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FINITE JET DETERMINATION OF LOCAL CR AUTOMORPHISMS

THROUGH RESOLUTION OF DEGENERACIES∗

BERNHARD LAMEL† AND NORDINE MIR‡

Dedicated to M. Salah Baouendi on the occasion of his seventieth birthday

Abstract. Let M ⊂ CN be a connected real-analytic hypersurface whose Levi form is nonde-
generate at some point. We prove that for every point p ∈ M , there exists an integer k = k(M, p)
such that germs at p of local real-analytic CR automorphisms of M are uniquely determined by their
k-jets (at p). To prove this result we develop a new technique that can be seen as a resolution of
the degeneracies of M . This procedure consists of blowing up M near an arbitrary point p ∈ M

regardless of its minimality or nonminimality; then, thanks to the blow-up, the original problem can
be reduced to an analogous one for a very special class of nonminimal hypersurfaces for which one
may use known techniques to prove the finite jet determination property of its CR automorphisms.

Key words. Finite jet determination, CR automorphism, blow-up, nonminimal hypersurface

AMS subject classifications. 32H02, 32H12, 32V05, 32V15, 32V20, 32V35, 32V40

1. Introduction. This paper is concerned with the finite jet determination prob-
lem for germs of CR automorphisms of real-analytic hypersurfaces in complex space.
Our main motivation is the following conjecture that essentially goes back to the
recent work of Baouendi, Ebenfelt and Rothschild [1]:

Conjecture 1.1. Let M ⊂ Cn+1 be a connected real-analytic holomorphically

nondegenerate hypersurface, n ≥ 1. Then for every p ∈ M , there exists a positive

integer k = k(M,p) such that germs at p of local real-analytic CR automorphisms of

M are uniquely determined by their k-jets at p.

Let us recall that a (connected) holomorphically nondegenerate real hypersurface
is a real hypersurface for which there is no germ of a nontrivial holomorphic vector
field tangent to an open piece of M (this notion was introduced by Stanton [32]).
A solution to the above conjecture would provide a completely satisfactory local CR
version for real-analytic hypersurfaces of Cn+1 of the classical uniqueness theorem
of H. Cartan [11] stating that holomorphic self-automorphisms of bounded domains
in Cn+1 are uniquely determined by their 1-jet at any point of the source domain.
Indeed, holomorphic nondegeneracy appears to be the “natural” obstruction to finite
jet determination, the necessity of the condition being observed in [1].

Much progress has been made in recent years toward the solution to the above
mentioned conjecture and a number of important cases have been settled. Historically,
the first case considered was when the given hypersurface has everywhere nondegen-
erate Levi-form. This was solved by E. Cartan [9, 10], Tanaka [33] and Chern-Moser
[12], as a consequence of their solution to the biholomorphic equivalence problem.
Furthermore, in that setting unique determination by 2-jets holds at every point.
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de l’Université, B.P. 12, 76801 Saint Etienne du Rouvray, France (Nordine.Mir@univ-rouen.fr). The
research of the second author was supported in part by the French National Agency for Research
(ANR), Project Resonances (programme blanc).

201



202 B. LAMEL AND N. MIR

In order to follow the lines of the most recent developments related to Conjec-
ture 1.1, it is relevant to understand the structure of a real-analytic holomorphically
nondegenerate hypersurface and, in particular, all possible types of Levi-degenerate
points that such a manifold can have. And indeed such a hypersurface may contain
points that degenerate in various possible ways. One first possible situation is given
by the case of a holomorphically nondegenerate real-analytic hypersurface that is
everywhere Levi-degenerate. (This may only happen for n ≥ 2.) The typical example
that illustrates this situation is the tube in C3 over the light cone that is given by the
set of smooth points of the real-algebraic variety V = {(z1, z2, z3) ∈ C3 : (Re z1)

2 =
(Re z2)

2 + (Re z3)
2}. For this type of hypersurfaces, neither the results nor the tech-

niques used in the Levi-nondegenerate case are available. This led Baouendi, Huang,
Ebenfelt and Rothschild to introduce a finer notion of nondegeneracy, called finite

nondegeneracy [5, 2]. Finite nondegeneracy is more general than Levi-nondegeneracy
(e.g. the tube of the light cone is everywhere finitely nondegenerate); the finite jet de-
termination problem for the class of finitely nondegenerate hypersurfaces was solved,
among other things, in [1]. This however does not solve Conjecture 1.1 since a con-
nected holomorphically nondegenerate real-analytic hypersurface in general only sat-
isfies the finite nondegeneracy condition at every point of a Zariski open subset [2].
Therefore, the results of [1] provide a solution to Conjecture 1.1 for all points p ∈M
outside a certain proper real-analytic subvariety Σ of M .

The above mentioned set Σ ⊂ M consists in a certain sense of the most degen-
erate points that a hypersurface M as in Conjecture 1.1 may have. In order to deal
with this thin set of points, one usually stratifies the set Σ into a real-analytic subset
Σ1 and Σ2 = Σ \ Σ1; the set Σ1 consists of the points in Σ through which there
passes a complex hypersurface of C

N entirely contained in M (i.e. the set of non-
minimal points), the set Σ2 being therefore the set of minimal points of Σ. The set
Σ1 consists more precisely of a locally finite disjoint union of complex hypersurfaces
of CN contained in M . The stratification comes from the fact that points in Σ1 and
Σ2 degenerate in different manners. Furthermore, and most importantly, there is a
very convenient machinery introduced by Baouendi, Ebenfelt and Rothschild, the so-
called Segre set technique (see e.g. [31]), that has been extremely useful in the study
of mapping problems but is available only at minimal points. Using, among other
tools, this technique, Baouendi, Rothschild and the second author [6] were able to
prove Conjecture 1.1 for all minimal points p ∈M . This constitutes the most general
result to date toward the solution of the conjecture for arbitrary n. Hence to complete
the proof of Conjecture 1.1, it remains to deal with the points lying in the remaining
subvariety Σ1.

In the two-dimensional case, Ebenfelt, Zaitsev and the first author [16] were re-
cently able to treat this set Σ1 successfully, which provided a complete solution to
Conjecture 1.1 for n = 1. (Note that in that case, the holomorphic nondegeneracy
assumption on the hypersurface M is in fact equivalent to its Levi-nonflatness.) In
order to prove the finite jet determination property at every point lying on the sub-
variety Σ1, the authors of [16] developed a new approach, firstly initiated by Ebenfelt
[14] in the study of the regularity of CR mappings, which, roughly speaking, consists
of reducing the original problem to studying the unique jet determination of solutions
of certain singular systems of differential equations. This approach strongly contrasts
with that used to deal with the set Σ2 of minimal points in e.g. [3, 6] and, therefore, up
to now, two different approaches have been used to study the finite jet determination
problem according to the minimality or nonminimality of the base point.
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In this paper, focusing on the class of generically Levi-nondegenerate real-analytic
hypersurfaces, we provide a unified approach to study the finite jet determination
problem and, as a consequence, we give a solution to Conjecture 1.1 for this class.

Our main result is the following.

Theorem 1.2. Let M ⊂ Cn+1 be a connected real-analytic hypersurface whose

Levi form is nondegenerate at some point. Then for every point p ∈ M , there exists

an integer k = k(M,p) such that germs at p of local real-analytic CR automorphisms

of M are uniquely determined by their k-jets at p.

In Theorem 1.2, even though we assume that the hypersurface contains one (and
therefore a dense open subset of) Levi-nondegenerate point(s), there are many Levi-
degeneracies that the hypersurface may have. Indeed, the class of generically Levi-
nondegenerate real-analytic hypersurfaces provides a natural generalization to (n+1)-
dimensional complex euclidean space of the class of real-analytic Levi-nonflat hyper-
surfaces in C2. Consequently, Theorem 1.2 may be seen as a generalization of the
mentioned result of [16]. On the other hand, this class also contains the important
class of real-analytic hypersurfaces containing no analytic discs for which the finite
jet determination property is already known to hold in view of the results of [3] and
for which the methods of this paper offer a completely different new proof.

As explained above, the only remaining set Σ1 ⊂ M to be dealt with in Theo-
rem 1.2 is that of nonminimal points. However, our proof applies at every point of
a hypersurface M satisfying the required conditions regardless of the minimality or
nonminimality of the base point. In that respect, our approach is new and differs
from the previous ones.

Our proof consists of blowing up a hypersurface M satisfying the assumptions
of Theorem 1.2 near an arbitrary point p ∈ M . In the preimage of the blow-up
of M , we will obtain a nonminimal real-analytic hypersurface M̂ ⊂ CN through
the origin (Proposition 5.1) which has the property that all local real-analytic CR

automorphisms of M can be lifted to CR automorphisms of M̂ provided their k-jet at
p coincides with that of the identity mapping for k sufficiently large (Proposition 5.2).
The finite jet determination property of M near p will then be reduced to the same
property for the constructed nonminimal hypersurface M̂ . Furthermore, from our
construction, we will get an explicit normal form of M̂ near the origin, which itself
follows from an explicit normal form for M near p (given in Proposition 4.3) and the
explicit form of the blow-up. The obtained explicit normal form of the nonminimal
hypersurface M̂ will allow us to use the known techniques and results of [14, 16] to

conclude that M̂ has the desired finite jet determination property.

Though the content of this paper is focused on Conjecture 1.1, we should mention
that there has been recently a lot of work on several different aspects of the finite jet
determination of CR maps. In addition to the papers already mentioned above, we
also refer the reader to the papers [7, 28, 8, 19, 13, 23, 22, 21, 15, 20, 24, 27, 25] and
the surveys [4, 34, 31] for more detailed discussions on these various aspects.

The paper is organized as follows. After settling the notation used throughout
the paper in §2, we introduce in §3 a special class of (germs of) nonminimal real-
analytic hypersurfaces of Cn+1 and prove the finite jet determination of their local
CR automorphisms by following mainly the arguments of [14, 16]. Such a result will
be of fundamental importance at the end of the paper since we will show through §4 –
§5 that the study of the finite jet determination problem for local CR automorphisms
between real-analytic hypersurfaces satisfying the conditions of Theorem 1.2 can be
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reduced to that of CR automorphisms of the special class of nonminimal hypersurfaces
defined in §3. Let us also mention that §3 and §4–§5 are completely independent.

2. Notation. Throughout the paper, given positive integers r, k, q we denote by
Jr

0,0(C
k,Cq) the jet space of order r of germs of local holomorphic maps h : (Ck, 0) →

(Cq, 0); the r-jet of h at 0 is denoted by jr
0h.

For every real-analytic hypersurface M ⊂ Cn+1 and for every point p ∈ M , we
denote by Aut(M,p) the group of germs at the origin of real-analytic CR automor-
phisms of M or, equivalently, of biholomorphisms of Cn+1 fixing p and sending (the
germ of) M into itself. In this paper, the choice of the reference point p will always
be fixed (and we will usually have p equal to the origin in Cn+1). Recall that a choice
of local holomorphic coordinates (z, w) ∈ Cn × C, vanishing at p, is called normal if
M can be locally given in these coordinates by an equation of the form

(2.1) w = Q(z, z̄, w̄)

for some holomorphic function Q = Q(z, χ, τ) defined near the origin in C2n+1 satis-
fying

(2.2) Q(z, 0, τ) = Q(0, χ, τ) = τ, Q(z, χ, Q̄(χ, z, w)) = w,

where here, and for the remainder of the paper, we denote by h̄ the series obtained
by taking complex conjugates of the coefficients of the power series h. It is well-
known that such a choice of normal coordinates always exists (see e.g. [2]). In the
remainder of the paper, we will often use the single notation (z, w) for a choice of
normal coordinates that may change in various propositions and lemmas.

3. Finite jet determination for a special class of nonminimal hypersur-

faces. The appropriate class of nonminimal hypersurfaces under study in this section
is given in the following.

Definition 3.1. A germ of a real-analytic hypersurface M ⊂ Cn+1 through the
origin will be called a good nonminimal hypersurface if there exists a choice of normal
coordinates (z, w) ∈ Cn × C such that M is given by an equation of the form (2.1)
with the function Q satisfying

Q(z, χ, τ) = τ + τmi〈z, χ〉+ τm+1Θ(z, χ, τ),

where m is some positive integer, 〈z, χ〉 = ǫ1 z1χ1 + · · ·+ ǫn znχn, ǫj ∈ {−1, 1} and Θ
is some holomorphic function near 0 ∈ C2n+1.

Let us note that a good nonminimal hypersurface M is of m-infinite type (in
the sense of [29, 14]) and that it can also be defined in normal coordinates by a real
equation of the form

(3.1) Imw = ϕ(z, z̄,Rew) = (Rew)m〈z, z̄〉 +O
(
(Rew)m+1

)
,

where ϕ is some real-analytic function near the origin in R2n+1. For this and further
notions and standard facts about nonminimal (or equivalently, infinite type) hyper-
surfaces, we refer the reader to the papers [29, 14, 26].

The goal of this section is to provide a proof of the following result:

Proposition 3.2. Let M ⊂ Cn+1 be a germ through the origin of a good nonmin-

imal real-analytic hypersurface. Then (M, 0) has the finite jet determination property:
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There exists a positive integer K such that if H : (Cn+1, 0) → (Cn+1, 0) is a local bi-

holomorphism sending M into itself with the same K-jet at the origin as that of the

identity mapping, then H is the identity.

Remark 3.3. At this point, we should mention that the proof of Proposition 3.2
could be achieved by essentially combining several arguments and results from the
papers [14, 16]. For the reader’s convenience, we will give a complete proof of this
result here, which avoids referring to too many results in the literature. As in [14], we
shall derive a singular complete system of differential equations for the automorphisms
of the hypersurfaces considered in Proposition 3.2. Due to the special normal form
of the hypersurfaces, the construction of this complete system has the advantage to
be shorter and substantially easier than in [14]; in particular, we are not forced to
work on the tangent bundle of the manifolds in this paper. A suitable adaptation of
the arguments in [16] then gives the desired finite jet determination property for the
hypersurfaces under consideration.

For the proof of Proposition 3.2, we fix a choice of normal coordinates (z, w) for
(M, 0) satisfying the conditions of Definition 3.1, and in these coordinates, we split
every H ∈ Aut(M, 0) as follows H = (F,G). We also use the notation used in the
definition. We start with the following known fact.

Lemma 3.4. Let M , m and H = (F,G) be as given above. Then

(3.2) Gwℓ(z, 0) = Gwℓ(0) ∈ R, ℓ ≤ m.

Proof. Since H sends M into itself, we have the identity

(3.3) G(z,Q(z, χ, τ)) = Q(F (z,Q(z, χ, τ)), F̄ (χ, τ), Ḡ(χ, τ)),

which holds for (z, χ, τ) ∈ C2n+1 close enough to (0, 0, 0). Since M is a good nonmin-
imal hypersurface and since H is invertible, we have the following relations

G(z,Q(z, χ, τ)) = G(z, τ) + iτmGw(z, τ)〈z, χ〉 +O(τm+1)

and

Q(F (z,Q(z, χ, τ)), F̄ (χ, τ), Ḡ(χ, τ)) = Ḡ(χ, τ)+iḠ(χ, τ)m〈F (z, 0), F̄ (χ, 0)〉+O(τm+1).

Therefore expanding both sides of (3.3) as power series in τ , and comparing the
coefficients of τ ℓ for ℓ < m, we get

Gwℓ(z, 0) = Ḡwℓ(χ, 0);

thus, (3.2) follows for ℓ < m. Comparing the coefficient of τm in (3.3), we also obtain

Gwm(z, 0) +Gw(z, 0)i〈z, χ〉 = Ḡτm(χ, 0) + iḠτ (χ, 0)m〈F (z, 0), F̄ (χ, 0)〉;

Now setting χ = 0 we obtain (3.2) for ℓ = m. This completes the proof of the lemma.

Keeping the notation defined above, for every H ∈ Aut(M, 0), thanks
to Lemma 3.4 we may write G(z, w) = P (w) + wmG2(z, w) where P (w) =∑m−1

j=1
G

wj (0)

j! wj . Note that P (w) = P̄ (w) and that if m > 1, P (w) = wP̃ (w) with
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P̃ (0) 6= 0 (for m = 1, we have P̃ ≡ 0). When H is the identity mapping, the above
splitting is written as follows Id = (F 0, G0) with G0(z, w) = P 0(w) + wmG0

2(z, w).
(Note that G0

2 ≡ 0 if m > 1 and G0
2 ≡ 1 if m = 1.) Observe furthermore that for

every H ∈ Aut(M, 0), we may write P (w̄) − P (w) = (w̄ − w)Q(w, w̄, jm−1
0 G) and

P̃ (w) = T (w, jm−1
0 G) where Q, T are universal polynomials in all their arguments.

We will first proceed to derive a singular complete system for the mapping V :=
(F,G2)|M associated to any H ∈ Aut(M, 0) provided the (m + 2)-jet of H (at 0) is
sufficiently close to that of the identity mapping. In the complete system, we will keep
the coefficients of P , or equivalently the (m− 1)-jet of G at 0, as parameters. To this
end, we need to introduce some further notation. Since M may also be defined near
the origin by an equation of the form (3.1), we may use t := (z, z̄, s) where s = Rew
as real-analytic coordinates for M near 0 and we also write θ := (Re z, Im z). The
precise singular complete system we need is given in the following lemma.

Lemma 3.5. In the above setting, there exists a real-analytic map Υ defined in a

neighbourhood of the point ̟0 := (0, jm−1
0 G0, (((sm∂c

s)∂
d
θV

0)(0))c+|d|≤2) such that for

every H ∈ Aut(M, 0) with jm+2
0 H sufficiently close to jm+2

0 Id, the following identity

holds for (θ, s) sufficiently close to 0 ∈ R2n+1:

(3.4)

((
sm ∂

∂s

)a
∂|b|

∂θb
V

)

a+|b|≤3

= Υ

(
θ, s, jm−1

0 G,

((
sm ∂

∂s

)c
∂|d|

∂θd
V

)

c+|d|≤2

)
.

Here V = (F,G2)|M and V 0 := (F 0, G0
2)|M are as defined above and t = (θ, s) are

used as local coordinates for M near 0.

Proof. For every H ∈ Aut(M, 0), since H sends M into itself, we have the
following “basic equality”

G(z, w) = Q(F (z, w), F̄ (z̄, w̄), Ḡ(z̄, w̄))(3.5)

= Ḡ(z̄, w̄) + i
(
Ḡ(z̄, w̄)

)m
〈F (z, w), F̄ (z̄, w̄)〉

+
(
Ḡ(z̄, w̄)

)m+1
Θ(F (z, w), H̄(z̄, w̄)),

which is valid for (z, w) ∈ M close to 0. Using the local real-analytic coordinates t,
then (3.5) is valid for all t in a neighbourhood of 0 in R

2n+1, where we now think of
z, w, z̄, w̄ as real-analytic functions of t. Since M is of m-infinite type, m ≥ 1, the
functions w = w(t) and w̄ = w(t) have the following properties:

(P1) The function A(t) := w(t)/w(t) is real-analytic (near 0) and its value at the
origin given by 1;

(P2) We have w − w̄ = O(sm); this implies that the function B(t) := (w(t) −
w(t))/(w(t))m is also real-analytic near 0.

We rewrite the basic equation (3.5) as

wmG2(z, w) = (P (w̄) − P (w)) + w̄mḠ2(z̄, w̄)

+i (w̄m)
(

¯̃P (w̄) + w̄m−1Ḡ2(z̄, w̄)
)m

〈F (z, w), F̄ (z̄, w̄)〉

+w̄m+1
(

¯̃P (w̄) + w̄m−1Ḡ2(z̄, w̄)
)m+1

Θ(F (z, w), F̄ (z̄, w̄), w̄ ¯̃P (w̄)(3.6)

+w̄mḠ2(z̄, w̄)),

which holds for all t ∈ R2n+1 sufficiently close to 0. In what follows, if the variables
are not written, it is understood that barred functions have (z̄, w̄) as their arguments,
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while unbarred functions have (z, w) as arguments. It is also understood that we still
view the functions (z, z̄, w, w̄) as functions of t, but we do not write it in order to
avoid too heavy equations.

In view of Properties (P1) and (P2), we may divide (3.6) by wm and obtain an
identity of the form

(3.7)

G2 = B(t)Q(w, w̄, jm−1
0 G) + (A(t))m Ḡ2

+i (A(t))
m (

T̄ (w̄, jm−1
0 G) + w̄m−1Ḡ2

)m
〈F, F̄ 〉

+w̄ (A(t))
m (

T̄ (w̄, jm−1
0 G) + w̄m−1Ḡ2

)m+1
Θ(F, F̄ , w̄T̄ (w̄, jm−1

0 G) + w̄mḠ2),

valid for all t ∈ R2n+1 sufficiently close to 0. Notice that we may rewrite the expression

(
T̄ (w̄, jm−1

0 G) + w̄m−1Ḡ2

)m+1
Θ(F, F̄ , w̄T̄ (w̄, jm−1

0 G) + w̄mḠ2)

in the following form

R(t, F, F̄ , Ḡ2, j
m−1
0 G)

for some universal function R in all its arguments (depending only onM) holomorphic
in some neighbhourhood of {0}×C× Jm−1

0,0 (Cn+1,C) ⊂ C
4n+1 ×C× Jm−1

0,0 (Cn+1,C).
We now proceed by differentiating the identity

(3.8) G2 = B(t)Q(w, w̄, jm−1
0 G) + (A(t))m Ḡ2+

i (A(t))
m (

T̄ (w̄, jm−1
0 G) + w̄m−1Ḡ2

)m
〈F, F̄ 〉 + w̄ (A(t))

m
R(t, F, F̄ , Ḡ2, j

m−1
0 G)

with respect to the CR vector fields on M . To this end, with our choice of coordinates
for M , we choose as a basis of the CR structure on M the following vector fields

Lj :=
∂

∂z̄j
−

ϕz̄j

ϕs − i

∂

∂s
, j = 1, . . . , n.

In what follows, a multiindex J is a finite sequence (J1, . . . , Jℓ) ⊂ {1, . . . , n}ℓ and
we denote by |J | := ℓ the length of J . Then LJ (resp. L̄J) denotes the differential
operator LJ1

. . . LJℓ
(resp. L̄J1

. . . L̄Jℓ
).

We now apply Lj to (3.8) for every j = 1, . . . , n. Since LjG2 = 0, we obtain an
equation of the form

(3.9) 0 = Ψj

(
t, F, F̄ , Ḡ2, LjF̄ , LjḠ2, j

m−1
0 G

)
,

for t ∈ R2n+1 close to 0, where Ψj is holomorphic in a neighbourhood of {0}×C×Cn×
C× Jm−1

0,0 (Cn+1,C) ⊂ C6n+3 × Jm−1
0,0 (Cn+1,C) (and independent of the mapping H).

We denote by A = (A1, . . . , An) the second set of variables appearing in the function
Ψj (and in which the map F appears). We now evaluate the partial derivative of
Ψj with respect to Ak at the reference point corresponding to the identity mapping.
Using the fact that Ljw̄(0) = 0 and A(0) = 1, we obtain

∂Ψj

∂Ak
(0, 0, 0, Ḡ0

2(0), LjF̄
0(0), LjḠ

0
2(0), jm−1

0 G0) = iǫkδj,k,

where δj,k denotes the Kronecker symbol. Thus, we may apply the Implicit Func-
tion Theorem to the equations (3.9) for j = 1, . . . , n and conclude that there
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exists a Cn-valued holomorphic map Φ defined in a neighbourhood of η0 :=
(0,
(
(LαF̄ 0(0), LαḠ0

2(0))
)
|α|≤1

, jm−1
0 G0) in C2n+1 × C(n+1)2 × Jm−1

0,0 (Cn+1,C) such

that for every H ∈ Aut(M, 0) whose (m + 1)-jet at 0 is sufficiently close to that of
the identity mapping, then

(3.10) F = Φ
(
t,
(
LαF̄ , LαḠ2

)
|α|≤1

, jm−1
0 G

)
,

for t ∈ R2n+1 close to 0. Plugging (3.10) into (3.8) we get an analogous equation for
G2. For every map H ∈ Aut(M, 0) as above, recalling that V = (F,G2)|M , we get
that V satisfies an identity in the neighbourhood of the origin in R2n+1 of the form

(3.11) V = Ξ
(
t,
(
LαV̄

)
|α|≤1

, jm−1
0 G

)
,

where Ξ is a Cn+1-valued holomorphic map defined in a neighbourhood of η0. In what
follows, the elements H ∈ Aut(M, 0) for which jm+1

0 H is close enough to jm+1
0 Id so

that (3.11) holds will be called admissible maps.
Having established (3.11), we can now use arguments similar to [14] but somewhat

easier and closer to the paper of Han [18] in order to derive the desired singular
complete system. For this, we set

S := sm ∂

∂s
,

and note that we have the commutation identities

(3.12) [Lj, Lk] = 0,
[
Lj , L̄k

]
= aj,kS, [Lj , S] = bjS, j, k = 1, . . . , n,

where the aj,k and the bj are germs of real-analytic functions at 0 ∈ R
2n+1, and

aj,j(0) 6= 0.
Let us now recall the following fact from [14, Proposition 4.3]: for any multi-index

J , integer k ≥ 1, there exist real-analytic functions be1...em
q near 0 in R2n+1 such that

(3.13)

|J|+k∑

m=1

k∑

q=0

be1...em
q [. . . [L̄e1

. . . L̄em
, L1], L1] . . . , L1]︸ ︷︷ ︸

length q

= L̄JSk.

Here the length of the commutator [. . . [X,Y1], Y2] . . . , Yq] is q.
For every integer j and multiindex J , we use the notation Λj,J to denote new

variables lying in Cn+1 and λ for a jet in the space Jm−1
0,0 (Cn+1,C). Further, for

every nonnegative integers p and q, we denote by Cp,q (resp. C̄p,q) the set of Cn+1-

valued holomorphic maps A = A
(
t, (Λj,J) j+|J|≤p

j≤q

, λ
)

that are polynomials in the

variables (Λj,J)j>0 and (Λ0,J)|J|>1 with holomorphic coefficients in a neighbourhood

of ω0 := (0,
(
(LJ F̄ 0(0), LJḠ0

2(0))
)
|J|≤1

, jm−1
0 G0) in C2n+1×C(n+1)2×Jm−1

0,0 (Cn+1,C)

(resp. in a neighbourhood of ω̄0).
Applying L̄j to (3.11) and using the fact that L̄j V̄ = 0, we get that for every

j = 1, . . . , n, there exists a map Ξj ∈ C1,1 such for all admissible maps H

(3.14) L̄jV = Ξj(t, (L
JSV̄ ) j+|J|≤1

j≤1

, jm−1
0 G).

Due to the commutation identities (3.12), further applications of any vector field L̄k

to (3.14) will not increase the order of differentiation of the arguments of the right
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hand side of (3.14), and therefore for every multiindex E, there exists ΞE ∈ C1,1, such
that for every admissible map H , the following identity holds in a neighbourhood of
the origin in R2n+1

(3.15) L̄EV = ΞE(t, (LJSjV̄ ) j+|J|≤1

j≤1

, jm−1
0 G).

In order to get a similar identity for the map LJSkV for every multiindex J and
integer k, we note that the commutator identity (3.13) and the fact that L1V = 0
imply that we just need to apply at most |J |+k vector fields of the family {L̄1, . . . , L̄n}
to (3.11), followed by an application of at most k instances of L1. Therefore to get
the desired equations for the expressions LJSkV we only need to apply at most k
instances of the vector field L1 to (3.15). We thus get for every multiindex E the
existence of ΞE,k ∈ C1+k,1 such that

Lk
1L̄

EV = ΞE,k

(
(t, (LJSj V̄ ) j+|J|≤1+k

j≤1

, jm−1
0 G

)
,

for t close to 0 ∈ R2n+1 and hence for every J and k, there exists Ξ̃J,k ∈ C1+k,1 such
that for all admissible maps H ,

(3.16) L̄JSkV = Ξ̃J,k

(
(t, (LKSℓV̄ ) ℓ+|K|≤1+k

ℓ≤1

, jm−1
0 G

)
.

Taking the complex conjugate of (3.16) for k = 1 and plugging the resulting equation
into (3.16) for |J | + k ≤ 3, we get for any such J and k a map Ξ̂J,k ∈ C̄2,1 such that
for all admissible maps H ,

(3.17) L̄JSkV = Ξ̂J,k

(
t, (L̄KSℓV ) ℓ+|K|≤2

ℓ≤1

, jm−1
0 G

)
,

in a neighbourhood of the origin in R2n+1. Since LνV = 0 for all ν = 1, . . . , n,
rewriting the system (3.17) in the real coordinates t = (θ, s) we get that each map V
as above satisfies a singular complete system of order 3, i.e. that (3.4) is satisfied for
every map V corresponding to a map H ∈ Aut(M, 0) for which jm+2

0 H is sufficiently
close to jm+2

0 Id. This completes the proof of Lemma 3.5.

Proof. [Proof of Proposition 3.2] Keeping the previously defined notation, we
shall prove that there exists an integer K ≥ (m + 4) such that if H ∈ Aut(M, 0)
satisfies jK

0 H = jK
0 Id then the complete system satisfied by the corresponding map

V = (F,G2)|M (and given in Lemma 3.5) has only V 0 as a solution, which shows that
H = Id.

We start by considering only those H ∈ Aut(M, 0) for which jm+4
0 H = jm+4

0 Id
and making the following observation. In view of Lemma 3.5 all such maps have
their component V = (F,G2)|M that satisfy the same complete system. For all such
V ’s, the map V (θ, 0) satifies an ordinary complete system of order 3 (in the variable
θ), and, therefore, V (θ, 0) is real-analytically parametrized by its 2-jet at 0 (see e.g.
[13, Proposition 3.54]). Similarly, after differentiating (3.4) with respect to s ℓ times,
we see that for every integer ℓ the maps Vsℓ(θ, 0) satisfy analogously an ordinary
complete system of order 3 and, hence, such maps Vsℓ(θ, 0) are also real-analytically
parametrized by the (ℓ + 2)-jets of V at 0.

Next, writing for every V as above

U(θ, s) :=

((
sm ∂

∂s

)a
∂|b|

∂θb
V

)

a+|b|≤2

, U(θ, s) := U(θ, s) − U(θ, 0),
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and U0, U0 for the corresponding maps obtained from V 0, we note that it follows
from the observation and the assumption jm+4

0 H = jm+4
0 Id that U(θ, 0) = U0(θ, 0).

It therefore follows from (3.4) that U fulfills a real-analytic equation of the form

sm ∂U

∂s
(θ, s) = Υ̃

(
θ, s, jm−1

0 G0,U(θ, s) + U0(θ, 0)
)
,

where Υ̃ is real-analytic in a neighbhourhood of ̟0 (where ̟0 is given in Lemma 3.5).
Since U(θ, 0) = 0, we are now in a position to apply the determination theorem [16,
Theorem 5.1] which provides an integer k such that if U satisfies Usj (θ, 0) = U0

sj (θ, 0)
for j ≤ k, then U(θ, s) = U0(θ, s). But, again, in view of the observation, the last
condition is fulfilled provided the (k + 4)-jet of V at 0 agrees with that of V 0. Now
setting K := m + 4 + k, we get the desired result. The proof of the proposition is
complete.

4. A normal form for a generically Levi-nondegenerate real-analytic

hypersurface. The goal of this section is to provide, for any connected real-analytic
hypersurface M ⊂ Cn+1 which is Levi-nondegenerate at some point, a normal form
for the hypersurface near any of its points. This normal form will be provided by
Proposition 4.3 below.

In the following lemma, the notation T c
pM denotes the usual complex tangent

space of M at p (see e.g. [2]). The content of the following lemma is well-known, but
for the reader’s convenience we provide a proof.

Lemma 4.1. Let M ⊂ Cn+1 be a real-analytic hypersurface and p ∈ M . Let

Γ be a real-analytic curve passing through p that is transverse to T c
pM . Then there

exists a choice of normal coordinates (z, w) ∈ Cn × C for M near p, vanishing at p,
such that the germ at p of Γ is given in these coordinates by the germ of the real line

{(0, s) : s ∈ (R, 0)}.

Proof. We first choose an arbitrary set of normal coordinates (z′, w′) ∈ Cn × C,
vanishing at p, so that M is given near the origin by an equation of the form

(4.1) Imw′ = ψ(z′, z̄′,Rew′),

with ψ real-analytic in a neighborhood of 0 ∈ R2n+1 and satisfying ψ(z′, 0,Rew′) =
ψ(0, z̄′,Rew′) ≡ 0. Let (R, 0) ∋ t 7→ γ(t) ∈ (Cn+1, 0) be a parametrization of the
curve Γ near the origin. Since Γ is transverse to T c

pM by assumption, we may assume,
after reparametrizing the curve if necessary that γ(t) = (β(t), η(t)) ∈ Cn × C with
η(t) = t + iψ(β(t), β(t), t) for t ∈ R close enough to the origin. In what follows, we
shall complexify the maps β and η and keep the same notation for the complexified
maps. By the implicit function theorem, (4.1) is equivalent to an equation of the
form w′ = Q′(z′, z̄′, w̄′) for some holomorphic function Q′ near the origin in C2n+1

satisfying (2.2) (with Q replaced by Q′). Consider the coordinates (z, w) ∈ Cn × C

defined by the following holomorphic change of variables:

(4.2)

{
z′ = z + β(w),

w′ = Q′(z + β(w), β̄(w), η̄(w)).

By using the normality of the (z′, w′) coordinates and the fact that η(w) =
Q′(β(w), β̄(w), η̄(w)) for w ∈ C close to 0 (which comes from the fact that Γ ⊂ M),
the reader can verify that the obtained (z, w) coordinates satisfy all the requirements
of the lemma. The proof of Lemma 4.1 is complete.
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We now go through the construction of the desired normal form for a real-analytic
generically Levi-nondegenerate hypersurface. In what follows, for any matrix U with
entries in C, we set U∗ := tU , where tU denotes the transpose matrix of U . We will
make use of the following result that goes back to Rellich [30] (see also [17]):

Proposition 4.2. Let A(s) be a complex-valued k × k matrix whose entries

depend real-analytically on s ∈ (a, b) ⊂ R. Assume that A(s) is hermitian for every

s ∈ (a, b). Then there exists a k × k unitary matrix U(s), depending real-analytically

on s ∈ (a, b) such that the matrix

U(s)A(s)U∗(s)

is a diagonal matrix (with real-analytic entries in s).

Proposition 4.2 is the main ingredient for the construction of the following normal
form.

Proposition 4.3. Let M ⊂ Cn+1 be a connected real-analytic hypersurface whose

Levi form is nondegenerate at some point. Then, for every p ∈M , there exist normal

coordinates (z, w) ∈ Cn × C, vanishing at p, such that M near p is given in these

coordinates by an equation of the following form

(4.3) Imw =
n∑

j=1

ǫj |zj|
2 (Rew)bj θj(Rew) +R(z, z̄,Rew),

where each ǫj ∈ {−1, 1}, bj ∈ N, b1 ≥ b2 ≥ . . . ≥ bn, θj is a real-analytic function

near 0 ∈ R satisfying θj(0) = 1, and R is a real-analytic function near 0 ∈ R2n+1

satisfying

R(z, 0,Rew) = R(0, z̄,Rew) ≡ 0, and R(z, z̄,Rew) = O(|z|3).

Proof. Since the set of Levi-nondegenerate points is dense in M , we may choose
a real-analytic curve Γ passing through p, transverse to T c

pM , and passing through a
Levi-nondegenerate point ofM . Shrinking furthermore the curve Γ near p if necessary,
we may assume that p is the only point of Γ where M may be Levi-degenerate. By
Lemma 4.1, we may choose normal coordinates, that we denote by (z′, w′), vanishing
at p, such that M is given by an equation of the form

Imw′ = φ(z′, z̄′,Rew′),

with φ real-analytic near the origin in R2n+1, φ(z′, 0,Rew′) = φ(0, z̄′,Rew′) ≡ 0 and
such that the germ at p of the curve Γ is given by (the germ at 0 of) the real line
{(0, s) : s ∈ R}. From the construction, we also know that for s ∈ R sufficiently
small, the n×n matrix A(s) := φzz̄(0, s) is nondegenerate for all s 6= 0. Since A(s) is
hermitian for each s close to 0, we may apply Proposition 4.2 to get the existence of
a unitary matrix U(s) real-analytic near the origin satisfying

(4.4) U(s)A(s)U∗(s) = D(s) =




D1(s) 0 0

0
. . . 0

0 0 Dn(s)


 ,

with eachDj , j = 1, . . . , n, being a nonzero real-analytic function near the origin, with
the origin as the only possible zero for each Dj . We now construct the desired normal



212 B. LAMEL AND N. MIR

coordinate system (z, w) by defining it through the following holomorphic change of
variables:

(4.5)

{
z′ = U(w) · z

w′ = w

Here again, we also use the notation U to mean the complexification of U to a suffi-
ciently neighbourhood of 0 in C. In the new (z, w) coordinates, the germ of M at 0
is given by the equation

Imw = φ(U(w) · z, U(w) · z,Rew),

or equivalently, by using the implicit function theorem by another equation of the
form

Imw = Φ(z, z̄,Rew),

for some other real-analytic function Φ defined near the origin in R2n+1. It is easy to
check that (z, w) are normal coordinates forM i.e. that Φ(z, 0,Rew) = Φ(0, z̄,Rew) ≡
0 and that the n × n matrix Φzz̄(0, s) is equal to D(s). From this, it is not difficult
to derive the final normal form given by (4.3), rescaling and interchanging the z-
coordinates if necessary. The proof of Proposition 4.3 is therefore complete.

5. Resolution of degeneracies via blow-ups and proof of Theorem 1.2.

5.1. The blow-up procedure. Throughout §5.1, we fix a germ of a real-
analytic hypersurface M through the origin in Cn+1 for which there exists a system
of normal coordinates (z, w) = (z1, . . . , zn, w) ∈ Cn × C, that we also fix for the re-
mainder of this section, such that M is given by an equation of the form (4.3) with
all corresponding quantities satisfying the conditions of Proposition 4.3.

Our goal here is to construct a good nonminimal real-analytic hypersurface M̂ (as
defined in §3) contained in the pre-image of M under a certain explicit blow-up. It
should be mentioned that the use of blow-ups in C2 already appears for other purposes
in the papers [34, 22, 26].

The relevant statement for this paper is given by the following.

Proposition 5.1. Let M be given as above and B : Cn+1 → Cn+1 be the polyno-

mial map given by

(5.1) B(z, w) := (z1w
α1 , . . . , znw

αn , w2),

with αj := 2 + 3b1 − bj for j = 1, . . . , n. Then there exists a unique germ of a real-

analytic hypersurface M̂ through the origin in Cn+1, contained in B−1(M), which is

of the form

(5.2) Imw = (Rew)3+6b1η(z, z̄,Rew),

for some real-analytic function η defined near 0 ∈ R
2n+1. Furthermore, η satisfies

(5.3) η(z, z̄, 0) =
1

2

n∑

j=1

ǫj|zj |
2, and η(z, 0,Rew) = η(0, z̄,Rew) = 0.
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Proof. In what follows, we set s := Rew and t = Imw. First note that the set
of points (z, s + it) close to the origin that are contained in the preimage of (M, 0)
under B is given by the equation

(5.4) 2st =

n∑

j=1

ǫj |zj |
2 (s2 − t2)bj (s2 + t2)αj θj(s

2 − t2) + R̃(z, z̄, s, t),

with

(5.5) R̃(z, z̄, s, t) = R(z1w
α1 , . . . , z̄nw̄

αn ,Re (w2)).

Setting t = s3+6b1v, we will show that there exists a unique real-analytic function
v = v(z, z̄, s) such that t = s3+6b1v satisfies (5.4). Plugging t = s3+6b1v in (5.4), we
get the following equation

2s4+6b1v =

n∑

j=1

ǫj |zj|
2 s2bj+2αj (1 − s4+12b1v2)bj (1 + s4+12b1v2)αj θj(s

2 − s6+12b1v2)

+R̃(z, z̄, s, s3+6b1v).(5.6)

By our choice of αj , we have s2bj+2αj = s4+6b1 . To show that there ex-
ists a unique real-analytic function v = v(z, z̄, s) satisfying (5.6), it is enough

to see that R̃(z, z̄, s, s3+6b1v) = O(s5+6b1 ). We claim that one has even

R̃(z, z̄, s, s3+6b1v) = O(s6+6b1). Indeed, since R(z, z̄,Rew) = O(|z|3), we have

in view of (5.5) that R̃(z, z̄, s, t) = O(|w|3α1 ) = O(s3α1 ) = O(s6+6b1), proving the
claim. Dividing (5.6) by s4+6b1 , we get that v satisfies the real-analytic equation

(5.7)

2v =

n∑

j=1

ǫj |zj |
2 (1 − s4+12b1v2)bj (1 + s4+12b1v2)αj θj(s

2 − s6+12b1v2) + S(z, z̄, s, v),

with S(z, z̄, s, v) = O(s2). By the implicit function theorem, (5.7) has a unique real-
analytic function solution v = v(z, z̄, s). This proves the first part of the proposition.

For the second part of the proposition, we first notice that S(z, 0, s, v) =

R̃(z, 0, s, s3+6b1v)

s4+6b1
= 0 and similarly S(0, z̄, s, v) = 0. This proves that η(z, 0, s) =

η(0, z̄, s) = 0. Finally, the fact that η(z, z̄, 0) = 1
2

∑n
j=1 ǫj |zj |

2 clearly follows from
(5.7) and the fact that θν(0) = 1 for all ν = 1, . . . , n. The proof of Proposition 5.1 is
complete.

We now come to the crucial property satisfied by the hypersurface M̂ constructed
in Proposition 5.1.

Proposition 5.2. Let B, M and M̂ be as above. Then for every integer ℓ ≥
max {αn, 3 + 6b1}, where αn and b1 are given in Proposition 5.1, if H : (Cn+1, 0) →
(Cn+1, 0) is a holomorphic mapping sending M into itself satisfying jℓ

0H = jℓ
0Id, then

there exists a unique holomorphic map Ĥ : (Cn+1, 0) → (Cn+1, 0) sending M̂ into

itself such that B ◦ Ĥ = H ◦ B with jℓ
0Ĥ = jℓ

0Id.

Proof. Fix any integer ℓ ≥ max {αn, 3 + 6b1} and H : (Cn+1, 0) → (Cn+1, 0) a
holomorphic map sending M into itself satisfying jℓ

0H = jℓ
0Id. We first show that
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there exists a holomorphic map Ĥ : (Cn+1, 0) → (Cn+1, 0) such that B ◦ Ĥ = H ◦ B

with jℓ
0Ĥ = jℓ

0Id. Then we will show that the map Ĥ is unique and sends M̂ into
itself.

We write the map H = (F,G) ∈ C
n ×C and similarly the desired map Ĥ will be

split as follows (F̂ , Ĝ). We first note that since (z, w) are normal coordinates for M
and since jℓ

0H = jℓ
0Id, we have G(z, w) = w(1 + Ψ(z, w)), where Ψ is a convergent

power series vanishing at least to order ℓ− 1. Therefore setting

(5.8) Ĝ(z, w) = w
√

1 + (Ψ ◦ B)(z, w)

we have that Ĝ satisfies

(5.9) Ĝ2 = G ◦ B, and Ĝ(z, w) = w, up to order ℓ.

Next, we claim that if we write F = (F1, . . . , Fn), each power series Fj ◦ B is divisible
by wαj for every j = 1, . . . , n. Indeed, by assumption we may write Fj(z, w) = zj +
Φj(z, w), Φj being a power series vanishing at least up to order ℓ. Hence, since (Φj ◦
B)(z, w) = Φj(z1w

α1 , . . . , znw
αn , w2) and since each αj ≥ 2, we get that necessarily

w2(ℓ+1) divides (Φj ◦ B)(z, w) which proves the claim since 2(ℓ + 1) > αn ≥ αj for
each j. We may now set

(5.10) F̂j(z, w) :=
(Fj ◦ B)(z, w)

(Ĝ(z, w))αj

,

which defines a convergent power series in view of (5.8) and the above claim. From

(5.9) and (5.10) we automatically have H ◦ B = B ◦ Ĥ . To prove that for each
j = 1, . . . , n, Fj(z, w) = zj up to order ℓ, we write

F̂j(z, w) =
(Fj ◦ B)(z, w)

wαj
(1 + (Ψ ◦ B)(z, w))

−αj/2
,

and notice that (Fj◦B)(z, w)/wαj agrees with zj up to order (at least) 2(ℓ+1)−1−αj ≥

2ℓ+1−αn and that (1 + (Ψ ◦ B)(z, w))
−αj/2

agrees with 1 up to order (at least) 2ℓ−1.

From this we conclude that F̂j(z, w) agrees with zj up to order at least 2ℓ+1−αn ≥ ℓ,

which proves that jℓ
0Ĥ = jℓ

0Id.

The uniqueness of Ĥ is clear since there are only two possibles choices for con-
structing a power series T (z, w) such that T 2 = G ◦ B i.e. T = ±Ĝ with Ĝ as

constructed above. Since we require Ĥ to have the same ℓ-jet as that of the identity
mapping with ℓ ≥ αn ≥ 1, T = Ĝ is the only possible choice for the normal com-
ponent of Ĥ. This finally also implies the uniqueness of the other components of Ĥ
since they must satisfy (5.10).

It remains to check that the constructed holomorphic map Ĥ : (Cn+1, 0) →

(Cn+1, 0) indeed sends M̂ into itself. For this we first note that M ′ := Ĥ(M̂) defines a

real-analytic hypersurface that is of infinite type since M̂ is. Secondly, since H sends
M into itself and B ◦ Ĥ = H ◦ B, we have that Ĥ(M̂) ⊂ B−1(M). We now claim
thatM ′ is a real-analytic hypersurface of the form Imw = (Rew)3+6b1 ρ(z, z̄,Rew) for

some convergent power series ρ. From the claim, one gets that M ′ = M̂ since M̂ is the
unique real-analytic hypersurface of the above form contained in B−1(M) by Proposi-
tion 5.1. Now, the proof of the claim is easily obtained by using the following fact that
follows from our construction of the map Ĥ : one has Ĝ(z, w) = w + w2(ℓ+1)δ(z, w)
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for some power series δ. Since 2(ℓ+ 1) > 3 + 6b1, a direct computation of Ĥ(M̂), left
to the reader, shows that it has the form claimed above. The proof of Proposition 5.2
is complete.

Recall that M (resp. M̂) has the finite jet determination property at 0 if there

exists a positive integer r such that if H ∈ Aut(M, 0) (resp. H ∈ Aut(M̂, 0)) agrees
with the identity mapping at the origin up to order r, then H is the identity. As an
immediate consequence of Proposition 5.2, we obtain the following crucial result.

Corollary 5.3. If M̂ has the finite jet determination property at 0, so does M .

Remark 5.4. If, throughout this section,M is a formal real hypersurface (instead
of a real-analytic one), still of the form (4.3) with R and each θj being formal power
series, then Propositions 5.1 and 5.2 have a formal counterpart. The formal version of
Proposition 5.1 will provide a unique formal real hypersurface M̂ of the form (5.2) with
η being a formal power series satisfying also (5.3). In addition, the lifting procedure
given by Proposition 5.2 also holds in that setting for formal holomorphic maps H .
The proofs of these statements are obtained by mimicing the proofs given here in a
formal setting. The details are left to the reader.

5.2. Proof of Theorem 1.2. The proof of the theorem is achieved by combining
Proposition 4.3, Proposition 5.1, Corollary 5.3 and Proposition 3.2.
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