ∈NN

′
|µ|≤|β|

Rβµ

(
3̂2

)
ρ′
Z′αζ ′µ

(
31

0,3
2
0

)
. (5.13)

UsingF
1
ρ′(Z, F 2(Z)) [given by (5.2)] instead ofρ′F 2

(F 1(Z), Z) in carrying out the calculation
in (5.9), one is led to the following expression ofρ′

ν
(l)(31,32):

ρ′
ν
(l)

(
31,32

)
=

∑
α∈NN

′
, β∈NN

|β|+|α|≤|ν|, β≤ν

Pναβ

(
3̂2

) ∑
µ∈NN

′
|µ|≤|β|

Rβµ

(
3̂1

)
ρ′
Z′µζ ′α

(
31

0,3
2
0

)
, (5.14)

where the polynomialsPναβ andRβµ are the same as those in (5.13). Of course, the expres-
sions (5.13) and (5.14) also hold forρ′ replaced byρ̃′ as well, since the components ofρ̃′ are
also generators ofI(M′).

We summarize the above in the following lemma.

Lemma 5.1. Let M′, ρ′ and ρ̃′ be as above. Then, the ideal in C[[30]][3̂] generated by the
components of ρ′(l)(3) is the same as the ideal generated by the components of ρ̃′(l)(3), and
both coincide with I(M′)(l). Furthermore, the components ρ′

ν
(l)(3) are given either by (5.13)

or by (5.14).

We should mention that in what follows, we will use the expression (5.13) forρ̃′ and the
expression (5.14) forρ′, for a specific choice ofρ′.

Remark 5.2. As in (5.11), for anyα ∈ N
N ′

, any β ∈ N
N and for any formal mapF 1 :

(CN,0) → (CN
′
,0), we have

F 1
ρ′
Zβζ ′α

(
Z, ζ ′) =

∑
µ∈NN

′
, |µ|≤|β|

Rβµ

((
∂δF 1(Z)

)
1≤|δ|≤|β|

)
ρ′
Z′µζ ′α

(
F 1(Z), ζ ′) , (5.15)

where the universal polynomialsRβµ are the same as those in (5.11). Observe that (5.15) has
already been used in provin (5.14).

6. Properties of reflection ideals and their generators

As in Section 5, we consider a formal generic manifoldM′ ⊂ C
N ′
Z′ × C

N ′
ζ ′ of codimension

d ′. SinceM′ is generic, we may assume by using the formal implicit function theorem that
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Z′ = (z′, w′) ∈ C
n′ × C

d ′
, ζ ′ = (χ ′, τ ′) ∈ C

n′ × C
d ′

with n′ = N ′ − d ′, and that the ideal
I(M′) in C[[Z′, ζ ′]] is given by

I (M′) = (
w′ −Q′ (z′, ζ ′)) , (6.1)

whereQ′ : (Cn′
z′ × C

N ′
ζ ′ ,0) → (Cd

′
,0) is a formal mapping. Note that sinceM′ is real, we also

have

I (M′) = (
τ ′ − Q̄′ (χ ′, Z′)) . (6.2)

For the rest of this article, we make the following choice of generators forI(M′)

ρ′ (Z′, ζ ′) := τ ′ − Q̄′ (χ ′, Z′) . (6.3)

Hence, in view of (5.1), we have

ρ̃′ (Z′, ζ ′) = w′ −Q′ (z′, ζ ′) . (6.4)

We have the following proposition which holds for this choice of generators ofI(M′).

Proposition 6.1. Let M′ ⊂ C
N ′
Z′ × C

N ′
ζ ′ be a formal generic manifold of codimension d ′ and

H,H 0 : (CN,0) → (CN
′
,0) be two formal mappings. Let IH be the reflection ideal defined

by (2.6) and Hρ′ be the formal map given by (5.2) with the choice of ρ′ given by (6.3). Then,
the following hold.

(i) IH = IH0 ⇐⇒ Hρ′(Z, ζ ′) = H0
ρ′(Z, ζ ′).

(ii) The reflection ideal IH is convergent (as in Definition 2.3) if and only if the components
of Hρ′(Z, ζ ′) are convergent power series.

(iii) The reflection ideal IH is algebraic (as in Definition 2.3) if and only if the components
of Hρ′(Z, ζ ′) are algebraic functions.

Proof. (i) Since IH = (
Hρ′(Z, ζ ′)

)
, it follows that Hρ′(Z, ζ ′) = H0

ρ′(Z, ζ ′) implies the

equality of the idealsIH and IH0
. Conversely, ifIH = IH0

, then there exists ad ′ × d ′ matrix
a(Z, ζ ′) with entries inC[[Z, ζ ′]] such that

Hρ′ (Z, ζ ′) = a
(
Z, ζ ′) H0

ρ′ (Z, ζ ′) . (6.5)

Puttingτ ′ = Q̄′(χ ′, H 0(Z)) in (6.5) and making use of (5.2) and (6.3), we obtain thatQ̄′(χ ′,
H 0(Z)) = Q̄′(χ ′, H(Z)) and henceHρ′(Z, ζ ′) = H0

ρ′(Z, ζ ′).

(ii) Since IH = (
Hρ′(Z, ζ ′)

)
, if the components ofHρ′(Z, ζ ′) are convergent, thenIH is

convergent. Conversely, ifIH is convergent, then, by Definition 2.3 and Lemma 2.1 (ii), there
existrj (Z, ζ ′) ∈ C{Z, ζ ′}, j = 1, . . . , d ′, with linearly independent differentials at 0 such that
IH = (r) = (r1, . . . , rd ′) in C[[Z, ζ ′]]. As a consequence, there exist ad ′ × d ′ invertible matrix
a(Z, ζ ′) with entries inC[[Z, ζ ′]] such that

r
(
Z, ζ ′) = a

(
Z, ζ ′) Hρ′ (Z, ζ ′) = a

(
Z, ζ ′) (

τ ′ − Q̄′ (χ ′, H(Z)
))
, (6.6)

and hence∂r/∂τ ′(0) is invertible. By the implicit function theorem, one sees that the equation
r(Z, χ ′, τ ′) = 0 has a unique convergent solutionτ ′ = u(Z, χ ′). It follows from (6.6) that
Q̄′(χ ′, H(Z)) = u(Z, χ ′) and hence thatHρ′(Z, ζ ′) is a convergent power series mapping. This
completes the proof of (ii).

(iii) The proof of this case is similar to that of part (ii) above by making use of the algebraic
version of the implicit function theorem.
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7. Ideals associated to formal generic manifolds and mappings

In this section, we consider two formal generic manifoldsM ⊂ C
N
Z × C

N
ζ andM′ ⊂

C
N ′
Z′ × C

N ′
ζ ′ of codimensiond andd ′ respectively. We writeN = n+ d andN ′ = n′ + d ′. As in

Section 6, we continue to use the choice of generators ofI(M′) given by (6.3) and (6.4).

By the implicit function theorem, there exists a formal mapping

γ :
(
C
N
ζ × C

n
t ,0

)
→

(
C
N
Z ,0

)
, rk

∂γ

∂t
(0) = n , (7.1)

such that for anyh ∈ I(M),
h(γ (ζ, t), ζ ) = 0 ,

and hence, by the reality ofM, we also have

h (Z, γ̄ (Z, t)) = 0 . (7.2)

Observe that each of the formal mappings(CN × C
n,0) 3 (Z, t) 7→ (Z, γ̄ (Z, t)) and(CN ×

C
n,0) 3 (ζ, t) 7→ (γ (ζ, t), ζ ) is a parametrization of the formal generic manifoldM. If,

moreover,M ⊂ C
N ×C

N is the complexification of a generic real-analytic (resp. real-algebraic)
submanifold through the origin inCN , then one can chooseγ to be convergent (resp. algebraic).
As in [5], we shall call a formal mapγ satisfying the above properties aSegre variety mapping
relative toM. Note that the formal map(Cn,0) 3 t 7→ γ (0, t) is a parametrization ofS0(M),
the formal Segre variety ofM at 0 as defined in Section 2. In the rest of this article, we shall fix
such a mapγ .

For a formal mapH : (CN,0) → (CN
′
,0) and the fixed nonnegative integerl, we define

two formal mappings

ϕ[l](H ; ·), ϕ̃[l](H ; ·) :
(
J l0

(
C
N,CN

′) × C
N
Z × C

n
t ,0

)
→ J l0

(
C
N,Cd

′)
,

as follows. Considerρ′(l)(31,32) andρ̃′(l)(31,32) as defined in (5.5), with the choice ofρ′
andρ̃′ made in (6.3) and (6.4). Taking32 = ∂αZ(H̄ (γ̄ (Z, t)))|α|≤l we set

ϕ[l] (H ;31, Z, t
)

:= ρ′(l) (31,
(
∂αZ

(
H̄ (γ̄ (Z, t))

)
|α|≤l

)
, (7.3)

and

ϕ̃[l] (H ;31, Z, t
)

:= ρ̃′(l) (31,
(
∂αZ(H̄ (γ̄ (Z, t))

)
|α|≤l

)
. (7.4)

Observe that each component of the right-hand side of (7.3) and (7.4) is a formal power series
which is inC[[31

0, Z, t]][3̂1]. Here we recall that31 = (31
0, 3̂

1)are coordinates onJ l0(C
N,CN

′
)

as in (4.1) and (4.2).

We shall write, as in (4.4),ϕ[l](H ; ·) = (ϕ
[l]
ν (H ; ·))|ν|≤l and use a similar notation for

ϕ̃[l](H ; ·). We shall now compute theν-th component̃ϕ[l]
ν (H ; ·). It follows from (7.4) and (5.13),

with ρ′ replaced byρ̃′, that

ϕ̃[l]
ν

(
H ;31, Z, t

)
=

∑
α∈NN

′
, β∈NN

|β|+|α|≤|ν|, β≤ν

Pναβ

(
3̂1

) ∑
µ∈NN

′
|µ|≤|β|

Rβµ

(
̂ lZ

(
H̄ (γ̄ (Z, t))

))
ρ̃′
Z′αζ ′µ

(
31

0, H̄ (γ̄ (Z, t))
)
, (7.5)
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where ̂ lZ(H̄ (γ̄ (Z, t))) = (∂δZ[H̄ (γ̄ (Z, t))])1≤|δ|≤l . By the chain rule, a computation similar
to (5.11) shows that one has

∂ |β|

∂Zβ

[
ρ̃′H

Z′α
(
Z′, γ̄ (Z, t)

)] =
∑
µ∈NN

′
|µ|≤|β|

Rβµ

(
̂ lZ

(
H̄ (γ̄ (Z, t))

))
ρ̃′
Z′αζ ′µ

(
Z′, H̄ (γ̄ (Z, t))

)
,

(7.6)

where the universal polynomialsRβµ are the same as those in (5.11). On the other hand, by the
chain rule (again considering̃ρ′H as a power series mapping of the indeterminates(Z′, ζ )), we
also have

∂ |β|

∂Zβ

[
ρ̃′H
Z′α

(
Z′, γ̄ (Z, t)

)] =
∑

|δ|≤|β|
cβδ(Z, t)ρ̃

′H
Z′αζ δ

(
Z′, γ̄ (Z, t)

)
. (7.7)

Here, the formal power series mapscβδ : (CNZ × C
n
t ,0) → C depend only on the Segre variety

mappingγ and not on the mappingH . Moreover, ifγ is convergent (resp. algebraic), then the
cβδ are also convergent (resp. algebraic). As a consequence of (7.5), (7.6), and (7.7), we obtain

ϕ̃[l]
ν

(
H ;31, Z, t

)
=

∑
α∈NN

′
, β∈NN

|β|+|α|≤|ν|, β≤ν

Pναβ

(
3̂1

) ∑
|δ|≤|β|

cβδ(Z, t)ρ̃
′H
Z′αζ δ

(
31

0, γ̄ (Z, t)
)
. (7.8)

If H : (CNZ ,0) → (CN
′

Z′ ,0) is a formal map such that its complexificationH : (CNZ ×
C
N
ζ ,0) → (CN

′
Z′ × C

N ′
ζ ′ ,0) given by (2.2) sendsM into M′, then it follows from (7.2) that

h′ (H(Z), H̄ (γ̄ (Z, t))
) = 0, ∀h′ ∈ I (M′) . (7.9)

Taking h′ in (7.9) to be any of the components ofρ′(Z′, ζ ′) or ρ̃′(Z′, ζ ′) and making use of
Remark 4.3, we obtain

ρ′(l) (j lZH (
Z), j lZ

(
H̄ (γ̄ (Z, t)

)))
= 0, ρ̃′(l) (j lZH(Z), j lZ (

H̄ (γ̄ (Z, t))
)) = 0 . (7.10)

Hence31 = j lZH is a solution of each of the systems of equations

ϕ[l] (H ;31, Z, t
)

= 0, ϕ̃[l] (H ;31, Z, t
)

= 0 , (7.11)

whereϕ[l](H ; ·) andϕ̃[l](H ; ·) are defined by (7.3) and (7.4) respectively.

We summarize the above in the following lemma.

Lemma 7.1. Let H : (CNZ ,0) → (CN
′

Z′ ,0) and ϕ[l](H ; ·) and ϕ̃[l](H ; ·) be the formal series

given by (7.3)and (7.4)respectively. Then, the ideal in C[[31
0, Z, t]][3̂1] generated by the com-

ponents of ϕ[l](H ;31, Z, t) is the same as that generated by the components of ϕ̃[l](H ;31, Z, t).
Moreover, the components of ϕ̃[l](H ;31, Z, t) are given by formula (7.8). If, in addition, the
complexification H of H , as given by (2.2), maps M into M′, then 31 = j lZH is a solution of
each of the two systems of equations in (7.11).
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8. Iterated Segre mappings and associated ideals

In this section, we assume thatM andM′ are given formal generic manifolds as in Section 7.
We continue to use the choice of generatorsρ′(Z′, ζ ′) andρ̃′(Z′, ζ ′) given in (6.3) and (6.4) for
the idealI(M′). If γ is a Segre variety mapping relative toM as defined in (7.1), we define, as
in [5], the iterated Segre mappings(relative toM) as follows. First, we setv0 := 0 ∈ C

N . For
any positive integerj , vj : (Cnj ,0) → (CN,0) is the formal mapping defined inductively by

vj
(
t1, . . . , tj

)
:= γ

(
v̄j−1

(
t1, . . . , tj−1

)
, tj

)
, t1, . . . , tj ∈ C

n . (8.1)

In what follows, it will be convenient to introduce for a given positive integerj the notation

t [j ] :=
(
t1, . . . , tj

)
,

considered as a variable inCnj . With this notation, we may rewrite (8.1) in the form

vj
(
t [j ]

)
= γ

(
v̄j−1

(
t [j−1]) , tj) .

It follows from (7.2) and (8.1) that for anyh ∈ I(M) and any nonnegative integerj , we have

h
(
vj

(
t [j ]

)
, v̄j+1

(
t [j+1]))

= 0 . (8.2)

If H : (CN,0) → (CN
′
,0) is a formal mapping andj is a fixed nonnegative integer, we

define two formal mappings

ψ [l,j ](H ; ·), ψ̃ [l,j ](H ; ·) :
(
J l0

(
C
N,CN

′) × C
(j+2)n,0

)
→ J l0

(
C
N,Cd

′)
,

as follows:

ψ [l,j ] (H ;31, t [j+2]) := ϕ[l] (H ;31, vj+1
(
t [j+1]) , tj+2

)
(8.3)

and similarly,

ψ̃ [l,j ] (H ;31, t [j+2]) := ϕ̃[l] (H ;31, vj+1
(
t [j+1]) , tj+2

)
. (8.4)

Here we recall that the formal mappingsϕ[l](H ; ·) and ϕ̃[l](H ; ·) are given by (7.3) and (7.4),
respectively. Hence the components ofψ [l,j ](H ; ·) and ψ̃ [l,j ](H ; ·) are formal power series
in the ringC[[31

0, t
[j+2]]][3̂1] = C[[31

0, t
1, . . . , tj+2]][3̂1]. It follows from the definition of

ψ̃ [l,j ](H ; ·) and from (7.8) that one has the following identity for everyν ∈ N
N , |ν| ≤ l,

ψ̃ [l,j ]
ν

(
H ;31, t [j+2])

=
∑

α∈NN
′
, β∈NN

|β|+|α|≤|ν|, β≤ν

Pναβ

(
3̂1

) ∑
|δ|≤|β|

u
j
βδ

(
t [j+2]) ρ̃′H

Z′αζ δ
(
31

0, v̄
j+2

(
t [j+2]))

. (8.5)

Here we have used (8.1) in the form̄vj+2(t [j+2]) = γ̄ (vj+1(t [j+1]), tj+2) and setujβδ(t
[j+2]) :=

cβδ(v
j+1(t [j+1]), tj+2), where thecβδ are as in (7.8). Note that since thecβδ are independent of

H , so are theujβδ. Moreover, ifM is the complexification of a real-analytic (resp. real-algebraic)

generic submanifold ofCN through the origin, then we may assume that the formal power series
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u
j
βδ in (8.5) are convergent (resp. algebraic). The following lemma is then a consequence of

Lemmas 5.1 and 7.1 as well as the above construction.

Lemma 8.1. The ideals
(
ψ [l,j ](H ;31, t [j+2])

)
and

(
ψ̃ [l,j ](H ;31, t [j+2])

)
in C[[31

0, t
[j+2]]]

[3̂1] are the same. In particular, let

S :
(
C
n(j+2),0

)
→ J l0

(
C
N,CN

′)
,

be a formal map with S(t [j+2]) = (S0(t
[j+2]), Ŝ(t [j+2])) as in (4.2) and S0(0) = 0. Then,

31 = S(t [j+2]) is a solution of ψ [l,j ](H ;31, t [j+2]) = 0 if and only if it is a solution of
ψ̃ [l,j ](H ;31, t [j+2]) = 0. Moreover, if H : (CN,0) → (CN

′
,0) is a formal map such that its

complexification H sends M into M′, then

31 =
((
∂αH

) (
vj+1

(
t [j+1])))

|α|≤l (8.6)

is a solution of the systems of equations

ψ [l,j ] (H ;31, t [j+2]) = 0, ψ̃ [l,j ] (H ;31, t [j+2]) = 0 . (8.7)

We need the following lemma concerning the iterated Segre mappings ofM.

Lemma 8.2. Let γ (ζ, t) be a Segre variety mapping relative to the generic formal manifold
M ⊂ C

N × C
N as defined in (7.1)and vj the iterated Segre mappings as defined in (8.1). Then,

for every nonnegative integer j , there exists a unique formal mapping ξj : (Cn(j+1),0) → (Cn,0)
such that

vj+2
(
t [j+1], ξ j

(
t [j+1]))

= vj
(
t [j ]

)
. (8.8)

Moreover, if the formal mapping γ is convergent (resp. algebraic), then ξj is convergent (resp.
algebraic).

Proof. SinceM is generic, by making use of the implicit function theorem we can assume
thatZ = (z, w) ∈ C

n × C
d , whered is the codimension ofM andn = N − d, and that

I(M) is generated by the components ofw − Q(z, ζ ) whereQ : (Cn+N,0) → (Cd ,0) is a
formal mapping. IfM is the complexification of a real-analytic (resp. real-algebraic) generic
submanifoldM ⊂ C

N , then the formal mapQ is convergent (resp. algebraic). By the reality of
M, one has

Q
(
z, χ, Q̄(χ, z,w)

) = w . (8.9)

Corresponding to the splittingZ = (z, w), we may writeγ (ζ, t) = (µ(ζ, t), ν(ζ, t)), with
µ : (CN+n,0) → (Cn,0) andν : (CN+n,0) → (Cd ,0). By the definition of a Segre variety
mappingγ , we necessarily have

γ (ζ, t) = (µ(ζ, t),Q(µ(ζ, t), ζ )) . (8.10)

Since rk ∂γ /∂t (0) = n, the matrix∂µ/∂t (0) is invertible. As a consequence of the implicit
function theorem, there exist a formal mappingπ : (CN+n,0) → (Cn,0) such that

µ (γ̄ (Z, t), π(Z, t)) = z, whereZ = (z, w) . (8.11)
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It follows from (8.9), (8.10), and (8.11) thatγ (γ̄ (Z, t), π(Z, t)) = Z. The lemma follows by
takingξj (t [j+1]) := π(vj (t [j ]), tj+1).2

If j is a nonnegative integer,l is the previously fixed nonnegative integer, andH : (CN,0) →
(CN

′
,0) is a formal map, then forν ∈ N

N , |ν| ≤ l, andε ∈ N
n, we define formal mappings

2[l,j ]
ν,ε (H ; ·), 2̃[l,j ]

ν,ε (H ; ·) :
(
J l0

(
C
N,CN

′) × C
n(j+1),0

)
→ C

d ′
(8.12)

by

2[l,j ]
ν,ε

(
H ;31, t [j+1]) := ∂ε

tj+2ψ
[l,j ]
ν

(
H ;31, t [j+2]) ∣∣∣

tj+2=ξ̄ j (t [j+1])
,

2̃[l,j ]
ν,ε

(
H ;31, t [j+1]) := ∂ε

tj+2ψ̃
[l,j ]
ν

(
H ;31, t [j+2]) ∣∣∣

tj+2=ξ̄ j (t [j+1])
,

(8.13)

whereψ [l,j ](H ; ·) = (ψ
[l,j ]
ν (H ; ·))|ν|≤l andψ̃ [l,j ](H ; ·) = (ψ̃

[l,j ]
ν (H ; ·))|ν|≤l are defined by (8.3)

and (8.4), respectively, and the mapξj is given by Lemma 8.2. Observe that each component
of 2[l,j ]

ν,ε (H ; ·) and 2̃[l,j ]
ν,ε (H ; ·) is a formal power series inC[[31

0, t
[j+1]]][3̂1]. We have the

following lemma concerning the formal power series mapping2̃
[l,j ]
ν,ε (H ; ·).

Lemma 8.3. For any ν ∈ N
N , |ν| ≤ l and any ε ∈ N

n, the following holds.

2̃[l,j ]
ν,ε

(
H ;31, t [j+1]) =

∑
|α|≤l

|δ|≤l+|ε|

ω
j
νεαδ

(
3̂1, t [j+1]) ρ̃′H

Z′αζ δ
(
31

0, v̄
j
(
t [j ]

))
, (8.14)

where each ωjνεαδ(3̂
1, t [j+1]) ∈ C[[t [j+1]]][3̂1] is independent of the formal mapping H . Here,

ρ̃′H (Z′, ζ ) is considered as a formal power series mapping in the indeterminates (Z′, ζ ). More-
over, if the Segre variety mapping γ relative to M is convergent (resp. algebraic), then each
formal power series ωjνεαδ(3̂

1, t [j+1]) is in C{t [j+1]}[3̂1] (resp. A{t [j+1]}[3̂1]).

Proof. The proof is an immediate consequence of (8.5), the definition of the2̃
[l,j ]
ν,ε (H ; ·) given

in (8.13), and (8.8).

The formal power series given by (8.13) will not be used until Section 10. Their importance
lies in the following remark.

Remark 8.4. Let S : (Cn(j+1),0) → J l0(C
N,CN

′
) be a formal mapping such thatS0(0) = 0

whereS(t [j+1]) = (Sν(t
[j+1]))|ν|≤l = (S0(t

[j+1]), Ŝ(t [j+1])) as in (4.2). Then,31 = S(t [j+1])
is a solution of the system of equationsψ̃ [l,j ](H ;31, t [j+2]) = 0 if and only if it is a solution of
the system of equations̃2[l,j ]

ν,ε (H ;31, t [j+1]) = 0 for all ν ∈ N
N , |ν| ≤ l, and allε ∈ N

n. This
is an immediate consequence of the fact thatS(t [j+1]) is independent of the indeterminatetj+2

and the definition (8.13) of thẽ2[l,j ]
ν,ε (H ; ·).

9. Properties of solutions of the systemψ [l,j ](H ;31, t [j+2]) = 0

The following technical lemma will be essential for the proofs of Theorems 2.5, 2.6, and 2.7.

2If one takesµ(ζ, t) = t , whereµ(ζ, t) is the component ofγ (ζ, t) as in (8.10), then the reader can check that
one hasξj (t [j+1]) = tj .
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Lemma 9.1. Let M ⊂ C
N × C

N and M′ ⊂ C
N ′ × C

N ′
be formal generic manifolds and

H : (CN,0) → (CN
′
,0) a formal map such that its complexificationH : (CN×C

N,0) → (CN
′×

C
N ′
,0) sends M into M′. Assume that H is not totally degenerate as in Definition 2.4. Let l, j

be nonnegative integers and ψ [l,j ](H ; ·) the formal map given by (8.3). Let S : (Cn(j+1),0) →
J l0(C

N,CN
′
), S0(0) = 0, be a formal map and assume that31 = S(t [j+1]) = (Sν(t

[j+1]))|ν|≤l =
(S0(t

[j+1]), Ŝ(t [j+1])) is a formal solution of the system

ψ [l,j ] (H ;31, t [j+2]) = 0 . (9.1)

Then, the following holds. For every ν ∈ N
N , |ν| ≤ l,

Hρ′
(
vj+1

(
t [j+1]) , ζ ′) =

∑
|µ|≤|ν|

Rνµ

(
Ŝ

(
t [j+1]))

ρ′
Z′µ

(
S0

(
t [j+1]) , ζ ′) , (9.2)

where ρ′ and Hρ′ are given by (6.3)and (5.2), respectively, and the Rνµ are the universal poly-
nomials given in (5.11). Here ρ′(Z′, ζ ′) and Hρ′(Z, ζ ′) are considered as formal power series
mappings in the indeterminates (Z′, ζ ′) and (Z, ζ ′) respectively. If, moreover, S(t [j+1]) =(
(∂αH 0)(vj+1(t [j+1]))

)
|α|≤l for some formal map H 0 : (CN,0) → (CN

′
,0), then (9.2) for

|ν| ≤ l is equivalent to

Hρ′
Zν

(
vj+1

(
t [j+1]) , ζ ′) = H0

ρ′
Zν

(
vj+1

(
t [j+1]) , ζ ′) . (9.3)

Proof. In what follows, we use the coordinatesZ′ = (z′, w′), ζ ′ = (χ ′, τ ′) as in the beginning
of Section 6 and write

H(Z) = (f (Z), g(Z)), with z′ = f (Z) andw′ = g(Z) . (9.4)

For the proof of (9.2), we proceed by induction on|ν| and we start first by proving (9.2) for
ν = 0. Note that since31 = S(t [j+1]) is a solution of the system (9.1), it follows that
ψ

[l,j ]
0 (H ; S(t [j+1]), t [j+2]) = 0. The latter equation is equivalent to

ρ′ (S0

(
t [j+1]) , H̄ (

v̄j+2
(
t [j+2])))

= 0 . (9.5)

Observe that sinceH mapsM into M′, we have by making use of (7.9) and (8.1) that

ρ′ (H (
vj+1

(
t [j+1]))

, H̄
(
v̄j+2

(
t [j+2])))

= 0 . (9.6)

It follows from (9.4), (9.5), (9.6), and (6.3) that

Q̄′ (f̄ (
v̄j+2

(
t [j+2]))

, S0(t
[j+1])

)
= Q̄′ (f̄ (

v̄j+2
(
t [j+2]))

, H
(
vj+1

(
t [j+1])))

. (9.7)

To show that (9.2) holds forν = 0, in view of (5.2) and (6.3), we must show that

Q̄′ (χ ′, S0

(
t [j+1]))

= Q̄′ (χ ′, H
(
vj+1

(
t [j+1])))

. (9.8)

For this, by e. g., Proposition 5.3.5 of [6], it suffices to show that RkB, the rank of the formal
map

B :
(
C
n(j+2)
t [j+2] ,0

)
→

(
C
n(j+1) × C

n′
,0

)
(9.9)
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given byB(t [j+2]) := (t [j+1], f̄ (v̄[j+2](t [j+2]))), is n(j + 1) + n′. The latter follows from the
fact thatH is not totally degenerate. Indeed, sincev1(t) = γ (0, t) is a parametrization of the
formal Segre varietyS0(M), it follows from Definition 2.4 that RkH ◦ v1 = n′ . Hence we also
have Rkf ◦ v1 = n′. From this, we easily obtain that RkB = n(j + 1) + n′. This completes
the proof of (9.2) forν = 0.

It follows from (5.14) and the definition of theψ [l,j ](H ; ·) given in (8.3) that the following
identity holds for allν ∈ N

N , |ν| ≤ l,

ψ [l,j ]
ν

(
H ;31, t [j+2])
=

∑
α∈NN

′
, β∈NN

|β|+|α|≤|ν|, β≤ν

Pναβ

(
m̂

(
t [j+2])) ∑

µ∈NN
′

|µ|≤|β|

Rβµ

(
3̂1

)
ρ′
Z′µζ ′α

(
31

0, m0

(
t [j+2]))

, (9.10)

where

mα

(
t [j+2]) := ∂αZ

[
H̄ (γ̄ (Z, t))

] ∣∣
Z=vj+1(t [j+1]) , t=tj+2 ,

m̂
(
t [j+2]) :=

(
mα

(
t [j+2]))

1≤|α|≤l .
(9.11)

In view of (5.10), we may rewrite (9.10) as follows

ψ [l,j ]
ν

(
H ;31, t [j+2]) =

∑
µ∈NN

′
|µ|≤|ν|

Rνµ

(
3̂1

)
ρ′
Z′µ

(
31

0, m0

(
t [j+2]))

+
∑

α∈NN
′
, β∈NN

|β|+|α|≤|ν|, β<ν

Pναβ

(
m̂

(
t [j+2])) ∑

µ∈NN
′

|µ|≤|β|

Rβµ

(
3̂1

)
ρ′
Z′µζ ′α

(
31

0, m0

(
t [j+2]))

(9.12)

Let ε ∈ N
N , 0 < |ε| ≤ l, and assume that (9.2) holds for allν ∈ N

N with |ν| < |ε|. We
now show that (9.2) holds forν = ε. Since31 = S(t [j+1]) is a solution of the system (9.1), it
follows from (9.12), withν replaced byε, that we have

∑
µ∈NN

′
|µ|≤|ε|

Rεµ

(
Ŝ

(
t [j+1]))

ρ′
Z′µ

(
S0

(
t [j+1]) , m0

(
t [j+2])))

= −
∑

|β|+|α|≤|ε|
β<ε

Pεαβ

(
m̂

(
t [j+2]))

∑
µ∈NN

′
|µ|≤|β|

Rβµ

(
Ŝ

(
t [j+1]))

ρ′
Z′µζ ′α

(
S0

(
t [j+1]) , m0

(
t [j+2])))

.

(9.13)

On the other hand, using the notation

eα

(
t [j+1]) := (

∂αH
) (
vj+1

(
t [j+1]))

, ê
(
t [j+1]) :=

(
eα

(
t [j+1]))

1≤|α|≤l , (9.14)

it follows from Lemma 8.1 that31 = (eα(t
[j+1]))|α|≤l is also a solution of (9.1) and hence,
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from (9.12), we obtain∑
µ∈NN

′
|µ|≤|ε|

Rεµ

(
ê
(
t [j+1]))

ρ′
Z′µ

(
e0

(
t [j+1]) , m0

(
t [j+2])))

= −
∑

|β|+|α|≤|ε|
β<ε

Pεαβ

(
m̂

(
t [j+2]))

∑
µ∈NN

′
|µ|≤|β|

Rβµ

(
ê
(
t [j+1]))

ρ′
Z′µζ ′α

(
e0

(
t [j+1]) , m0

(
t [j+2])))

. (9.15)

By (5.15) withF 1 = H , Z replaced byvj+1(t [j+1]) andζ ′ replaced bym0(t
[j+2]), we have for

anyβ ∈ N
N , |β| ≤ l and anyα ∈ N

N ′
,

Hρ′
Zβζ ′α

(
vj+1

(
t [j+1]) , m0

(
t [j+2]))

=
∑

µ∈NN
′
, |µ|≤|β|

Rβµ

(
ê
(
t [j+1]))

ρ′
Z′µζ ′α

(
e0

(
t [j+1]) , m0

(
t [j+2]))

. (9.16)

By the induction hypothesis, sinceβ < ε in the right-hand side of (9.15), we have, after differ-
entiating (9.2) (withν = β) with respect toζ ′ and replacingζ ′ bym0(t

[j+2]),

Hρ′
Zβζ ′α

(
vj+1

(
t [j+1]) , m0

(
t [j+2]))

=
∑

µ∈NN
′
, |µ|≤|β|

Rβµ

(
Ŝ

(
t [j+1]))

ρ′
Z′µζ ′α

(
S0

(
t [j+1]) , m0

(
t [j+2]))

. (9.17)

It follows from (9.13), (9.15), (9.16), and (9.17) that∑
µ∈NN

′
|µ|≤|ε|

Rεµ

(
Ŝ

(
t [j+1]))

ρ′
Z′µ

(
S0

(
t [j+1]) , m0

(
t [j+2])))

=
∑
µ∈NN

′
|µ|≤|ε|

Rεµ

(
ê
(
t [j+1]))

ρ′
Z′µ

(
e0

(
t [j+1]) , m0

(
t [j+2])))

. (9.18)

Using (9.16) withβ = ε andα = 0, we obtain that (9.18) implies

Hρ′
Zε

(
vj+1

(
t [j+1]) , m0

(
t [j+2]))

=∑
µ∈NN

′
|µ|≤|ε|

Rεµ

(
Ŝ

(
t [j+1]))

ρ′
Z′µ

(
S0

(
t [j+1]) , m0

(
t [j+2])))

. (9.19)

To prove (9.2) forν = ε, we must show that (9.19) still holds ifm0(t
[j+2]) = H̄ (v̄j+2(t [j+2]))

is replaced by an arbitraryζ ′ = (χ ′, τ ′) ∈ C
N ′

. Observe that forµ ∈ N
N ′

, |µ| > 0, we have in
view of (6.3),ρ′

Z′µ(Z′, ζ ′) = −Q̄′
Z′µ(χ ′, Z′) := aµ(Z

′, χ ′) and since|ε| > 0, Hρ′
Zε (Z, ζ

′) =
−∂εZ

[
Q̄′(χ ′, H(Z))

] := bε(Z, χ
′). Recall also that sinceε 6= 0, Rε0 = 0 (see Section 5).

Hence, (9.19) may be rewritten in the form

bε

(
vj+1

(
t [j+1]) , f̄ (v̄j+2

(
t [j+2])))

=
∑
µ∈NN

′
0<|µ|≤|ε|

Rεµ

(
Ŝ

(
t [j+1]))

aµ

(
S0

(
t [j+1]) , f̄ (

v̄j+2
(
t [j+2])))

, (9.20)
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and we must show that (9.20) still holds with̄f (v̄j+2(t [j+2])) replaced by an arbitraryχ ′ ∈ C
n′

.
For this, one can apply the same rank argument using the mapB defined in (9.9) which was
already used in the caseν = 0. This completes the proof of (9.2).

To complete the proof of Lemma 9.1, it suffices to observe that the equivalence of (9.2)
and (9.3) follows from (5.15).

10. Proof of Theorem 2.5

For the proof of Theorem 2.5, we shall need Proposition 10.1 given below. We assume that
M, M′ and the iterated Segre mappingsvj are as in Sectin 8 and continue to use the notation of
that section. In particular, we still assume thatρ′(Z′, ζ ′) andρ̃′(Z′, ζ ′) are the special choice of
generators ofI(M′) given by (6.3) and (6.4).

Proposition 10.1. Let M ⊂ C
N×C

N and M′ ⊂ C
N ′ ×C

N ′
be formal generic manifolds. Let

H 0 : (CN,0) → (CN
′
,0) be a formal mapping such its complexification H0 sends M into M′.

Assume thatH 0 is not totally degenerate (as in Definition 2.4). Then, for every pair of nonnegative
integers l, j , there exists a positive integerK = K(H 0, l, j) such that ifH : (CN,0) → (CN

′
,0)

is a formal map whose complexification H maps M into M′ and such that

H0
ρ′
Zδ

(
vj

(
t [j ]

)
, ζ ′) = Hρ′

Zδ

(
vj

(
t [j ]

)
, ζ ′) , |δ| ≤ K , (10.1)

then,

H0
ρ′
Zδ

(
vj+1

(
t [j+1]) , ζ ′) = Hρ′

Zδ

(
vj+1

(
t [j+1]) , ζ ′) , |δ| ≤ l . (10.2)

Here Hρ′(Z, ζ ′) and H0
ρ′(Z, ζ ′) are the formal mappings given by (5.2)with the choice (6.3)of

ρ′.

Proof. We fix the pair of nonnegative integersl, j . In the ringR := C[[31
0, t

[j+1]]][3̂1],
where31 = (31

0, 3̂
1) are coordinates onJ l0(C

N,CN
′
) as in (4.1) and (4.2), we consider the

idealJ generated by the components of the formal mappings

2̃[l,j ]
ν,ε

(
H 0;31, t [j+1]) , ν ∈ N

N, |ν| ≤ l, ε ∈ N
n ,

where the2̃[l,j ]
ν,ε (H

0; ·) are given by (8.13). SinceR is Noetherian, there exists a positive integer
L = L(H 0, l, j) such that the idealJ is generated by the components of the formal mappings

2̃[l,j ]
ν,ε

(
H 0;31, t [j+1]) , ν ∈ N

N, |ν| ≤ l, ε ∈ N
n, |ε| ≤ L .

We claim that the conclusion of Proposition 10.1 holds withK := L + l. Indeed, let
H : (CN,0) → (CN

′
,0) be a formal map whose complexification sendsM into M′ and such

that (10.1) holds (with this choice ofK). We must prove that (10.2) holds. By (5.4), we have

ρ̃′H (
Z′, ζ

) = Hρ′ (ζ, Z′) , ρ̃′H0 (
Z′, ζ

) = H0
ρ′ (ζ, Z′) , (10.3)

and hence it follows from (10.1) that

ρ̃′H0

Z′αζ δ
(
Z′, v̄j

(
t [j ]

))
= ρ̃′H

Z′αζ δ
(
Z′, v̄j

(
t [j ]

))
, α ∈ N

N ′
, |δ| ≤ K , (10.4)
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where we have consideredρ̃′H (Z′, ζ ) andρ̃′H0
(Z′, ζ ) as formal mappings in the indeterminates

(Z′, ζ ) as in (5.3). As a consequence of (10.4), (8.14) and the choice ofK, it follows that

2̃[l,j ]
ν,ε

(
H ;31, t [j+1]) = 2̃[l,j ]

ν,ε

(
H 0;31, t [j+1]) , |ν| ≤ l, |ε| ≤ L . (10.5)

By Lemma 8.1,

31 =
((
∂αH

) (
vj+1

(
t [j+1])))

|α|≤l (10.6)

is a formal solution of the system of equationsψ̃ [l,j ](H ;31, t [j+2]) = 0, and hence by Remark 8.4
(since (10.6) is independent of the indeterminatetj+2), it is also a solution of the system of
equations2̃[l,j ]

ν,ε (H ;31, t [j+1]) = 0 for |ν| ≤ l and all ε ∈ N
n. From (10.5), we conclude

that (10.6) is also a solution of the system of equations

2̃[l,j ]
ν,ε

(
H 0;31, t [j+1]) = 0, |ν| ≤ l, |ε| ≤ L .

By the choice ofL, it follows that the formal power series mapping given by (10.6) is a solution
of the system of equations

2̃[l,j ]
ν,ε

(
H 0;31, t [j+1]) = 0, |ν| ≤ l, ∀ε ∈ N

n .

Again making use of Remark 8.4, we conclude that (10.6) is a formal solution of the system of
equationsψ̃ [l,j ](H 0;31, t [j+2]) = 0 and hence, by Lemma 8.1, also a solution of the system
of equationsψ [l,j ](H 0;31, t [j+2]) = 0. We may now apply Lemma 9.1 withH andH 0 inter-
changed and withS(t [j+1]) = (

(∂αH)(vj+1(t [j+1]))
)
|α|≤l to conclude that (9.3) holds, which is

the desired conclusion (10.2) of Proposition 10.1.

Proof of Theorem 2.5. SinceM is of finite type, it follows from Theorem 2.3 in [5]
(see also [7]) and the definition of finite type given in Section 2, that there exists an integer
j0, 2 ≤ j0 ≤ d + 1, whered is the codimension ofM such that Rkvj0 = N . By applying
Proposition 10.1j0 times, we conclude that there exists an integerK0 = K0(H

0) > 03 such that
if H : (CN,0) → (CN

′
,0) is a formal map whose complexificationH sendsM into M′ and

such that

H0
ρ′
Zδ

(
v0, ζ ′) = Hρ′

Zδ

(
v0, ζ ′) , |δ| ≤ K0 , (10.7)

then,

H0
ρ′

(
vj0

(
t [j0]

)
, ζ ′) = Hρ′

(
vj0

(
t [j0]

)
, ζ ′) . (10.8)

Recall thatv0 = 0 ∈ C
N, and hence we may rewrite (10.7) in the form

∂δZ
[
ρ′ (H(Z), ζ ′)] ∣∣

Z=0 = ∂δZ

[
ρ′ (H 0(Z), ζ ′)] ∣∣∣

Z=0
, |δ| ≤ K0 . (10.9)

3To find K0, we proceed as follows. We define inductively a finite sequence of nonnegative integersKq ,
0 ≤ q ≤ j0, by puttingKj0 = 0 andKq = K(H0,Kq+1, q) whereK(H0, l, j) is the integer given by
Proposition 10.1.
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It is, then, clear that ifH is a formal map such thatH sendsM into M′ with jK0
0 H = j

K0
0 H 0,

then (10.9) and hence (10.7) and (10.8) hold. Since Rkvj0 = N , it follows e. g., from Proposi-
tion 5.3.5 of [6] that (10.8) implies

H0
ρ′ (Z, ζ ′) = Hρ′ (Z, ζ ′) . (10.10)

From the definition of the reflection idealIH given in (2.6), we conclude that (10.10) implies
that the reflection idealsIH and IH0

are the same. The proof of Theorem 2.5 is complete.

11. Proof of Theorem 2.6

In this section, we consider two germs(M,0) and(M ′,0) of real-analytic generic subman-
ifolds in C

N andC
N ′

, respectively. We letM ⊂ C
N
Z × C

N
ζ andM′ ⊂ C

N ′
Z′ × C

N ′
ζ ′ be their

complexifications. For generators ofI(M′), we take a convergent mappingρ′(Z′, ζ ′) as in (6.3).
We shall also use the corresponding notation forρ̃′(Z′, ζ ′) given by (6.4). Moreover, we choose
a convergent Segre variety mappingγ relative toM as defined in (7.1); hence the corresponding
iterated Segre mappingsvj defined in (8.1) are also convergent. Using the notation of Section 8,
we have the following proposition.

Proposition 11.1. Let (M,0) and (M ′,0) be germs of generic real-analytic submanifolds in
C
N and C

N ′
of codimension d and d ′, respectively. Let H : (CN,0) → (CN

′
,0) be a formal

map sending M into M ′. Assume that H is not totally degenerate (as in Definition 2.4). Then,
for every nonnegative integer j , the following holds. If

Hρ′
Zβ

(
vj

(
t [j ]

)
, ζ ′) ∈

(
C

{
t [j ], ζ ′})d ′

, ∀β ∈ N
N , (11.1)

then,

Hρ′
Zβ

(
vj+1

(
t [j+1]) , ζ ′) ∈

(
C

{
t [j+1], ζ ′})d ′

, ∀β ∈ N
N . (11.2)

Here Hρ′(Z, ζ ′) is the formal mapping given by (5.2) relative to the choice of the convergent
mapping ρ′(Z′, ζ ′) given by (6.3).

Proof. We fix a pair of nonnegative integersl, j , and we shall prove that if (11.1) holds, then,

Hρ′
Zν

(
vj+1

(
t [j+1]) , ζ ′) ∈

(
C

{
t [j+1], ζ ′})d ′

, ∀ν ∈ N
N, |ν| ≤ l . (11.3)

The proposition will clearly follow.

It follows from (11.1) and (5.4) that one has

ρ̃′H
ζν

(
Z′, v̄j

(
t [j ]

))
∈

(
C

{
Z′, t [j ]

})d ′
, ∀ν ∈ N

N , (11.4)

whereρ̃′H (Z′, ζ ) is the formal mapping given by (5.3). It follows from Lemma 8.3 and (11.4) that
the components of the formal power series mappings2̃

[l,j ]
ν,ε (H ;31, t [j+1]), for ν ∈ N

N , |ν| ≤ l,
andε ∈ N

n, [defined by (8.13)], are in the ringC{31
0, t

[j+1]}[3̂1]. (We should observe at this
point that the components of the formal mappingsψ̃ [l,j ](H ;31, t [j+2]), defined in (8.4), are not
yet known to be convergent.) By Lemma 8.1, it follows that31 = (

(∂αH)(vj+1(t [j+1]))
)
|α|≤l

is a formal solution of the system of equations

ψ̃ [l,j ] (H ;31, t [j+2]) = 0 , (11.5)
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and hence by Remark 8.4, it is also a formal solution of the system of equations

2̃[l,j ]
ν,ε

(
H ;31, t [j+1]) = 0, |ν| ≤ l, ε ∈ N

n . (11.6)

Since the mappings̃2[l,j ]
ν,ε (H ; ·) are convergent, it follows from Artin’s approximation theorem

[2], Theorem (1.2), that there exists a convergent solution of (11.6) given by31 = S(t [j+1]) =
(S0(t

[j+1]), Ŝ(t [j+1])), where

S :
(
C
n(j+1),0

)
→ J l0

(
C
N,CN

′)
, S(0) = j l0H . (11.7)

Since the convergent mappingS(t [j+1]) is independent of the variabletj+2, it follows from
Remark 8.4 that31 = S(t [j+1]) is also a solution of the system of equations given by (11.5).
Hence, by Lemma 8.1,31 = S(t [j+1]) is a solution of the system of equations

ψ [l,j ] (H ;31, t [j+2]) = 0 .

We may now apply Lemma 9.1 for the convergent solutionS(t [j+1]) to obtain (9.2). To conclude
that (11.3) holds, it suffices to observe that the right-hand side of (9.2) is a convergent map. This
completes the proof of Proposition 11.1.

Proof of Theorem 2.6. SinceM is of finite type at 0, by Theorem 10.5.5 of [6] (see also [10]
and [5]), there exists an integerk0, 2 ≤ k0 ≤ 2(d + 1) (whered is the codimension ofM) such
that in any neighborhoodU of 0 ∈ C

nk0, there existst [k0]
0 ∈ U such that

rk
∂vk0

∂t [k0]
(
t
[k0]
0

)
= N, vk0

(
t
[k0]
0

)
= 0 . (11.8)

Sincev0 = 0 ∈ C
N , we observe that for any multiindexβ ∈ N

N ,

Hρ′
Zβ

(
v0, ζ ′) = ∂

β
Z

[
ρ′ (H(Z), ζ ′) ]∣∣

Z=0 ∈ (
C

{
ζ ′})d ′

, ∀β ∈ N
N . (11.9)

Applying Proposition 11.1k0 times, we conclude in particular that

Hρ′
(
vk0

(
t [k0]

)
, ζ ′) ∈

(
C

{
t [k0], ζ ′})d ′

. (11.10)

Hence there exists an open neighborhoodU × V ⊂ C
nk0 × C

N ′
of 0 where the mapping

Hρ′(vk0(t [k0]), ζ ′) is convergent. If we choosetk0
0 ∈ U such that (11.8) holds and apply the

rank theorem, we obtain that the mappingHρ′(Z, ζ ′) is convergent. By the definition of the
reflection idealIH given in (2.6) and Definition 2.3, it follows thatIH is convergent. This
completes the proof of Theorem 2.6.

Remark 11.2. As mentioned in Section 1, Theorem 2.6 was first proved in [24] for an invertible
formal mapH and in the case whereM andM ′ are real-analytic hypersurfaces inC

N . We should
point out here that the techniques used in this article are somewhat different from those of [24].
For instance, the use of Cauchy estimates was a crucial tool in [24], but is not needed in our
approach in this article. We should also note that Corollary 7.4 and Theorem 7.1 in [24], which
are proved there in the case of invertible formal mappings between real-analytic hypersurfaces of
finite type, can be extended to the case of finite formal mappings between generic real-analytic
submanifolds of finite type ofCN by making use of Theorem 2.6. We do not give any further
details.
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12. Proof of Theorem 2.7

In this section, we consider two germs(M,0) and (M ′,0) of real-algebraic generic sub-
manifolds inC

N andC
N ′

, respectively. We letM ⊂ C
N
Z × C

N
ζ andM′ ⊂ C

N ′
Z′ × C

N ′
ζ ′ be their

complexifications. For generators ofI(M′), we take the components of an algebraic mapping
ρ′(Z′, ζ ′) as in (6.3). We also use the corresponding notation forρ̃′(Z′, ζ ′) given by (6.4). More-
over, we choose an algebraic Segre variety mappingγ relative toM as defined in (7.1); hence
the corresponding iterated Segre mappingsvj defined in (8.1) are also algebraic. We have the
following analog of Theorem 2.6 for generic real-algebraic submanifolds.

Theorem 12.1. Let (M,0) and (M ′,0) be germs of real-algebraic generic submanifolds in C
N

and C
N ′

respectively and H : (CN,0) → (CN
′
,0) a formal map sending M into M ′. Assume

that M is of finite type at 0 and H is not totally degenerate. Then, the reflection ideal IH , as
defined by (2.6), is algebraic.

This theorem will be used in the proof of Theorem 2.7 in the case whereH is a convergent
mapping. The proof of Theorem 12.1 follows the same lines as that of Theorem 2.6, by making
use of the following analog of Proposition 11.1 in the algebraic setting.

Proposition 12.2. Let (M,0) and (M ′,0) be germs of generic real-algebraic submanifolds in
C
N and C

N ′
of codimension d and d ′ respectively. Let H : (CN,0) → (CN

′
,0) be a formal

map sending M into M ′. Assume that H is not totally degenerate (as in Definition 2.4). Then,
for every nonnegative integer j , the following holds. If

Hρ′
Zβ

(
vj

(
t [j ]

)
, ζ ′) ∈

(
A

{
t [j ], ζ ′})d ′

, ∀β ∈ N
N , (12.1)

then,

Hρ′
Zβ

(
vj+1

(
t [j+1]) , ζ ′) ∈

(
A

{
t [j+1], ζ ′})d ′

, ∀β ∈ N
N . (12.2)

Here Hρ′(Z, ζ ′) is the formal mapping given by (5.2) relative to the choice of the algebraic
mapping ρ′(Z′, ζ ′) given by (6.3).

Proof. The proof of this proposition follows very closely that of Proposition 11.1. One has
to note that all the convergent mappings involved in the latter are also algebraic in the present
case. Also, the convergent solutionS(t [j+1]) of the system (11.6), given in (11.7) and obtained
by making use of Artin’s approximation theorem, can be chosen to be algebraic. Indeed, in
the present case, the mappings involved in (11.6) are algebraic and another version of Artin’s
approximation theorem [1] yields a solution which is also algebraic. We omit further details.

Proof of Theorem 2.7. ChooseU,U ′ ⊂ C
N , two open polydiscs centered at the origin such

thatH is holomorphic inU andH(U ∩M) ⊂ U ′ ∩M ′. We may assume that the real-algebraic
generic submanifoldM ′ ⊂ C

N
Z′ is given byρ̃′(Z′, Z̄′) = 0 where

ρ̃′ (Z′, Z̄′) := w′ −Q′ (z′, Z̄′) , Z′ = (
z′, w′) ∈ C

n × C
d , (12.3)

with ρ̃′(Z′, ζ ′) a C
d valued algebraic map defined inU ′ × U ′. Here we recall thatd is the

codimension ofM (and ofM ′) andn = N − d. Equivalently,M ′ is also given byρ′(Z′, Z̄′) = 0
where

ρ′ (Z′, Z̄′) := w̄′ − Q̄′ (z̄′, Z′) . (12.4)
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To prove Theorem 2.7, by Proposition 6.1 (iii), it suffices to show that the convergent generators
Hρ′(Z, ζ ′) of the reflection idealIH are algebraic, where we have used the notation given by (2.6)
and (5.2). Since the Jacobian ofH is not identically zero and there is no germ at 0 of a nonconstant
holomorphic functionh : (CN,0) → C with h(M) ⊂ R, it follows that there existsp0 ∈ U ∩M
such thatM is of finite type atp0 and the Jacobian ofH atp0 is not zero (see e. g., Lemma 13.3.2
of [6]). Putp′

0 := H(p0) ∈ U ′ ∩M ′. We define the translation mapsϕp0(Z) := Z − p0 and
ϕp′

0
(Z′) := Z′ − p′

0. We putMp0 := ϕp0(M) andM ′
p′

0
:= ϕp′

0
(M ′). Observe thatMp0 andM ′

p′
0

are real-algebraic generic submanifolds through the origin inC
N withMp0 of finite type at 0. We

also define

Ȟ
(
Ž

)
:=

(
ϕp′

0
◦H ◦ ϕ−1

p0

) (
Ž

)
(12.5)

for Ž close enough to the origin inCN . We can regardȞ as a germ at the origin of a biholomor-
phism sending the germ(Mp0,0) onto(M ′

p′
0
,0). Note also that the germ(M ′

p′
0
,0) is defined by

ρ̌′(Ž′, Ž′) = 0 where

ρ̌′ (Ž′, ζ̌ ′) := τ̌ ′ + w̄′
p′

0
− Q̄′ (χ̌ ′ + z̄′

p′
0
, Ž′ + p′

0

)
, ζ̌ ′ = (

χ̌ ′, τ̌ ′) ∈ C
n × C

d , (12.6)

with p′
0 = (z′

p′
0
, w′

p′
0
) ∈ C

n × C
d . It follows from Theorem 12.1 and Proposition 6.1 (iii) that

the convergent mappinǧHρ̌′(Ž, ζ̌ ′) = ρ̌′(Ȟ (Ž), ζ̌ ′) is in (A{Ž, ζ̌ })d , i. e., that the components
of the map (

C
N × C

n,0
)

3
(
Ž, χ̌ ′) 7→ Q̄′ (χ̌ ′ + z̄′

p′
0
, Ȟ

(
Ž

)
+ p′

0

)
∈ C

d

are inA{Ž, ζ̌ }. In view of (12.5), we conclude that the map(
C
N × C

n,
(
p0, z̄

′
p′

0

))
3 (
Z, χ ′) 7→ Q̄′ (χ ′, H(Z)

) ∈ C
d

is algebraic i. e., each component of this map satisfies a non-trivial polynomial equation with
polynomial coefficients forZ nearp0 andχ ′ nearz̄′

p′
0
. By unique continuation, the same equations

hold for(Z, χ ′) close to 0∈ C
N+n. This shows that the components ofHρ′(Z, ζ ′) are inA{Z, ζ ′}

which gives the desired conclusion of Theorem 2.7.

13. Proofs of Propositions 2.9, 2.10, and 2.12 and Theorems 3.1 and 3.2

In this section, we consider a formal generic manifoldM′ ⊂ C
N ′
Z′ × C

N ′
ζ ′ of codimensiond ′

and we assume that the idealI(M′) is generated by the components of the formal mapρ′(Z′, ζ ′)
given by (6.3). We write

ρ′(Z′, ζ ′) = τ ′ − Q̄′ (χ ′, Z′) = τ ′ −
∑
α∈Nn

′
qα

(
Z′)χ ′α , (13.1)

where theqα(Z′) = (
q1,α(Z

′), . . . , qd ′,α(Z′)
)

are in(C[[Z′]])d ′
andn′ = N ′ − d ′.

The proof of the following criterion for holomorphic nondegeneracy of formal generic man-
ifolds is left to the reader (see e. g., [28] and [6], Chapter 11, for the case whereM′ is the
complexification of a real-analytic generic submanifold).
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Lemma 13.1. The formal generic manifold M′ as above is holomorphically nondegenerate if
and only if there exist α1, . . . , αN

′ ∈ N
n′

and j1, . . . , jN ′ ∈ {1, . . . , d ′} such that

det

(
∂qjl,αl

∂Z′
m

(
Z′))

1≤l,m≤N ′
6= 0, in C[[Z′]] , (13.2)

where the formal power series qα(Z′) are given by (13.1).

We also need the following lemma for the proof of Proposition 2.10.

Lemma 13.2. Let R(x, y) = (R1(x, y), . . . , Rr(x, y)) ∈ (C[[x, y]])r , x ∈ C
q , y ∈ C

r , and
h0 : (Cq,0) → (Cr ,0) be a formal map such that

(i) R(x, h0(x)) = 0,

(ii) det

(
∂Ri

∂yj
(x, h0(x))

)
1≤i,j≤r

6= 0.

Then, there exists a positive integer k = k(h0) such that the following holds. If h : (Cq,0) →
(Cr ,0) is a formal map such thatR(x, h(x)) = 0and jk0h = jk0h

0, then necessarilyh(x) = h0(x).

Proof. We may write

R(x, y)− R(x, t) = P(x, y, t) · (y − t) (13.3)

whereP is anr × r matrix with entries inC[[x, y, t]] satisfyingP(x, y, y) = ∂R

∂y
(x, y). By

assumption, we know that detP(x, h0(x), h0(x)) 6= 0. This implies that one can find an integer
k such that ifh : (Cq,0) → (Cr ,0) is a formal mapping which agrees up to orderk with h0, then
det P(x, h0(x), h(x)) 6= 0. If, in addition,h satisfiesR(x, h(x)) = 0, it follows from (13.3) that
P(x, h0(x), h(x)) ·(h0(x)−h(x)) = 0 inC[[x]]. Since detP(x, h0(x), h(x)) 6= 0, we conclude
thath(x) = h0(x) and hence the lemma follows.

Proof of Proposition 2.10. First observe that ifH,H 0 : (CN,0) → (CN
′
,0) are two formal

mappings withIH = IH0
, then by Proposition 6.1 (i) and in view of (13.1), necessarily for any

α ∈ N
n′

, qα ◦ H = qα ◦ H 0. SinceM′ is holomorphically nondegenerate, we may choose
α1, . . . , αN

′ ∈ N
N ′

andj1, . . . , jN ′ ∈ {1, . . . , d ′} as in Lemma 13.1. For anyl = 1, . . . , N ′,
we define a formal mapRl : (CN × C

N ′
,0) → (C,0) as follows

Rl
(
Z,Z′) := qjl,αl

(
Z′) − qjl,αl

(
H 0(Z)

)
. (13.4)

Observe thatRl(Z,H 0(Z)) = 0, for l = 1, . . . , N ′, and moreover, since RkH 0 = N ′, by
(13.2) and e. g., Proposition 5.3.5 in [6], we have

det

(
∂qjl,αl

∂Z′
m

(
H 0(Z)

))
1≤l,m≤N ′

6= 0 , (13.5)

or equivalently,

det

(
∂Rl

∂Z′
m

(
Z,H 0(Z)

))
1≤l,m≤N ′

6= 0 .

By Lemma 13.2, there exists a positive integerk = k(H 0) such that ifH : (CN,0) → (CN
′
,0)

is a formal map satisfyingRl(Z,H(Z)) = 0, for l = 1, . . . , N ′, and jk0H = jk0H
0, then
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H = H 0. On the other hand, as mentioned in the beginning of the proof, ifIH = IH0
,

thenRl(Z,H(Z)) = Rl(Z,H
0(Z)) = 0, for l = 1, . . . , N ′. This completes the proof of

Proposition 2.10.

Proof of Proposition 2.9. SinceM ′ is real-analytic, we may assume that the corresponding
formal mappingsρ′(Z′, ζ ′) andqα(Z′) given in (13.1) are convergent. First, note if there exists

a convergent map̌H : (CN,0) → (CN
′
,0) such thatIH = IȞ , then, sinceIȞ is convergent,

so is IH . Now, assume thatIH is convergent. By Proposition 6.1 (ii) and in view of (13.1),

rα(Z) := qα(H(Z)) (13.6)

is a convergent mapping for allα ∈ N
n′

. By Artin’s approximation theorem [2], Theorem (1.2),
for any positive integerκ, there exists a convergent mapHκ : (CN,0) → (CN

′
,0) which agrees

with H up to orderκ and such thatqα(Hκ(Z)) = rα(Z), for all α ∈ N
n′

. It follows from (13.1)
and (13.6) thatρ′(Hκ(Z), ζ ′) = ρ′(H(Z), ζ ′) and hence

IH = (
ρ′ (H(Z), ζ ′)) = (

ρ′ (Hκ(Z), ζ ′)) = IHκ

.

This completes the proof of Proposition 2.9 in the convergent case. In the case whenM ′ is real-
algebraic, theqα(Z′) given by (13.1) are algebraic. As before, if there exists an algebraic map

Ȟ : (CN,0) → (CN
′
,0) such thatIH = IȞ , then, sinceIȞ is algebraic, so isIH . Moreover,

it follows from the algebraic version of Artin’s theorem [1] that, in this case, one can chooseHκ

as above to be algebraic so thatIH = IHκ
. The proof of the proposition is now complete.

For the proof of Proposition 2.12, we need the following lemma whose proof is in the spirit
of that of Lemma 13.2 but also makes use of Artin’s approximation theorem [2]. We refer the
reader to Proposition 4.2 of [24] for the proof of this lemma.

Lemma 13.3. Let R(x, y) = (R1(x, y), . . . , Rr(x, y)) ∈ (C{x, y})r , x ∈ C
q , y ∈ C

r , and

h : (Cq,0) → (Cr ,0) a formal map satisfying R(x, h(x)) = 0. If det
(∂R
∂y
(x, h(x))

) 6= 0 in

C[[x]], then h(x) is convergent.

Proof of Proposition 2.12. By Proposition 6.1 (ii), if IH is convergent, then, in view
of (13.1), it follows that for anyα ∈ N

n′
andj = 1, . . . , d ′, the formal power seriesrj,α(Z) :=

qj,α(H(Z)) is convergent. SinceM ′ is holomorphically nondegenerate, we may chooseα1, . . . ,
αN

′ ∈ N
N ′

andj1, . . . , jN ′ ∈ {1, . . . , d ′} as in Lemma 13.1. For anyl = 1, . . . , N ′, we define
a convergent mapRl : (CN × C

N ′
,0) → (C,0) as follows

Rl
(
Z,Z′) := qjl,αl

(
Z′) − rjl ,αl (Z) . (13.7)

Observe thatRl(Z,H(Z)) = 0, l = 1, . . . , N ′, and moreover, since RkH = N ′, by (13.2) and
e. g., Proposition 5.3.5 in [6], we have

det

(
∂qjl,αl

∂Z′
m

(H(Z))

)
1≤l,m≤N ′

6= 0 , (13.8)

or equivalently,

det

(
∂Rl

∂Z′
m

(Z,H(Z))

)
1≤l,m≤N ′

6= 0 .

We may now apply Lemma 13.3 to conclude thatH is convergent. The proof of Proposition 2.12
is complete.
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Proof of Theorems 3.1 and 3.2. Theorem 3.1 is a consequence of Theorem 2.5 and Propo-
sition 2.10, while Theorem 3.2 follows from Theorem 2.6 and Proposition 2.12.

14. Proofs of Theorems 1.1, 1.2, 1.3, 1.5, and 3.4 and Corollaries 1.7 and 1.8

We begin with the following lemma, which will be used in the proofs in this section.

Lemma 14.1. Let M,M′ ⊂ C
N × C

N be two formal generic manifolds of the same codi-
mension d andH : (CN,0) → (CN,0) a formal finite map. Then, Rk H = N . Moreover, if the
complexification H of H maps M into M′, then H is not totally degenerate.

Proof. The proof that RkH = N is standard (see e. g., Theorem 5.1.37 of [6]). To prove the
second part of the lemma, it suffices to show that ifγ (ζ, t) is a Segre variety mapping as defined
in (7.1) relative toM, then Rk(H ◦ v1) = n, wheren = N − d andv1(t) = γ (0, t) as in (8.1).
We claim that the formal mapH ◦ v1 is finite. Indeed, it is a composition of the finite mapH
and of the formal mapv1 whose rank at 0 isn and hence is finite. The claim follows from the
fact that the composition of two formal finite mappings is again finite. (This could be seen by
e. g., making use of Proposition 5.1.5 of [6].) As before, the fact thatH ◦ v1 is finite implies that
Rk (H ◦ v1) = n, which completes the proof of the lemma.

Proof of Theorem 1.1. Without loss of generality, we may assume thatp = p′ = 0.
SinceM,M ′ ⊂ C

N are smooth generic submanifolds through the origin, we can consider the
associated formal generic manifoldsM,M′ ⊂ C

N × C
N as described in Section 2. In this case,

the complexificationH of any formal mapH : (CN,0) → (CN,0) sendingM intoM ′ sendsM
into M′. Since the given formal mapH 0 is finite, it follows from Lemma 14.1 thatH 0 is not
totally degenerate and RkH 0 = N . Theorem 1.1 is then a consequence of Theorem 3.1.

Proof of Theorem 1.2. Without loss of generality, we may assume thatp = p′ = 0. Since
the given formal mapH is finite, it follows from Lemma 14.1 thatH is not totally degenerate
and RkH = N . Theorem 1.2 is then a consequence of Theorem 3.2.

For the proofs of Theorems 1.3 and 1.5, we need the following lemma.

Lemma 14.2. Let I ⊂ C[[Z, ζ ]] and J ⊂ C[[Z′, ζ ′]] be two ideals and H, Ȟ : (CNZ ,0) →
(CN

′
Z′ ,0) be two formal mappings. Let H, Ȟ be the complexifications of H and Ȟ , respectively

as defined in (2.2). Assume that:

(i) J is a real ideal;

(ii) J ⊂ H∗(I ), where H∗(I ), the pushforward of I by H as defined by (2.1);

(iii) J Ȟ ⊂ JH , where the ideals J Ȟ , JH ⊂ C[[Z, ζ ′]] are defined by (2.5).

Then, J ⊂ Ȟ∗(I ).

Proof. Let s1(Z′, ζ ′), . . . , sm(Z′, ζ ′) be generators ofJ in C[[Z′, ζ ′]]. As usual, we write
s(Z′, ζ ′) = (s1(Z

′, ζ ′), . . . , sm(Z′, ζ ′)) andJ = (s(Z′, ζ ′)). We set

s̃
(
Z′, ζ ′) := s

(
ζ ′, Z′) . (14.1)

By the reality ofJ , it follows that we also haveJ = (s̃(Z′, ζ ′)). Hence there exists anm × m
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matrix with entries inC[[Z′, ζ ′]] such that

s
(
Z′, ζ ′) = u

(
Z′, ζ ′) s̃ (

Z′, ζ ′) . (14.2)

Note that in view of (2.5), the idealsJH andJ Ȟ are generated by the components ofs(H(Z), ζ ′)
ands(Ȟ (Z), ζ ′) respectively inC[[Z, ζ ′]]. Hence, by the inclusion (iii), we have

s
(
Ȟ (Z), ζ ′) = a

(
Z, ζ ′) s (

H(Z), ζ ′) , (14.3)

wherea(Z, ζ ′) is anm × m matrix with entries inC[[Z, ζ ′]]. By taking complex conjugates, it
follows from (14.3) that we also have

s
(
Ȟ (ζ ), Z′) = ā

(
ζ, Z′) s (

H̄ (ζ ), Z′) . (14.4)

To prove the lemma, we must show that the components ofs(Ȟ (Z), Ȟ (ζ )) are inI . For this,
using (14.3), (14.2), (14.1), and (14.4), we have

s
(
Ȟ (Z), Ȟ (ζ )

)
= a

(
Z, Ȟ (ζ )

)
s
(
H(Z), Ȟ (ζ )

)
= a

(
Z, Ȟ (ζ )

)
u

(
H(Z), Ȟ (ζ )

)
s̃
(
H(Z), Ȟ (ζ )

)
= a

(
Z, Ȟ (ζ )

)
u

(
H(Z), Ȟ (ζ )

)
s
(
Ȟ (ζ ),H(Z)

)
= a

(
Z, Ȟ (ζ )

)
u

(
H(Z), Ȟ (ζ )

)
a (ζ,H(Z)) s

(
H(ζ),H(Z)

)
= a

(
Z, Ȟ (ζ )

)
u

(
H(Z), Ȟ (ζ )

)
a (ζ,H(Z)) s̃

(
H(Z),H(ζ )

)
.

(14.5)

By (ii), the components of̃s(H(Z),H(ζ )) are inI and hence, by (14.5), so are the components

of s(Ȟ (Z), Ȟ (ζ )). The proof of the lemma is complete.

The following lemma is an immediate consequence of Lemma 14.2.

Lemma 14.3. Let M ⊂ C
N × C

N and M′ ⊂ C
N ′ × C

N ′
be two formal generic manifolds

and H, Ȟ : (CN,0) → (CN
′
,0) be two formal mappings whose complexifications are denoted

by H and Ȟ, respectively. Assume that H sends M into M′ and that the reflection ideals IH
and IȞ are the same. Then, Ȟ also sends M into M′.

Proof of Theorem 3.4. SinceM is of finite type at 0 and the formal mapH is not totally
degenerate, by Theorem 2.6, the reflection idealIH is convergent. By Proposition 2.9, for any
positive integerκ, there exists a convergent mapHκ : (CN,0) → (CN,0) which agrees withH
up to orderκ such thatIH = IHκ

. By Lemma 14.3, it follows thatHκ mapsM into M′ and
henceHκ mapsM intoM ′. The proof of Theorem 3.4 is complete.

Proof of Theorem 1.3. Without loss of generality, we may assume thatp = p′ = 0. Since
the given formal mapH is finite, it follows from Lemma 14.1 thatH is not totally degenerate.
Theorem 1.3 is, then, a consequence of Theorem 3.4.

Proof of Theorem 1.5. Without loss of generality, we may assume thatp = p′ = 0.
SinceM is connected and of finite type at some point, by Lemma 13.3.2 of [6], there is no germ
of a nonconstant holomorphic functionh : (CN,0) → C with h(M) ⊂ R. It follows from
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Theorem 2.7 that the reflection idealIH of the given local holomorphic mapH is algebraic. By
Proposition 2.9, for any positive integerκ, there exists an algebraic mapHκ : (CN,0) → (CN,0)
which agrees withH up to orderκ such thatIH = IHκ

. By Lemma 14.3, it follows thatHκ

mapsM into M′ and henceHκ mapsM intoM ′. The proof of Theorem 1.5 is complete.

Proof of Corollary 1.7. Let (M, p) and(M ′, p′) be two germs of biholomorphically equiva-
lent real-algebraic hypersurfaces inC

N . If there is no point of finite type inM arbitrarily close to
p, then(M, p) is Levi-flat and so is(M ′, p′). Hence both(M, p) and(M ′, p′) are algebraically
equivalent to a real hyperplane inC

N . If M contains points of finite type arbitrarily close top, then
we may apply Corollary 1.6 to conclude that(M, p) and(M ′, p′) are algebraically equivalent.
The proof of Corollary 1.7 is complete.

Proof of Corollary 1.8. By Theorem 1.1 with(M, p) = (M ′, p′) andH 0 = Id, the identity
map of(CN, p), there exists a positive integerK such that ifH : (CN, p) → (CN, p) is a formal
map sendingM into itself with jKp H = jKp Id, thenH = Id. LetH 1, H 2 : (CN, p) → (CN, p)

be two invertible formal mappings sendingM into itself and such thatjKp H
1 = jKp H

2. If

H = H 1 ◦ (H 2)−1, thenH is formal map sending(M, p) into itself such thatjKp H = jKp Id.

HenceH = H 1◦(H 2)−1 = Id, i. e.,H 1 = H 2. The second part of Corollary 1.8 is an immediate
application of Theorem 1.2.

15. Remarks and open problems

As mentioned in Section 1, holomorphic nondegeneracy is necessary for the conclusions
of Theorems 1.1 and 1.2 to hold. Indeed, if(M, p) is a germ of a smooth generic submanifold
in C

N which is holomorphically degenerate atp, then for any positive integerK, there exist a
formal invertible mappingH : (CN, p) → (CN, p) sendingM into itself and agreeing with
the identity map Id up to orderK at p but such thatH 6= Id (see [8] Theorem 3 and [7]
Theorem 2.2.1). Similarly, if(M, p) is a germ of a real-analytic generic submanifold inC

N

which is holomorphically degenerate atp, then there exist (infinitely many) nonconvergent formal
invertible self-mappings of(M, p) (see [9]).

In constrast to holomorphic nondegeneracy, the finite type condition in Theorems 1.1 and 1.2
does not seem to be necessary. More precisely, we conjecture the following. IfM ⊂ C

N is a
connected holomorphically nondegenerate real-analytic generic submanifold of finite type at
some point, then for anyp ∈ M, Aut (M, p) = F(M, p). Here, we recall that Aut(M, p) is the
stability group of(M, p) andF(M, p) is the group of formal invertible self-mappings of(M, p).
This question is open even for Levi-nonflat real analytic hypersurfaces inC

2. We also conjecture
that ifM is as above, then for everyp ∈ M, there exists a positive integerK = K(p) such that
the jet mappingjKp : Aut (M, p) → GK(CN, p) is injective, whereGK(CN, p) is the jet group
of orderK atp. It follows from Corollary 1.8 that the above conjectures hold for all pointsp in
a Zariski open subset ofM.

Another question concerning the structure ofF(M, p) is the following. Under the assump-
tions of Corollary 1.8, is the image of the group homomorphismjKp : F(M, p) → GK(CN, p)

a closed Lie subgroup of the jet groupGK(CN, p), for some suitable integerK? The question is
open even whenM is real-analytic, in which caseF(M, p) = Aut (M, p), by Corollary 1.8. It
is known that the answer is positive ifM is finitely nondegenerate and of finite type atp (see [9]
for the hypersurface case and [32] for higher codimension). In fact it is shown in [7] that in this
case the image is actually a totally real algebraic Lie subgroup ofGK(CN, p) for a precise value
of K.
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Finally, concerning algebraic equivalence, in view of Corollary 1.7, one is led to conjecture
that biholomorphic equivalence implies algebraic equivalence for germs of real-algebraic sub-
manifolds inC

N . To the knowledge of the authors, the question is still open even for germs of
generic real-algebraic submanifolds of codimension higher than one.
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