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Abstract Let M ⊂ CN and M ′ ⊂ CN ′
be real-analytic CR submanifolds, with M

minimal. We provide a new sufficient condition, that happens to be also essentially
necessary, for all sufficiently smooth CR maps h : U → M ′ defined on a connected
open subset of M and of rank larger than a prescribed integer r to be real-analytic on a
dense open subset of U . This condition corresponds to the nonexistence of nontrivial
holomorphic deformations of germs of real-analytic CRmappingswhose rank is larger
than r . As a consequence, we obtain several new results about analyticity of CR
mappings that, at the same time, generalize and unify a number of previous existing
ones.
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1 Introduction

Let M and M ′ be real-analytic CR submanifolds embedded in complex space CN

and CN ′
, respectively, and h : M → M ′ a sufficiently smooth CR map. A very much

studied question over the last decades is to understand under what conditions on M
and M ′ the mapping h is real-analytic. The topic has naturally attracted the attention
of a number of mathematicians as it lies at the intersection of Partial Differential Equa-
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tions (analyticity of solutions of first-order nonlinear systems) and Several Complex
Variables (analytic continuation and reflection principle).

Since the works of Lewy [25] and Pinchuk [31] in the 70s, the above question
has led to numerous investigations and results in the equidimensional case N = N ′.
We cannot mention here all related works but rather refer, e.g., to the monograph
by Baouendi–Ebenfelt–Rothschild [5] and the survey papers by Forstnerič [17] and
Huang [20] for a more detailed account on this matter as well as to the recent work by
Kossovskiy-Lamel [24] for the latest developments. On the other hand, in the more
general case where N and N ′ are not necessarily equal, the problem seems to be more
difficult and the related literature is much less abundant. In this paper, we shall tackle
that situation for minimal CR submanifolds M . Let us recall that M is said to be
minimal in the sense of Tumanov [34] if it does not contain any CR submanifold S
of the same CR dimension as that of M with dim S < dim M (see also the books
[5,9]). One of our main results provides a new sufficient condition, that happens to be
also essentially necessary, for all sufficiently smooth CR maps h : U → M ′ defined
on a connected open subset of M and of rank larger than a prescribed integer r to be
real-analytic on a dense open subset of U . Here, by the rank of the mapping h (over
U ), denoted by RkU h, we mean the maximum rank of h over U . As a consequence,
we obtain several new results about analyticity of CRmappings that, at the same time,
generalize and unify a number of previous existing ones.

Let us now describe how one may construct nonanalytic CR mappings from M
into M ′. Firstly, it may happen that M carries only real-analytic CR functions (see,
e.g., [5,10] and [1] for recent work), in which case the original question is trivially
answered by the affirmative. Hence, one may assume, without loss of generality, that
M admits nonanalytic CR functions. If the target manifold M ′ contains, say, some
holomorphic curve parametrized by C ∋ t %→ γ (t), one obvious way to construct a
nonanalytic CR map from (an open piece of) M into M ′ is simply to consider γ ◦ f ,
where f is a chosen nonanalytic CR function on M . However, in this way, one can
only construct nonanalytic CR maps of rank two, and, therefore, such a procedure
cannot be used to produce, e.g., nonanalytic CR immersions.

In order to generate nonanalytic CR maps of prescribed rank, we shall consider
nontrivial holomorphic deformations of real-analytic CR maps. Given k ∈ Z+ and
p ∈ M , a nontrivial holomorphic deformation of germs at p of real-analytic CR
mappings from M into M ′, denoted by ("t )t∈Ck , consists of a real-analytic CR map
(t, z) %→ "t (z) from a (connected) neighborhood of (0, p) inCk ×M into M ′ satisfy-
ing rk ∂"t

∂t (p)|t=0 = k.We also define the rank of the deformation, denoted byRkM ",
to be the maximum of the (generic) ranks of the maps "t for t sufficiently small. The
interest of such deformations in the analyticity problem lies in the following observa-
tion: if p ∈ M and if there exists a nontrivial holomorphic deformation ("t )t∈Ck of
germs at p of real-analytic CR maps from M into M ′, then for any nonanalytic CR
function f defined near p, vanishing at p, and for sufficiently small generic values
of u ∈ C and t ∈ Ck , the mapping h : z %→ "(t1+u f (z),t2,...,tk )(z) is a nonanalytic
CR map from a neighborhood U of p in M into M ′ satisfying RkU h ≥ RkM ".
Hence, to construct nonanalytic CR maps near a point p ∈ M whose rank is greater
than or equal to a prescribed integer r , it is sufficient that a nontrivial holomorphic
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deformation ("t )t∈Ck as above satisfying RkM " ≥ r exists. Our main result in this
paper establishes essentially a converse to this statement.

Theorem 1.1 Let M ⊂ CN and M ′ ⊂ CN ′
be connected real-analytic CR subman-

ifolds of CR dimensions n and n′, respectively, and h : M → M ′ be a CR mapping
of class Cm0 , n, n′ ≥ 1, m0 ≥ n′. Assume that M is minimal and that there exists a
nonempty open subset $ ⊂ M where h is nowhere real-analytic. Then there exists
a dense open subset ω of $ such that for every point p ∈ ω, there exist an integer
k ∈ {1, . . . , n′} and a nontrivial holomorphic deformation ("t )t∈Ck of germs at p of
real-analytic CR mappings from M into M ′ with the following properties:

(i) RkM " ≥ RkM h;
(ii) there exists a CR map ϕp : M → Ck , of class Cm0 , such that "ϕp(z)(z) = h(z)

for all z in some neighborhood of p in M.

As an immediate consequence of Theorem 1.1 and the above discussion, we obtain
the characterization announced in the beginning of the introduction.

Corollary 1.2 Let M ⊂ CN and M ′ ⊂ CN ′
be real-analytic CR submanifolds of CR

dimensions n and n′, respectively, with M minimal and n, n′ ≥ 1. Assume that M
admits a nowhere real-analytic CR function of class Cn′

and let r be a nonnegative
integer. Then the following conditions are equivalent:

(i) every CR map h : U → M ′, with U ⊂ M open and connected, of class Cn′
with

RkU h ≥ r is real-analytic on some dense open subset of U;
(ii) there does not exist any nontrivial holomorphic deformation of germs of real-

analytic CR mappings from M into M ′ of rank ≥ r .

Furthermore, simple examples show that, in general, one cannot expect in (i) the
map h to be real-analytic all over U (see Remark 2.2).

Another consequence of Theorem 1.1 we would like to mention is given by the
following existence result, previously established by Sunyé [33] in the special case of
C∞ mappings.

Corollary 1.3 Let M ⊂ CN and M ′ ⊂ CN ′
be real-analytic CR submanifolds of CR

dimensions n and n′, respectively. Assume that M is minimal and let h : M → M ′ be
a CR mapping of class Cm0 with m0 ≥ n′. Then for every point p in some dense open
subset of M, there exists a germ at p of a real-analytic CR map from M into M ′ that
agrees with h up to order m0 at p.

Theorem 1.1 and Corollary 1.2 reduce the analyticity problem for CR mappings
(of class Cn′

) to the nonexistence of nontrivial holomorphic deformations of germs of
real-analytic CR maps from M into M ′. Note that in the special case of CR diffeo-
morphisms between CR submanifolds M,M ′ of the same CR dimension, condition
(ii) in Corollary 1.2 is equivalent to saying that either M and M ′ are nowhere locally
biholomorphically equivalent or that M is holomorphically nondegenerate (provided
M is connected). Hence, Corollary 1.2 recovers in that special situation a well-known
statement that can be obtained by combining several results from the existing literature
([3,5]).
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Back to the general case, a first obvious condition that implies the nonexistence
of nontrivial holomorphic deformations of germs of CR maps of any rank is the
nonexistence of holomorphic curves embedded in the target manifold M ′. Hence we
obtain:

Corollary 1.4 Let M ⊂ CN and M ′ ⊂ CN ′
be real-analytic CR submanifolds of CR

dimensions n and n′, respectively, and h : M → M ′ be a CR mapping of class Cn′
,

n, n′ ≥ 1. Assume that M is minimal and that M ′ does not contain any complex curve.
Then h is real-analytic on some dense open subset of M.

To the author’s knowledge, the regularity result given in Corollary 1.4 seems to be
new. Under the stronger assumption that h ∈ C∞, the result was obtained by Damour
[12].

Theorem 1.1 can also be used to provide analyticity results for CR mappings even
if the target manifold M ′ does contain holomorphic curves and, in fact, even foliated
by complex curves such as, e.g., in the case of holomorphically nondegenerate real-
analytic CR manifolds with everywhere degenerate Levi form (see [5]). In fact, such
maps naturally appear in the theory of proper holomorphic maps between hermitian
symmetric domains (see, e.g., [23,30] and the references therein). We shall illustrate
this by considering the case of the tube of the light cone TN ′ ⊂ CN ′

, N ′ ≥ 3. Recall
that TN ′

is the (everywhere Levi-degenerate) smooth real-algebraic hypersurface of
CN ′

given by the smooth part of the real-algebraic variety

X =

⎧
⎨

⎩(z1, . . . , zN ′) ∈ CN ′ : (Re zN ′)2 =
N ′−1∑

j=1

(Re z j )2

⎫
⎬

⎭ . (1.1)

We have the following result.

Corollary 1.5 Let M ⊂ CN be a connected minimal real-analytic CR submanifold
and N ′ ≥ 3. Then any CR mapping h : M → TN ′

, of class CN ′−1, whose rank is ≥ 3,
is real-analytic on some dense open subset of M. In particular, any CR immersion
from M into TN ′

, of class CN ′−1, is real-analytic on some dense open subset of M.

Corollary 1.5 is proven by first determining all nontrivial holomorphic deformations
("t )t of germs of real-analytic CRmappings fromM intoTN ′

. This is done in Sect. 2.3
(seeLemma2.3)wherewe show that the rankof any suchdeformationmust necessarily
not exceed2.This in conjunctionwithTheorem 1.1 provides the proof ofCorollary 1.5.
Note that the rank assumption on the mapping h in this corollary is necessary as TN ′

contains complex lines.
If, in Theorem 1.1, we assume more on the mapping and on the manifolds, our

arguments can be used to yield more precise results. We therefore now consider the
well-studied and important case of CR immersions with Levi-nondegenerate targets
for which we also obtain new results as well as generalizations of the existing ones.
We shall also address the case of CR transversal maps, i.e., CR maps h : M → M ′

between (real-analytic) CR submanifolds satisfying at every p ∈ M the condition

T 1,0
h(p)M

′ + T 0,1
h(p)M

′ + dh(CTpM) = CTh(p)M ′. (1.2)
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The CR transversality property can be seen as a Hopf lemma property for CR maps
and has been the subject of many recent works (see, e.g., [6,14,22]) as it appears to be
an important geometric tool in the study of the mapping problems. Recall also that the
intrinsic complexification of M at p, denoted by VM

p , is the germ at p of the complex
submanifold inCN of smallest dimension containing the germ ofM at p (and similarly
for VM ′

h(p), see [5]). Our arguments for CR immersions provide the following.

Theorem 1.6 Let M ⊂ CN and M ′ ⊂ CN ′
be connected real-analytic CR submani-

folds of CR dimensions n and n′, respectively, and h : M → M ′ be a CR immersion
of class Cm0 , n′ > n ≥ 1, m0 ≥ n′ − n + 1. Assume that M is minimal, that M ′ is
Levi-nondegenerate, and that there exists a nonempty open subset $ ⊂ M where h
is nowhere real-analytic. Then there exists a dense open subset ω of $ such that the
following holds:

(a) For every point p ∈ ω, there exist an integer k ∈ {1, . . . , n′ − n} and a nontrivial
holomorphic deformation ("t )t∈Ck of germs at p of real-analytic CR immersions
from M into M ′ satisfying (ii) of Theorem 1.1.

(b) If, furthermore, M and M ′ are of the same CR codimension, h is CR transversal,
and n′ = n + 1, then we may choose ω = $ and, for every p ∈ ω, the CR map
(t, z) %→ "t (z) to extend near (0, p) as a biholomorphic map from C × VM

p to

VM ′
h(p) sending a neighborhood of (0, p) in C × M into M ′.

Theorem 1.6 yields the following stronger version of Corollary 1.2 for immersive
maps with Levi-nondegenerate targets.

Corollary 1.7 Let M ⊂ CN and M ′ ⊂ CN ′
be real-analytic CR submanifolds of

CR dimensions n and n′, respectively, with M minimal, M ′ Levi-nondegenerate, and
n′ > n ≥ 1. Assume that M admits a nowhere real-analytic CR function of class
Cn′−n+1. Then the following conditions are equivalent:

(i) every CR immersion h : U → M ′, with U ⊂ M open, of class Cn′−n+1, is real-
analytic on some dense open subset of U;

(ii) there does not exist any nontrivial holomorphic deformation of germs of real-
analytic CR immersions from M into M ′.

Part (a) of Theorem 1.6 (or Corollary 1.7) immediately implies the following result
that seems to be new even for the case of real hypersurfaces.

Corollary 1.8 Let M ⊂ CN and M ′ ⊂ CN ′
be real-analytic CR submanifolds of CR

dimensions n and n′, respectively, n′ ≥ n ≥ 1. Assume that M is minimal and M ′ is
Levi-nondegenerate and does not contain any complex curve. Then any CR immersion
h : M → M ′, of class Cn′−n+1, is real-analytic on some dense open subset of M.

Corollary 1.8 contains several previously studied situations. In the casewhereM and
M ′ are strongly pseudoconvex hypersurfaces, the result goes back to Huang [18] (see
[7] for another recent proof of this and [15] for the case where h ∈ C∞). When M,M ′

are manifolds of higher codimension and M ′ is a strongly pseudoconvex quadric,
Corollary 1.8 was proved by Forstnerič [16, Theorem 1.6]. Note that for n′ = n the
statement is well known and is contained in the work of Baouendi–Jacobowitz–Treves
[3].
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On the other hand, using Part (b) of Theorem 1.6, one gets the following noteworthy
statement :

Corollary 1.9 Let M ⊂ CN and M ′ ⊂ CN+1 be real-analytic generic submanifolds
of CR dimension, n and n′, respectively, n′ ≥ n ≥ 1. Assume that M is minimal and
that M ′ is Levi-nondegenerate. Then any CR transversal immersion h : M → M ′, of
class C2, is real-analytic on some dense open subset of M.

In the case where M and M ′ are hypersurfaces, Corollary 1.9 has recently been
proved by Berhanu–Xiao [8] (see also [13] when h ∈ C∞ and [28] for an analogous
result in the setting of formal maps).

Apart from the condition of nonexistence of holomorphic curves in the target mani-
foldM ′ and the codimension one assumption appearing in Corollary 1.9, it is desirable
to find some other sufficient conditions implying the nonexistence of nontrivial holo-
morphic deformations of germs of real-analytic CR (transversal) immersions from M
into M ′. In the case where M and M ′ are hypersurfaces with M strongly pseudocon-
vex and M ′ Levi-nondegenerate, such a sufficient condition involving the signature
of M ′ can be provided (see Proposition 3.1). Combining this with Theorem 1.6 yields
another proof of the following recent result due to Berhanu–Xiao [8].

Corollary 1.10 Let M ⊂ Cn+1 and M ′ ⊂ Cn′+1 be real-analytic hypersurfaces with
M strongly pseudoconvex and M ′ Levi-nondegenerate, n′ ≥ n ≥ 1. Denote by ℓ′

+
(resp. ℓ′

−) the number of positive (resp. negative) eigenvalues of the Levi form of
M ′. If max (ℓ′

+, ℓ
′
−) ≤ n, then any CR transversal immersion h : M → M ′, of class

Cn′−n+1, is real-analytic on some dense open subset of M.

As explained in Sect. 3.4, the above condition on the signature of M ′ (i.e.,
max (ℓ′

+, ℓ
′
−) ≤ n) is easily seen not to be necessary for the nonexistence of non-

trivial holomorphic deformations of germs of CR transversal immersions from M into
M ′. Nevertheless, in the case where M ′ is the nondegenerate hyperquadric Hn′

ℓ′ , i.e.,

Hn′
ℓ′=

⎧
⎨

⎩(z′1, . . . , z
′
n′ , w

′) ∈ Cn′+1 : Imw′=
ℓ′∑

j=1

|z′j |2 −
n′∑

j=1+ℓ′
|z′j |2

⎫
⎬

⎭ , 0≤ℓ′ ≤ n′,

(1.3)

we provide in Sect. 3.4 a necessary and sufficient criterion for the nonexistence of such
deformations that almost coincides with the above-mentioned signature condition (see
Proposition 3.2). Such a characterization implies the next result that also follows from
the recent work by Berhanu–Xiao [8].

Corollary 1.11 Let Hn′
ℓ′ be the nondegenerate hyperquadric in Cn′+1 as in (1.3) and

let n ∈ Z+ with n′ ≥ n ≥ 1. If max (ℓ′, n′ − ℓ′) ≤ n or max (ℓ′, n′ − ℓ′) = n′,
then given any strongly pseudoconvex real-analytic hypersurface M ⊂ Cn+1, every
CR transversal immersion h : M → Hn′

ℓ′ , of class Cn
′−n+1, is real-analytic on some

dense open subset of M. Conversely, if n < max (ℓ′, n′ − ℓ′) < n′ and if M = Hn
0 ,

then there exists a CR transversal immersion h0 : M → Hn′
ℓ′ , of class Cn

′−n+1, that is
nowhere real-analytic on M.
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We conclude this introduction bymentioning some open problems. Firstly, it would
be interesting to know if the smoothness assumption on the mapping h can be weak-
ened in Theorems 1.1 and 1.6. To the author’s knowledge, weaker differentiability
assumptions on the map h implying analyticity are known only in the model cases
of spheres under some additional codimension restrictions (see, e.g., [19,21] and the
references therein). Secondly, in view of Remark 2.2, it would be desirable to know
if instead of assuming that the mapping h is nowhere analytic on some open subset
of M in Theorems 1.1 and 1.6, one may assume that h ∈ C∞ and not real-analytic
at some point p0 and arrive at the same conclusion for some sufficiently small open
neighborhood $ of p0. If such a result were true, one could conclude in several of
the subsequent corollaries that the mapping h is everywhere real-analytic. We should
point out that, if in Theorems 1.1 and 1.6 we assume that the mapping h ∈ C∞ and the
target M ′ is real-algebraic, then the arguments of the present paper can be refined to
answer by the affirmative the question raised just above. Hence, if, in Corollaries 1.5
and 1.11, one assumes the map h to be C∞ to start with, then the conclusion is that
h is everywhere real-analytic. For other related results in that direction, we refer the
reader to [27,29,32].

The paper is organized as follows. In Sect. 2, we collect the proofs of Theorem 1.1
and Corollaries 1.3 and 1.5. Section 3 contains the proofs of all results for mappings
with Levi-nondegenerate targets.

2 Proofs of Theorem 1.1 and Corollaries 1.3 and 1.5

2.1 Proof of Theorem 1.1

Let M,M ′,$, and h : M → M ′ be as given in Theorem 1.1 with h nowhere real-
analytic on $. Without loss of generality, we may assume that both M and M ′ are
generic and we write N ′ = n′ + d ′. For a point p ∈ M , we say that p satisfies
condition (♯) if there exist an integer k ∈ {1, . . . , n′} and a nontrivial holomorphic
deformation ("t )t∈Ck of germs at p of real-analytic CR mappings from M into M ′

satisfying conditions (i) and (ii) of Theorem 1.1. Set

W := {p ∈ M : p satisfies (♯)}.

In order to prove Theorem 1.1, we need to show that W ∩ $ is dense in $, or,
equivalently, that $ \ W is of empty interior in $. We are going to prove that if a
nonempty open subset M0 ⊂ $ satisfies M0 ⊂ $\W , then h is real-analytic on some
nonempty open subset of M0.

So let M0 ⊂ $ be a nonempty open subset and suppose that M0 ⊂ $ \ W .
Shrinking M0 if necessary, we may assume that M0 has a basis of CR vector fields
L̄1, . . . , L̄n with real-analytic coefficients defined all over M0. For every multiindex
α = (α1, . . . ,αn) ∈ Nn , denote by L̄α = L̄α1 . . . L̄αn .

The main tool in the proof of Theorem 1.1 lies in the following lemma, which
allows us to “solve” every component of the mapping successively. In what follows,
all neighborhoods are assumed to be open and connected.
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Holomorphic Deformations and Analytic Regularity of CR Mappings 1927

Lemma 2.1 Let h,$, M0 be as above with M0 ⊂ $\W and ℓ ≤ n′ −1. Assume that
in a fixed choice of holomorphic coordinates in CN ′

, the map h splits as h = (̃h, ĥ) ∈
Cr × CN ′−r for some r ∈ {1, . . . , n′} and satisfies in a neighborhood M1 of some
point p ∈ M0 an identity of the form

ĥ(z) = *(z, z̄, ((L̄α h̄)(z))|α|≤ℓ, h̃(z)), (2.1)

for some CN ′−r -valued holomorphic map * defined in a neighborhood of (p, p̄,
((L̄α h̄)(p))|α|≤ℓ, h̃(p)). Then we can select one component of the map h̃, denoted by
h̃1, such that, writing h̃ = (̃h1, h̃2) ∈ C × Cr−1, the following identity is satisfied in
a neighborhood M2 of some point q ∈ M1 ⊂ M0

(̂h(z), h̃1(z)) = +(z, z̄, ((L̄α h̄)(z))|α|≤ℓ+1, h̃2(z)), (2.2)

for some CN ′−r+1-valued holomorphic map + defined in a neighborhood of
(q, q̄, ((L̄α h̄)(q))|α|≤ℓ+1, h̃2(q)).

Proof of Lemma 2.1 We write z′ = (̃z′, ẑ′) for the coordinates in CN ′
associated with

the splitting of the map h = (̃h, ĥ). Differentiating (2.1), we obtain on M1

0 = L̄ j
(
*(z, z̄, (L̄α h̄(z))|α|≤ℓ, h̃(z))

)

=: , j (z, z̄, (L̄α h̄(z))|α|≤ℓ+1, h̃(z)), j = 1, . . . , n, (2.3)

for some CN ′−r -valued holomorphic map , j = , j (z, ζ, (.α)|α|≤ℓ+1, z̃′) defined in
a neighborhood of (p, p̄, ((L̄α h̄)(p))|α|≤ℓ+1, h̃(p)). Set , := (,1, . . . ,,n). There
are two cases to consider.

First case : ,(z, z̄, ((L̄α h̄(z))|α|≤ℓ+1, z̃′))≡/ 0 in some neighborhood M∗
1 × V of

(p, h̃(p)) in M1 ×Cr . (Note that this implies, by the minimality of M and Tumanov’s
extension theorem [34] applied to themap h, that the above-mentionedmapping cannot
vanish on any open subset of M∗

1 × V , see, e.g., [26, Sect. 6].) It then follows from
(2.3) that

0 < δ0 := inf {|γ | : γ ∈ Nr , ,z̃′γ (z, z̄, ((L̄
α h̄(z))|α|≤ℓ+1, h̃(z))|M∗

1
≡/ 0} < ∞.

Since,z̃′γ (z, z̄, ((L̄α h̄(z))|α|≤ℓ+1, h̃(z)) = 0 for z ∈ M∗
1 and |γ | < δ0, the conclusion

of the lemma follows from the choice of δ0 and the implicit function theorem.
Second case : ,(z, z̄, ((L̄α h̄(z))|α|≤ℓ+1, z̃′)) = 0 for (z, z̃′) in some neighbor-

hoodM∗
1 ×V of (p, h̃(p)) inM1×Cr . From the definition of, and (2.3), we therefore

get on M∗
1 × V

0 = L̄ j
(
*(z, z̄, (L̄α h̄(z))|α|≤ℓ, z̃′)

)
, j = 1, . . . , n, (2.4)

i.e., that the map M∗
1 × V ∋ (z, z̃′) %→ *(z, z̄, ((L̄α h̄)(z))|α|≤ℓ, z̃′) is CR. Since M is

minimal, M∗
1 × V is minimal too, and, therefore, by the standard reflection principle

(see, e.g., [26]), the latter map extends holomorphically to a neighborhood U × V of
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1928 N. Mir

M∗
1 × V in CN × Cr . We denote the extended mapping by A = A(z, z̃′) for z ∈ U

and z̃′ ∈ V . Note that by (2.1), we have

ĥ(z) = A(z, h̃(z)), z ∈ M∗
1 . (2.5)

Let ρ′(z′, z̄′) = (ρ′
1, . . . , ρ

′
d ′) be a real-analytic vector-valued defining function of M ′

near h(p). We claim that

ρ′(̃z′, A(z, z̃′), z̃′, A(z, z̃′))≡/ 0, (z, z̃′) ∈ M∗
1 × V . (2.6)

Indeed, by contradiction, suppose that (2.6) does not hold. We now show that for a
generic point z0 ∈ M∗

1 , we necessarily have z0 ∈ W , reaching a contradiction, since
M∗

1 ⊂ M0 ⊂ $ \ W . Consider the set E ⊂ M∗
1 of points z at which the rank of h

is maximal, i.e., equals RkM h. Since M is minimal, E is dense in M∗
1 . Pick z0 ∈ E .

Since h̃ is CR of class Cm0 , there exists a Cr -valued holomorphic polynomial P(z) of
degree at most m0 such that the m0-jet at z0 of h̃ coincides with that of P|M (see, e.g.,
[5]). Set k := r and define for t ∈ Ck sufficiently close to 0 and z ∈ M sufficiently
close to z0

"t (z) := (t + P(z), A(z, t + P(z))). (2.7)

It is easy to check that ("t )t∈Ck is a nontrivial deformation of germs at z0 of real-
analytic CR mappings from M to M ′. Furthermore, the rank of "0 at z0 is equal to
RkM h since, in view of our choice of P and (2.5), ,0 agrees with h at z0 up to order
m0 ≥ n′ ≥ 1. Finally, it follows from (2.5) that for z ∈ M sufficiently close to z0,
we have "ϕ(z)(z) = h(z) for ϕ(z) := h̃(z) − P(z) that is CR all over M and of class
Cm0 . We therefore have shown that z0 ∈ W , which yields the desired contradiction
and hence proves that (2.6) holds. Set, for (z, z̃′) ∈ M∗

1 × V ,

ρ∗(z, z̄, z̃′, z̃′) := ρ′(̃z′, A(z, z̃′), z̃′, A(z, z̃′)). (2.8)

Subcase 1 : η0 := inf {|β| : β ∈ Nr , ρ∗
z̃′β (z, z̄, h̃(z), h̃(z))≡/ 0, on M∗

1 } < ∞.

Note that it follows from (2.5) that η0 > 0. Since ρ∗
z̃′β (z, z̄, h̃(z), h̃(z)) = 0 on

M∗
1 for |β| < η0, the conclusion of the lemma follows from the choice of η0 and the

implicit function theorem.
Subcase 2 : ∀β ∈ Nr , ρ∗

z̃′β (z, z̄, h̃(z), h̃(z)) = 0 on M∗
1 .

This implies that ρ∗(z, z̄, z̃′, h̃(z)) = 0 for z ∈ M∗
1 and z̃′ ∈ V . Now observe

that (2.6) and (2.8) imply that there exists ν ∈ Nr such that ∂ρ∗

∂ z̃′
ν (z, z̄, z̃′, h̃(z))≡/ 0 on

M∗
1 × V . As before, the implicit function theorem leads to the desired conclusion. ⊓2

With Lemma 2.1 now at hand, we can proceed with the proof of Theorem 1.1.
Let M0 ⊂ $ \ W be as above. Without loss of generality, we may assume that

0 ∈ M0 and h(0) = 0. We may also assume that there exists an open neighborhood
U ′ ⊂ CN ′

of 0 such that M ′ ∩ U ′ = {(z′, w′) ∈ U ′ : w′ = Q′(z′, z̄′, w̄′)}, in
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some fixed choice of coordinates (z′, w′) ∈ Cn′ × Cd ′
, with Q′ = Q′(z′,χ ′, τ ′)

being aCd ′
-valued holomorphic map defined in a neighborhood of 0 inC2n′+d ′

. Write
h = ( f, g) ∈ Cn′ ×Cd ′

. Shrinking M0 if necessary, we get the following basic identity
on M0:

g = Q′( f, h̄). (2.9)

By Lemma 2.1, there exists (at least) one component of f , say f1, a neighborhood
M1 of some point p1 ∈ M0 and a CN ′−n′+1-valued holomorphic map +1 defined in a
neighborhood of (p1, p̄1, ((L̄α h̄)(p1))|α|≤1, f̃ (p1)) where f = ( f1, f̃ ) such that

( f1(z), g(z)) = +1(z, z̄, ((L̄α h̄)(z))|α|≤1, f̃ (z)), z ∈ M1. (2.10)

Applying inductively Lemma 2.1 n′ −1 more times, we obtain that there exists a point
p∗ ∈ M0 and a neighborhood M∗ of p∗ in M0 and a CN ′

-valued holomorphic map
+∗ defined in a neighborhood of (p∗, p̄∗, ((L̄α h̄)(p∗))|α|≤n′) such that

h(z) = ( f (z), g(z)) = +∗(z, z̄, ((L̄α h̄)(z))|α|≤n′), z ∈ M∗. (2.11)

By the standard reflection principle (see, e.g., [26]), h is real-analytic all over M∗.
This concludes the proof of Theorem 1.1.

2.2 Proof of Corollary 1.3

Assume first that n′ ≥ 1. If h is real-analytic on some dense open subset of M , there
is nothing to prove. Otherwise, let $ be the interior of the set of points of M where h
is not real-analytic. It is enough to check the conclusion of the corollary for a generic
point in $. Since h is nowhere real-analytic on $, it follows from Theorem 1.1 that
for a generic point p ∈ $, there exist a nontrivial holomorphic deformation of germs
at p of real-analytic CR mappings from M into M ′ and a CR function ϕp on M of
class Cm0 such that "ϕp(z)(z) = h(z) for all z ∈ M near p. Let R(z) be a holomorphic
polynomial of degree at most m0 such that R|M and ϕp agree up to order m0 at p (see
[5]). Then the real-analytic CR map defined near p given by z %→ "R(z)(z) sends a
neighborhood of p in M into M ′ and agrees with h up to order m0 at p.

It remains to deal with the case n′ = 0, i.e., M ′ is totally real. For this, the reader
can check that the required conclusion is easy to derive using the fact that real-valued
CR functions on a minimal connected real-analytic CR submanifold are necessarily
constant (see [4]). The proof is complete.

Remark 2.2 The following example shows that one cannot expect, in general, the
map h to be real-analytic all over U in Corollary 1.2. Consider the real-algebraic
hypersurfaces M ⊂ C2 and M ′ ⊂ C3:

M : Imw = |z|2 + |w|10,
M ′ : Imw′ = |z′1|2 + |z′2|4.
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Fix a relatively compact open subset U of 0 in M . Then U is strongly pseudoconvex
and by [8, Theorem 2.7] there exists a nowhere real-analytic CR function onU of class
C2. Furthermore, M ′ does not contain any complex curve and therefore condition (ii)
in Corollary 1.2 is satisfied. For an appropriate branch of the square root function, the
CR map (z, w) %→ (z, w2√w,w) is a CR immersion from U into M ′ of class C2 that
is real-analytic on U \ {0} but not at 0.

2.3 Mapping to the Tube over the Light Cone

In order to apply Theorem 1.1 to the case of the tube over the light cone TN ′
and prove

Corollary 1.5, we need the following result that describes all nontrivial holomorphic
deformations of real-analytic CR mappings valued in TN ′

. Note that since TN ′
does

not contain any complex submanifold of dimension ≥ 2, we only need to consider
one-dimensional holomorphic deformations.

Lemma 2.3 Let M ⊂ CN be a real-analytic CR submanifold that is everywhere
minimal. Let p ∈ M andassume that there exists a nontrivial holomorphic deformation
("t )t∈C of germs at p of real-analytic CR mappings from M into TN ′

, N ′ = n′ + 1.
Then there exists a real-analytic CR function µ = µ(z, t) defined in a neighborhood
of (p, 0) in M × C such that for (z, t) ∈ M × C near (p, 0)

"t (z) = (α1µ(z, t)+ iδ1, . . . ,αn′µ(z, t)+ iδn′ , µ(z, t)),

whereα1, . . . ,αn′ , δ1, . . . , δn′ are real numbers satisfying
∑n′

j=1 α2
j = 1. In particular,

RkM " ≤ 2 necessarily holds.

Proof of Lemma 2.3 Without loss of generality, we may assume that M is generic.
Write

"t (z) = (ψ1(z, t), . . . ,ψn′(z, t), µ(z, t)).

In a neighborhood $ of (p, 0) in M × C, we have

(Reµ)2 =
n′∑

j=1

(Reψ j )
2. (2.12)

In what follows, we write µ′ for the holomorphic derivative of µ with respect to t (as
well as for the ψ j ’s). Differentiating (2.12) with respect to t , we get on $

(Reµ)µ′ =
n′∑

j=1

(Reψ j )ψ
′
j . (2.13)
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Differentiating (2.13) with respect to t̄ , we get on $

|µ′|2 =
n′∑

j=1

|ψ ′
j |2. (2.14)

Since ∂"t
∂t

∣∣∣ t=0
z=p

̸= 0, we may assume, using (2.14) and shrinking $ if necessary, that

µ′ ̸= 0 on$. Note also that sinceTn′+1 is the smooth part of the real-algebraic variety
given by (1.1), we have Reµ ̸= 0 on $. From (2.12), (2.13), and (2.14), we see that
the vectors in Cn′

given by

(
Reψ1

Reµ
, . . . ,

Reψn′

Reµ

)
and

(
ψ ′
1

µ′ , . . . ,
ψ ′
n′

µ′

)

are unit vectors and their scalar product is equal to one. Hence, for j = 1, . . . , n′, we
have

ψ ′
j

µ′ = Reψ j

Reµ
, on $.

The previous equality shows that each real-analytic CR function
ψ ′

j
µ′ is real valued on

$. Since M is minimal, $ is minimal too, and therefore by [4], each CR function
ψ ′

j
µ′

is a real-valued constant that we denote by α j . From (2.14), we see that
∑n′

j=1 α2
j = 1.

From
ψ ′

j
µ′ = Reψ j

Reµ = α j , we deduce that ψ j = α jµ + η j for some real-analytic CR
function η j defined near p on M , whose real part is identically zero. Hence, since M
is minimal, η j is a purely imaginary constant. This completes the proof of Lemma
2.3. ⊓2
Proof of Corollary 1.5 When dim M ≥ 3, Corollary 1.5 follows directly from com-
bining Theorem 1.1 and Lemma 2.3. When dim M = 2, the second part of
Corollary 1.5 follows from the fact that CR maps on (one)-dimensional complex
manifolds are merely holomorphic maps. ⊓2

3 Mapping to a Levi-Nondegenerate Target

Theorem 1.6 follows from either slightly modifying or inspecting the proof of Theo-
rem 1.1. For sake of completeness, we include the details here.

3.1 Proof of Theorem 1.6(a)

Let M and M ′ be as in Theorem 1.6 with, without loss of generality, M,M ′ being
generic, and let h be aCR immersion of classCm0 ,m0 ≥ n′−n+1, that is nowhere real-
analytic on a nonempty open subset $ ⊂ M . Following the proof of Theorem 1.1, we
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say that a point p ∈ M satisfies condition (̂♯) if there exist an integer k ∈ {1, . . . , n′−n}
and a nontrivial holomorphic deformation ("t )t∈Ck of germs at p of real-analytic CR
immersions from M into M ′ satisfying (ii) of Theorem 1.1. Set Ŵ := {p ∈ M :
p satisfies (̂♯)}. In order to prove Theorem 1.6, we only need to show that if a nonempty
open subset M0 ⊂ $ satisfies M0 ⊂ $\ Ŵ , then h is real-analytic on some nonempty
subset of M0. We pick such a subset M0 with a basis of CR vector fields L̄1, . . . , L̄n
with real-analytic coefficients on M0. We first note that a slightly modified version of
Lemma 2.1 still holds with ℓ ≤ n′ − n+ 1 (instead of n′), r ≤ n′ − n, and Ŵ (instead
of W ).

We may assume that 0 ∈ M0, h(0) = 0 and that there exists an open neighborhood
U ′ ⊂ CN ′

of 0 such that M ′ ∩ U ′ = {(z′, w′) ∈ U ′ : w′ = Q′(z′, z̄′, w̄′)}, where
(z′, w′) ∈ Cn′ ×Cd ′

and Q′ = Q′(z′,χ ′, τ ′) is aCd ′
-valued holomorphic map defined

in a neighborhood of 0 inC2n′+d ′
.Wemay also assume that Q′(z′, z̄′, w̄′)−w̄′ vanishes

at the origin up to order 1.Wewrite h = ( f, g) ∈ Cn′ ×Cd ′
. ShrinkingM0 if necessary,

we get the following basic identity on M0:

g = Q′( f, h̄). (3.1)

Let Q̄′ be the holomorphic map obtained by taking complex conjugates of the coeffi-
cients of Q′. Applying each CR vector field L̄ j to the identity ḡ = Q̄′( f̄ , h) on M0,
one gets

L̄ j ḡ = L̄ j f̄ · Q̄′
z̄′( f̄ , h), j = 1, . . . , n. (3.2)

Since h is CR immersive, we can select n components f̂ among those of f such that,
writing f = ( f̂ , f̃ ) and f̂ = ( f̂1, . . . , f̂n), the n × n matrix (L̄ j f̂ k) has full rank n
over M0. Since M ′ is Levi-nondegenerate, we can use the implicit function theorem to
the set of equations (3.1) and (3.2) to conclude that, shrinking M0 near 0 if necessary,
we have

( f̂ (z), g(z)) = *(((L̄α h̄)(z))|α|≤1, f̃ (z)), (3.3)

for some CN ′−n′+n-valued holomorphic map * defined in a neighborhood of
(((L̄α h̄)(0))|α|≤1, 0). Applying successively the above-mentioned modified version
of Lemma 2.1 n′ − n times, we get that there exist a point p∗ ∈ M0, a neighborhood
M∗ of p∗ in M0, and a CN ′

-valued holomorphic map +∗ defined in a neighborhood
of (p∗, p̄∗, ((L̄α h̄)(p∗))|α|≤n′−n+1) such that

h(z) = +∗(z, z̄, ((L̄α h̄)(z))|α|≤n′−n+1), z ∈ M∗. (3.4)

As in the proof of Theorem 1.1, (3.4) shows that h is real-analytic all over M∗. This
proves Theorem 1.6(a).
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3.2 Proof of Theorem 1.6(b)

Let M and M ′ be as in Theorem 1.6(b) with, without loss of generality, M,M ′ being
generic, n′ = n + 1, and let h be a CR transversal immersion of class Cm0 , m0 ≥ 2.
Let also d be the CR codimension of M (that coincides with that of M ′). Assume that
h is nowhere real-analytic on a nonempty open subset $ ⊂ M . Let p ∈ $ and let $0
be an open neighborhood of p admitting a basis of CR vector fields L̄1, . . . , L̄n with
real-analytic coefficients on $0. As in the proof of Theorem 1.6(a), we may assume
that 0 ∈ $0, h(0) = 0 and that there exists an open neighborhood U ′ ⊂ CN+1 of 0
such that

M ′ ∩U ′ =
{
(z′, w′) ∈ U ′ : w′ = Q′(z′, z̄′, w̄′)

}
, (3.5)

where (z′, w′) ∈ Cn+1 × Cd and Q′ = Q′(z′,χ ′, τ ′) is a Cd -valued holomorphic
map defined in a neighborhood of 0 in C2n+2+d . Without loss of generality, we may
also assume that Q′(z′, z̄′, w̄′) − w̄′ vanishes at the origin up to order 1. We write
h = ( f, g) ∈ Cn+1 × Cd . Since h is of class C2, we may consider H = (F,G) the
unique holomorphic polynomial map of degree at most 2 such that the 2-jet at 0 of
H |M coincides with that of h. As h is immersive, interchanging the z′-coordinates
if necessary, we may write z′ = (̃z′, ẑ′) ∈ C × Cn so that the n × n matrix (L̄ j f̂ k)
has full rank n over $0. Furthermore, since h is CR transversal, the polynomial map
(F̂,G) is a local biholomorphism of CN near the origin. Performing a complex linear
change of coordinates in CN+1 leaving (̂z′, w′) fixed, we may assume that

dF̃(0) = 0. (3.6)

(The change of coordinates might affect the chosen defining function for M ′, but
using the implicit function theorem if necessary, one can keep a defining function of
the form (3.5).) Shrinking $0 if necessary, we obtain the identities (3.1) and (3.2). As
in the proof of Theorem 1.6(a), since M ′ is Levi-nondegenerate, the implicit function
theorem applied to the set of equations (3.1) and (3.2) implies, shrinking $0 near 0 if
necessary, that

( f̂ (z), g(z)) = ,(((L̄α h̄)(z))|α|≤1, f̃ (z)), (3.7)

for some CN -valued holomorphic map , defined in a neighborhood of (((L̄α h̄)
(0))|α|≤1, 0). We claim that for j = 1, . . . , n, L̄ j

(
,(((L̄α h̄)(z))|α|≤1, z̃′)

)
≡ 0 for

z ∈ $0 and z̃′ in some sufficiently small neighborhood of the origin in C. Indeed, if
it were not the case, one could show, following the lines of the very beginning of the
proof of Lemma 2.1 and the standard reflection principle, that f̃ and therefore h is
real-analytic on some open subset of $0, reaching a contradiction. As in the proof of
Theorem 1.1, the claim implies that the map ,(((L̄α h̄)(z))|α|≤1, z̃′) extends holomor-
phically to a neighborhood U × V of $0 × {0} in CN × C. We denote the extended
mapping by A = A(z, z̃′) for z ∈ U and z̃′ ∈ V . From (3.7), we get

( f̂ (z), g(z)) = A(z, f̃ (z)), z ∈ $0. (3.8)
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Now consider

ρ∗(z, z̄, z̃′, z̃′) := ρ′(̃z′, A(z, z̃′), z̃′, A(z, z̃′)), (3.9)

where ρ′(z′, w′, z̄′, w̄′) = w′ − Q′(z′, z̄′, w̄′), z′ = (̃z′, ẑ′). As in the proof of The-
orem 1.1 (e.g., following the arguments in subcases 1 and 2), one may show that if
ρ∗(z, z̄, z̃′, z̃′)≡/ 0 on$0×V , then f̃ is real-analytic on some open subset of$0 and so
is h, reaching a contradiction. Hence ρ∗(z, z̄, z̃′, z̃′) ≡ 0 on$0×V . Recall now that F̃
(resp. F̂ andG) denotes the holomorphic polynomial map of degree at most 2 such that
the 2-jet of F̃ |M (resp. F̂ |M andG|M ) at 0 agrees with that of f̃ (resp. f̂ and g). Setting
for (z, t) ∈ M × C sufficiently close to (0, 0), "t (z) = (t + F̃(z), A(z, t + F̃(z))),
we see that ("t )t∈C is a nontrivial deformation of germs at 0 of real-analytic CR
immersions from M to M ′. We only need to check that (z, t) %→ "t (z) extends to
a biholomorphism from CN+1 into itself near the origin. For this, we shall follow
one argument from [28]. Recall first that since h is immersive and CR transversal,
the holomorphic map (F̂,G) is a local biholomorphic map from CN to CN near the
origin. Furthermore, it follows from (3.8) that (F̂(z),G(z)) and A(z, F̃(z)) agree at
0 up to order 2. Hence, it follows from (3.8) and (3.6) that the matrix ∂A

∂z (0) is of rank
N . This implies that (z, t) %→ "t (z) extends to a holomorphic map of rank N + 1 at
the origin. This finishes the proof of Theorem 1.6(b).

3.3 Proof of Corollary 1.9

Let M,M ′, h as in Corollary 1.9. There are two cases to consider: either n′ = n + 1
or n′ = n. In the case n′ = n, it is well known that h is real-analytic all over M by the
standard arguments on the equidimensional reflection principle (assuming even only
C1 smoothness on the mapping h, see, e.g., [3]). For the case n′ = n + 1, assume,
by contradiction, that h is nowhere real-analytic on some open subset $ of M . Then
Theorem 1.6(b) implies that, near any point of $, there exists a local biholomorphism
of CN+1 sending an open piece of M × C onto an open piece of M ′. But this is
impossible as M ′ is Levi-nondegenerate. Hence, h must be real-analytic on a dense
open subset of M .

3.4 Nontrivial Holomorphic Deformations of CR Immersions and Signature

The following result provides a necessary condition for the existence of nontrivial
holomorphic deformations of CR transversal immersions from a strongly pseudocon-
vex hypersurface into a Levi-nondegenerate one.

Proposition 3.1 Let M ⊂ Cn+1 and M ′ ⊂ Cn′+1 be real-analytic hypersurfaces
with M strongly pseudoconvex and M ′ Levi-nondegenerate, n′ > n ≥ 1. Denote by
ℓ′
+ (resp. ℓ′

−) the number of positive (resp. negative) eigenvalues of the Levi form
of M ′. If for some point p ∈ M there exists a nontrivial holomorphic deformation
("t )t∈C of germs at p of real-analytic CR transversal immersions from M into M ′,
then n < max (ℓ′

+, ℓ
′
−) < n′.
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Proof of Proposition 3.1 Without loss of generality, we may assume that p = 0,
"0(0) = 0 and choose holomorphic coordinates (z′, w′) = (z′1, . . . , z

′
n, w

′) ∈ Cn′ ×C
near 0 in Cn′+1 so that M ′ is locally given by the equation

Imw′ =
ℓ+∑

j=1

|z′j |2 −
n′∑

j=1+ℓ+

|z′j |2 + R′(z′, z̄′,Rew′), (3.10)

where R′ is a real-analytic function near 0 ∈ R2n′+1 of order at least 3. Similarly, we
may choose local holomorphic coordinates (z, w) ∈ Cn × C near 0 so that that M is
locally given by the equation

Imw =
n∑

j=1

|z j |2 + R(z, z̄,Rew), (3.11)

where R is a real-analytic function near 0 ∈ R2n+1 of order at least 3. As it is well
known, comparing the Levi form of M and M ′ and using the CR transversality of the
mapping "0 yields that either ℓ′

+ ≥ n or ℓ′
− ≥ n (see, e.g., [2,8]). We shall treat only

the case where ℓ′
+ ≥ n since the case ℓ′

− ≥ n can be reduced to the previous one
by considering the mapping T ◦ ,0 where T (z′, w′) = (z′,−w′) (that sends M to
the Levi-nondegenerate hypersurface T (M ′) that has ℓ′

− positive eigenvalues). Let us
assume therefore that ℓ′

+ ≥ n. By [2], the coordinates (z, w) and (z′, w′) can be chosen
in such a way that the mapping "0 is normalized as follows: "0 = ( f0,ϕ0, g0) ∈
Cn ×Cn′−n ×C with dϕ0(0) = 0 and the matrix (L̄ j f̄0(0)) is invertible, L̄1, . . . , L̄n
being a basis of real-analytic CR vector fields of M near 0. We shall also use the above
splitting to write "t = ( ft ,ϕt , gt ). Since ℓ′

+ ≥ n, we shall write

ϕt = (ϕt,n+1, . . . ,ϕt,ℓ′
+ ,ϕt,1+ℓ′

+ , . . . ,ϕt,n′).

For sufficiently small t ∈ C, "t maps M into M ′ and therefore we have the following
identity near 0 on M :

Im gt =
n∑

j=1

| f j |2 +
ℓ′
+∑

j=n+1

|ϕt, j |2 −
n′∑

j=1+ℓ′
+

|ϕt, j |2 + R′( ft ,ϕt , f̄t , ϕ̄t ,Re gt ).

(3.12)

We also write

f j = α j + tβ j + O(t2), ϕt, j = µ j + tδ j + O(t2).

In what follows, when differentiating ft ,ϕt , gt with respect to t , we write f ′
t ,ϕ

′
t , g

′
t .

Differentiating (3.12) with respect to t gives the following identity near 0 in M :

1
2i

g′
t=

n∑

j=1

f ′
j f̄ j+

ℓ′
+∑

j=n+1

ϕ′
t, j ϕ̄t, j −

n′∑

j=1+ℓ′
+

ϕ′
t, j ϕ̄t, j +

∂

∂t

[
R′( ft ,ϕt , f̄t , ϕ̄t ,Re gt )

]
.

(3.13)
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Evaluating (3.13) at t = 0 yields

1
2i

g′
t |t=0 =

n∑

j=1

β j ᾱ j+
ℓ′
+∑

j=n

δ j µ̄ j −
n′∑

j=1+ℓ′
+

δ j µ̄ j +
∂

∂t

[
R′( ft ,ϕt , f̄t , ϕ̄t ,Re gt )

]
t=0.

(3.14)

Note that (3.14) implies in particular that

g′
t (0)|t=0 = 0. (3.15)

Applying the CR vector fields L̄1, . . . , L̄n to (3.13) and evaluating at t = 0 yields that
for k = 1, . . . , n

0 =
n∑

j=1

β j L̄k ᾱ j +
ℓ′
+∑

j=n

δ j L̄kµ̄ j −
n′∑

j=1+ℓ′
+

δ j L̄kµ̄ j

+ L̄k

(
∂

∂t

[
R′( ft ,ϕt , f̄t , ϕ̄t ,Re gt )

]) ∣∣∣
t=0

. (3.16)

Evaluating (3.16) at the origin and using the facts that the matrix (L̄k ᾱ j ) is invertible
and that L̄kµ̄ j (0) = 0 shows that

β j (0) = 0, j = 1, . . . , n. (3.17)

Now differentiating (3.13) with respect to t̄ and evaluating at the origin yields

0 =
n∑

j=1

|β j (0)|2 +
ℓ′
+∑

j=n

|δ j (0)|2 −
n′∑

j=1+ℓ′
+

|δ j (0)|2

0 =
ℓ′
+∑

j=n

|δ j (0)|2 −
n′∑

j=1+ℓ′
+

|δ j (0)|2. (3.18)

On the other, since ("t ) is a nontrivial deformation, we must have " ′
t (0)|t=0 ̸= 0. In

view of (3.15) and (3.17), there must exist at least one j such that δ j (0) ̸= 0. This
implies together with (3.18) that necessarily n < ℓ′

+ < n′, which yields the desired
conclusion. The proof of Proposition 3.1 is complete.

⊓2

Proof of Corollary 1.10 If n = n′, then M ′ is necessarily strongly pseudoconvex (see,
e.g., [2,8]). In this case, the desired conclusion follows directly from Corollary 1.8. If
n′ > n, the conclusion follows by combining Theorem 1.6(a) and Proposition 3.1. ⊓2
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Note that Proposition 3.1 in codimension one, i.e., for n′ = n + 1 shows the
nonexistence of nontrivial holomorphic deformations of CR transversal immersions.
Furthermore, one should observe that the necessary condition given by that proposition
is in general not a sufficient one. Indeed, for any pair of integers n, n′ with n′ ≥ n+2,
for any strongly pseudoconvex real-analytic hypersurface M ⊂ Cn+1 and for any
Lorentzian real-analytic Levi-nondegenerate hypersurface M ′ ⊂ Cn′+1 (i.e., having
n′ − 1 positive eigenvalues and 1 negative eigenvalue) containing no holomorphic
curves, there does not exist any nontrivial holomorphic deformation of germs of real-
analytic CR maps from M into M ′. Such hypersurfaces M ′ are “generic” among
all Lorentzian hypersurfaces (see, e.g., [11]). However, there is one particular and
important instance for which the necessary condition given in Proposition 3.1 seems to
be “almost” sufficient: the hyperquadric. The exact statement is given by the following
result.

Proposition 3.2 Let Hn′
ℓ′ ⊂ Cn′+1 be the nondegenerate hyperquadric given by (1.3)

and let 1 ≤ n < n′. If max (n′ − ℓ′, ℓ′) ≤ n or max (n′ − ℓ′, ℓ′) = n′, then for every
real-analytic strongly pseudoconvex M ⊂ Cn+1, there does not exist any nontrivial
holomorphic deformation of germs of real-analytic CR transversal immersions from a
neighborhood of a point of M intoHn′

ℓ′ . Conversely, if n < max (n′−ℓ′, ℓ′) < n′ and M
is the Heisenberg hypersurfaceHn

0 , there exists a nontrivial holomorphic deformation
of CR transversal immersions from M into Hn′

ℓ′ .

Proof of Proposition 3.2 The first part of the proposition is an immediate consequence
of Proposition 3.1. For the last part, we note thatHn′

ℓ′ andHn
0 may be defined, respec-

tively, by the equations

Imw′ =
ℓ′∑

j=1

|z′j |2 −
n′∑

j=ℓ′+1

|z′j |2, Imw =
n∑

j=1

|z j |2

with (z′1, . . . , z
′
n′ , w

′) ∈ Cn′+1 and (z1, . . . , zn, w) ∈ Cn+1. Without loss of general-
ity, we may assume that n′ > ℓ′ > n. Then considering

"t (z1, , . . . , zn, w) = (z1, . . . , zn, t, 0, . . . , 0, t, w)

provides the required nontrivial (one-dimensional) holomorphic deformation of CR
transversal immersions fromHn

0 intoHn′
ℓ′ . This completes the proof. ⊓2

Proof of Corollary 1.11 The case n = n′ corresponds to the situation where neces-
sarily ℓ′ = n′ or ℓ′ = 0, i.e., Hn′

ℓ′ = Hn
0. Hence the conclusion in that case follows

from Corollary 1.8. In the case n′ > n, the conclusion follows from the conjunction
of Proposition 3.2, Theorem 1.6, and the existence of a nowhere real-analytic CR
function onHn

0 of class Cn′−n+1 (established in [8, Theorem 2.7]). ⊓2
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15. Forstnerič, F.: Extending proper holomorphic mappings of positive codimension. Invent. Math. 95,

31–62 (1989)
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17. Forstnerič, F.: Proper holomorphic mappings: a survey. In: Several Complex Variables (Stockholm,

1987/1988). Math. Notes, vol. 38, pp. 297–363. Princeton University Press, Princeton (1993)
18. Huang, X.: On the mapping problem for algebraic real hypersurfaces in the complex spaces of different

dimensions. Ann. Inst. Fourier 44, 433–463 (1994)
19. Huang, X.: On a linearity problem for proper holomorphic maps between balls in complex spaces of

different dimensions. J. Differ. Geom. 51, 13–33 (1999)
20. Huang, X.: On some problems in several complex variables and CR geometry. In: First International

Congress of ChineseMathematicians (Beijing, 1998). AMS/IP Stud. Adv.Math., vol. 20, pp. 383–396.
American Mathematical Society, Providence (2001)

21. Huang, X., Ji, S., Yin, W.: On the third gap for proper holomorphic maps between balls. Math. Ann.
3581–2, 115–142 (2014)

22. Huang, X., Zhang, Y.: On the CR transversality of holomorphic maps into hyperquadrics. In: Pro-
ceedings of the Abel Symposium, 2013. Complex Geometry and Dynamics. pp. 139–155. Springer
(2015)

23. Kim, S.-Y., Zaitsev, D.: Rigidity of proper holomorphic maps between bounded symmetric domains.
Math. Ann., 639–677 (2015)

24. Kossovskiy, I., Lamel, B.: On the analyticity of CR-diffeomorphisms. Am. J. Math. (to appear)
25. Lewy, H.: On the boundary behaviour of holomorphic mappings. Acad. Naz. Lincei 35, 1–8 (1977)
26. Meylan, F., Mir, N., Zaitsev, D.: Analytic regularity of CR-mappings. Math. Res. Lett. 9(1), 73–93

(2002)
27. Meylan, F.,Mir, N., Zaitsev, D.: Holomorphic extension of smooth CR-mappings between real-analytic

and real-algebraic CR-manifolds. Asian J. Math. 7(4), 493–509 (2003)
28. Mir, N.: Convergence of formal embeddings in codimension one. J. Differ. Geom. 62, 163–173 (2002)
29. Mir, N.: Analytic regularity of CR maps into spheres. Math. Res. Lett. 10(4), 447–457 (2003)

123



Holomorphic Deformations and Analytic Regularity of CR Mappings 1939

30. Mok, N.: Geometry of holomorphic isometries and related maps between bounded domains. In: Geom-
etry and Analysis, vol. II, ALM, vol. 18, pp. 225–270. Higher Education Press and International Press,
Beijing-Boston (2011)

31. Pinchuk, S.: On the analytic continuation of holomorphic mappings. Math. USSR Sb. 27, 375–392
(1975)

32. Pinchuk, S., Sukhov, A.: Extension of CR maps of positive codimension. Proc. Steklov Inst. Math.
253(2), 246–255 (2006)

33. Sunyé, J.-C.: A note on CR mappings of positive codimension. Proc. Am. Math. Soc. 138, 605–614
(2010)

34. Tumanov, A.E.: Extending CR functions into a wedge from a manifold of finite type (English Trans-
lation). Math. USSR Sb. 64, 129–140 (1989)

123


