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LIE GROUP STRUCTURES ON AUTOMORPHISM GROUPS
OF REAL-ANALYTIC CR MANIFOLDS

By BERNHARD LAMEL, NORDINE MIR, and DMITRI ZAITSEV

Abstract. Given any real-analytic CR manifold M, we provide general conditions on M guaranteeing
that the group of all its global real-analytic CR automorphisms AutCR (M) is a Lie group (in an
appropriate topology). In particular, we obtain a Lie group structure for AutCR (M) when M is an
arbitrary compact real-analytic hypersurface embedded in some Stein manifold.

1. Introduction. There exists a wide variety of results concerned with the
structure of the automorphism group of a given geometric structure. In Rie-
mannian Geometry, the classical Myers-Steenrod theorem [MS39] states that the
group of all isometries of a Riemannian manifold is a Lie group. H. Cartan
[Ca35] proved an analogous result for the group of holomorphic automorphisms
of a bounded domain in CN . Cartan’s techniques have in turn been used to estab-
lish general results for groups of diffeomorphisms of real or complex manifolds,
see e.g. [BM45].

In this paper, we consider an analogous question for CR manifolds (that one
can think of as a boundary or CR version of Cartan’s Theorem mentioned above):

Under what conditions on a real-analytic CR manifold M is the group AutCR (M)
of all real-analytic CR automorphisms of M a Lie group in an appropriate topology?

Here for every r ∈ N∪{∞,ω}, we equip AutCR (M) with a natural topology
that we call “compact-open Cr topology”, which is defined as follows. For open
subsets Ω ⊂ Rn and Ω′ ⊂ Rn′ , consider the space Cr(Ω, Ω′) of all maps of class Cr

from Ω to Ω′. If r ∈ N∪{∞}, Cr(Ω, Ω′) is equipped with the topology of uniform
convergence on compacta together with all partial derivatives of order up to r.
In case r = ω, the space Cω(Ω, Ω′) is equipped with its topology as an inductive
limit of Fréchet spaces of holomorphic maps between open neighborhoods of Ω
and Ω′ in Cn and Cn′ respectively. The compact-open Cr topology on AutCR (M)
is now induced by the appropriate topology relative to the coordinate charts for
the maps and their inverses (see e.g. [BRWZ04] for a more detailed discussion).
For brevity, we adopt the order k <∞ < ω for any integer k.
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In this paper, we exhibit general sufficient conditions on M that provide an
affirmative answer to the above question. We begin with the following special
case of our more general results, which is particularly easy to state:

COROLLARY 1.1. Let M be a compact real-analytic hypersurface in a Stein
manifold of complex dimension at least two. Then the group AutCR (M) of all
(global) real-analytic CR automorphisms of M is a Lie group in the compact-open
Cω topology and the action AutCR (M) × M → M is real-analytic. Furthermore,
the compact-open Cr topologies on AutCR (M) coincide for r = ∞,ω and r ≥ k,
where k is an integer depending only on M.

Corollary 1.1 is a direct consequence of the following more general result that
also applies to CR manifolds of higher codimension. In the following statement,
the notions of essential finiteness, finite nondegeneracy and minimality must be
understood in the sense of [BER99b] (see also Section 3 for more details).

THEOREM 1.2. Let M be a real-analytic CR manifold. Assume that M has finitely
many connected components, is minimal everywhere and that there exists a compact
subset K ⊂ M such that:

(i) M is essentially finite at all points of K;
(ii) M is finitely nondegenerate at all points of M \ K.

Then AutCR (M) is a Lie group in the compact-open Cω topology and the action
AutCR (M)×M → M is real-analytic. Furthermore, the compact-openCr topologies
on AutCR (M) coincide for r = ∞,ω and r ≥ k for some integer k, where k is an
integer depending only on M.

Theorem 1.2 provides a generalization of all known corresponding results for
real-analytic CR manifolds. It also covers new situations, such as in Corollary 1.1;
indeed, any real-analytic compact hypersurface in a Stein manifold is essentially
finite and minimal at each of its points (see e.g. [DF78], [BER99b]).

For the case of real hypersurfaces whose Levi form is nondegenerate at every
point, the conclusion of Theorem 1.2 follows from the work of E. Cartan [Ca32a],
[Ca32b], Chern-Moser [CM74], Tanaka [Ta67] and Burns-Schnider [BS77]. For
the case of Levi-degenerate CR manifolds, the same conclusion was recently
obtained by Baouendi, Rothschild, Winkelmann and the third author [BRWZ04]
for the class of finitely nondegenerate minimal CR manifolds, which corresponds
here to our Theorem 1.2 with K = ∅. (We should point out that the results in those
papers also apply for merely smooth CR manifolds as well, based on the previous
work [KZ05], but in this paper we shall focus on the real-analytic category.)

In addition to the compact hypersurface case considered in Corollary 1.1,
an important class of CR manifolds for which the previously known results do
not apply and for which the conclusion of Theorem 1.2 holds is that of compact
minimal real-analytic CR submanifolds embedded in a Stein manifold. Again, the
condition of essential finiteness holds here at every point, see [DF78], [BER99b]
(whereas the condition of finite nondegeneracy holds only outside a proper real-
analytic subvariety which need not be empty in general); Therefore taking K = M
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in Theorem 1.2, we obtain the following extension of Corollary 1.1 to higher
codimension:

COROLLARY 1.3. Let M be a compact real-analytic CR submanifold in a Stein
manifold. Assume that M is minimal at every point. Then the group AutCR (M) of all
(global) real-analytic CR automorphisms of M is a Lie group in the compact-open
Cω topology and the action AutCR (M) × M → M is real-analytic. Furthermore,
the compact-open Cr topologies on AutCR (M) coincide for r = ∞,ω and r ≥ k,
where k is an integer depending only on M.

On the other hand, Theorem 1.2 also applies to cases with M noncompact also
not covered by previously known results. Let us illustrate this with an example:

Example 1.4. The hypersurface M ⊂ C2 given by

|z|2 − |w|4 = 1

is Levi-nondegenerate at all its points except the circle S1 × {0} ⊂ M, where M
is essentially finite. Hence, Theorem 1.2 applied with K := S1 × {0}, yields that
AutCR (M) is a Lie group. On the other hand, M is not finitely nondegenerate at
any point of K and hence the results from [BRWZ04] do not apply to M.

Our proof of Theorem 1.2 makes use of the recent developments providing a
relationship between various notions and results concerning jet parametrization of
local CR diffeomorphisms [BER97], [Z97], [BER99a], [E01], [KZ05], [LM07]
and Lie group structures on (local and) global groups of automorphisms of CR
manifolds [BRWZ04]. In the next section, we give in Theorem 2.2 new sufficient
conditions on a connected real-analytic CR manifold M, in terms of local jet
parametrization properties of CR automorphisms, that ensure that AutCR (M) is
a Lie group. Then the remainder of the paper is devoted to prove that under the
assumptions of Theorem 1.2 the conditions of Theorem 2.2 are fulfilled. To this
end, we establish, following the analysis of the first two authors’ paper [LM07],
a new parametrization theorem (Theorem 3.1) for local CR automorphisms that
may be of independent interest. The proof of Theorem 1.2 is given in Section 5.
We conclude the paper by giving in Section 6 an alternative proof of Corollary 1.3
following [Z97] that does not make use of Theorem 2.2 but requires compactness
of the manifold M.

Acknowledgments. The third author would like to thank A. Isaev for helpful
discussions.

2. New sufficient conditions for the automorphism group being a Lie
group. Let M be a real-analytic manifold and k a positive integer. We use the
notation Gk(M) for the fiber bundle of all k-jets of local real-analytic diffeomor-
phisms of M. For every point p ∈ M, we denote by Gk

p(M) the fiber of Gk(M)
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at p. Given a germ of a local real-analytic diffeomorphism h: (M, p) → M, we
write jkph ∈ Gk

p(M) for the corresponding k-jet. For instance, jkp id is the k-jet of
the identity map of M, regarded as a germ at p. In local coordinates, jkph is given
by the source p, the target h(p) and the collection of all partial derivatives of h
at p up to order k. (See e.g. [GG73] for more details on this terminology.)

We now fix an arbitrary set S of germs of local real-analytic diffeomorphisms
h: (M, p) → M with possibly varying reference point p ∈ M and, as in [BRWZ04],
consider the following condition.

Definition 2.1. Let k be a positive integer and p0 ∈ M. We say that S has
the real-analytic jet parametrization property of order k at p0 if there exist open
neighborhoods Ω′ of p0 in M, Ω′′ of jkp0

id in Gk(M) and a real-analytic map
Ψ: Ω′ ×Ω′′ → M such that, for every germ h: (M, p) → M in S with p ∈ Ω′ and
jkph ∈ Ω′′, the identity h(·) ≡ Ψ(·, jkph) holds in the sense of germs at p.

The following theorem is one of the key ingredients in the proof of Theo-
rem 1.2.

THEOREM 2.2. Let M be a connected real-analytic CR manifold. Assume that
there exist an integer k and a compact subset K ⊂ M such that the following holds:

(i) For every p0 ∈ K, the set of all germs at p0 of local CR diffeomorphisms of
M has the real-analytic jet parametrization property of order k at p0;

(ii) The set of all germs at all points of local CR diffeomorphisms has the real-
analytic jet parametrization property at every point p0 ∈ M \K of some finite order
possibly depending on p0.
Then AutCR (M) is a Lie group in the compact-open Cω topology and the action
AutCR (M)×M → M is real-analytic. Furthermore, the compact-openCr topologies
on AutCR (M) coincide for r = ∞,ω and r ≥ k, where k is an integer depending
only on M.

In the case K = ∅, Theorem 2.2 is contained in [BRWZ04]. Heuristically
speaking the points of M\K in Theorem 2.2 (ii) fulfill a “strong” jet parametriza-
tion property (namely, a so-called complete system in the sense of [KZ05],
[BRWZ04]). In Theorem 2.2, we allow some points to satisfy a weaker prop-
erty (namely condition (i)), but we have to pay the price by requiring that all
these points lie in a compact subset of M.

Proof of Theorem 2.2. Let K ⊂ M be the compact subset as in Theorem 2.2.
We first apply the parametrization property for the set of all germs at a fixed
point p0 ∈ K, which holds in view of (i); without loss of generality we may
assume that K is nonempty. By Definition 2.1, for every fixed p0 ∈ K, we can
find open neighborhoods Ω′ of p0 in M, Ω′′ of jkp0

id in Gk(M) and a real-analytic
map Ψ: Ω′ × Ω′′ → M such that, for every germ h: (M, p0) → M of a local CR
diffeomorphism of M with jkp0

h ∈ Ω′′, we have the identity h(·) ≡ Ψ(·, jkp0
h) in

the sense of germs at p0. Let Ω̃′ (resp. Ω̃′′) be a smaller neighborhood of p0 in
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Ω′ (resp. of jkp0
id in Ω′′) which is relatively compact in Ω′ (resp. Ω′′), chosen for

every p0 ∈ K. Without loss of generality, all neighborhoods here are connected.
Using the compactness of K and passing to a finite subcovering, we obtain a
finite collection of points p1, . . . , ps ∈ K, the corresponding neighborhoods

Ω′m ⊃⊃ Ω̃′m � pm, Ω′′m ⊃⊃ Ω̃′′m � jkpm id,

and real-analytic maps Ψm: Ω′m × Ω′′m → M for m = 1, . . . , s, such that (Ω̃′m) is a
covering of K.

We next define neighborhoods U and Ũ of the identity mapping in AutCR (M)
with respect to the compact-open Ck topology as follows:

Ũ := {g ∈ AutCR (M) : jkpmg ∈ Ω̃′′m, 1 ≤ m ≤ s},(2.0.1)

U := {g ∈ Ũ : g−1 ∈ Ũ}.

It is clear from the definition of the topology chosen that U is indeed an open
set. Obviously the same conclusion holds for the compact-open C∞ topology as
well as for the compact-open Cr topology for any r ≥ k.

Our main step of the proof will be to show that U is relatively compact
in AutCR (M). We shall prove it with respect to the compact-open Ck topology,
which is Fréchet and hence, in particular, metrizable. Thus it suffices to prove
that the closure of U is sequentially compact. Let ( fn) be any sequence in U ,
for which we shall prove that there exists a convergent subsequence. In view of
(2.0.1), we have

jkpmfn ∈ Ω̃′′m ⊂⊂ Ω′′m ⊂ Gk(M), m = 1, . . . , s,

for every n. Hence, passing to a subsequence, we may assume that jkpmfn converges
to some Λm ∈ Ω′′m for each m = 1, . . . , s.

Following the strategy of [BRWZ04], we denote by O the open set of points
q ∈ M with the property that ( fn) converges in the compact-open Cω (and hence
any Cr with r ≥ k) topology in a neighorhood V of q in M to a map f : V → M such
that the Jacobian of f at q is nonzero. We want to show that O is nonempty and
closed in M. By our construction, we have fn(·) ≡ Ψ1(·, jkp1

fn) in the sense of germs
at p1 and hence, by the identity principle for real-analytic functions, all over Ω′1.
Since jkp1

fn converges to Λ1 ∈ Ω′′1 , it clearly follows that fn|Ω′1 → f := Ψ1(·, Λ1)
as n → +∞ in the compact-open Cω topology on Ω′1. In particular, we also have
jkp1

fn → jkp1
f and since jkp1

f ∈ Ω′′1 ⊂ Gk(M), we immediately see that p1 ∈ O,
proving that O is nonempty. To show that O is closed, let q0 be any point in the
closure of O in M. We now distinguish two cases.
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Case 1. q0 /∈ K. Here we can repeat the arguments of the proof of [BRWZ04,
Lemma 3.3] to show that q0 ∈ O.

Case 2. q0 ∈ K. Here we only have the restricted parametrization given
by (i) and hence cannot use the same arguments as in Case 1; instead, we use
our construction. Since the neighborhoods Ω̃′m, m = 1, . . . , s, cover K, we have
q0 ∈ Ω̃′m0

⊂⊂ Ω′m0
for some m0 and let pm0 ∈ K be the corresponding point. The

sequence of the k-jets Λn
m0

:= jkpm0
fn converges to Λm0 by our assumptions above

and therefore

fn(·) ≡ Ψm0 (·, Λn
m0

) → Ψm0 (·, Λm0 ),(2.0.2)

which immediately implies that q0 ∈ O.
Summarizing, we have shown that O is nonempty, open and closed in M and

therefore O = M, i.e. ( fn) converges on M to a real-analytic map f : M → M which
is automatically CR. Furthermore, by our construction of U , also the sequence
of the inverses f−1

n is in U . Hence similar arguments show that this sequence
converges to another real-analytic CR self-map g of M. Then it follows that
g ◦ f = f ◦ g = id and therefore f ∈ AutCR (M). This completes the proof that
the chosen neighborhood U of id in AutCR (M) is relatively compact. Since any
g ∈ AutCR (M) has gU as its neighborhood, it follows that the whole group
AutCR (M) is locally compact.

As in [BRWZ04], we make use of the following theorem of Bochner-Mont-
gomery [BM46], [MZ55, Theorem 2, p. 208]:

THEOREM 2.3. (Bochner-Montgomery) Let G be a locally compact topological
group acting effectively and continuously on a smooth manifold M by smooth
diffeomorphisms. Then G is a Lie group and the action G × M → M is smooth.

Indeed, we have just shown that G := AutCR (M) is locally compact. Since
the action AutCR (M) × M → M is obviously effective, Theorem 2.3 shows
that AutCR (M) is a Lie group and its action is smooth. The coincidence of the
compact-open Cr topologies on AutCR (M) for r ≥ k also follows from the proof.
Finally the analyticity of the action follows from another result of Bochner-
Montgomery [BM45]:

THEOREM 2.4. (Bochner-Montgomery) Let G be a Lie group acting continu-
ously on a real-analytic manifold M by real-analytic diffeomorphisms. Then the
action G × M → M is real-analytic.

The proof of Theorem 2.2 is complete.

3. Parametrization of local CR diffeomorphisms. In order to deduce The-
orem 1.2 from Theorem 2.2, we will establish a jet parametrization property of
local CR diffeomorphisms for a certain class of real-analytic CR submanifolds
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in complex space. Such a property has already been established by the first two
authors in [LM07] for an appropriate class of CR manifolds for local CR diffeo-
morphisms which furthermore fix a given point of the manifold. However, in view
of Definition 2.1, we need to extend such a parametrization property to local CR
diffeomorphisms which do not necessarily fix a base point. In what follows, we
make the above statements precise and show how they may be derived from the
analysis given in the paper [LM07].

The class of germs of real-analytic generic submanifolds we shall consider
in this paper is the one introduced by the first two authors in [LM07], denoted by
C, whose definition we now recall. Denote by (M, p0) a germ of a real-analytic
generic submanifold of CN (or, more generally, of any complex manifold) of CR
dimension n and real codimension d, i.e. N = n + d, Tp0M + iTp0M = Tp0C

N

and n = dimC (Tp0M ∩ iTp0M). Let ρ = (ρ1, . . . , ρd) be a real-analytic vector
valued defining function for M in some neighborhood U of p0 in CN satisfying
∂ρ1 ∧ . . . ∧ ∂ρd �= 0. Using standard notation, we write ρ as a convergent power
series (after shrinking U if necessary)

ρ(Z, Z) =
∑

α,β∈NN

ραβ(Z − p0)α(Z − p0)β , Z ∈ U,

where ρα,β ∈ Cd satisfy ρα,β = ρβ,α, and complexify it to the power series

ρ(Z, ζ) =
∑

ραβ(Z − p0)α(ζ − p0)β , ∂ρ1 ∧ · · · ∧ ∂ρd �= 0,

with (Z, ζ) ∈ CN × CN , which we still denote by ρ. It is easy to see that the
complexification ρ(Z, ζ) is still convergent in a suitable neighborhood of (p0, p0)
that (after shrinking U again if necessary) can be chosen of the form U × U ⊂
C

N ×CN . Recall that the Segre variety Sq of a point q ∈ U is the n-dimensional
complex submanifold of U given by Sq := {Z ∈ U : ρ(Z, q) = 0}. Furthermore, the
complexification of M is defined to be the 2n+d-dimensional complex submanifold
of U × U given by

M := {(Z, ζ) ∈ U × U : ρ(Z, ζ) = 0} =
{

(Z, ζ) ∈ U × U: Z ∈ Sζ̄
}

.(3.0.3)

For every integer k and for q ∈ CN , we denote by Jk,n
q (CN) the space of all jets

at q of order k of n-dimensional complex submanifolds of CN passing through q.
For every q ∈ M sufficiently close to p0, we consider the anti-holomorphic map
πk

q defined as follows:

πk
q: Sq → Jk,n

q (CN), πk
q(ξ) = jkqSξ,(3.0.4)

where jkqSξ denotes the k-jet at q of the submanifold Sξ (see e.g. [Z99] for more
details on jets of complex submanifolds used here, and also [LM07]).
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Following [LM07], we say that the germ (M, p0) belongs to the class C
if the anti-holomorphic map πk

p0
is generically of full rank n = dim Sp0 in any

neighborhood of p0, for k sufficiently large. For (M, p0) ∈ C, we denote by κM(p0)
the smallest integer k for which the map πk

p0
is of generic rank n. Since the Segre

varieties are associated to (M, p0) in a biholomorphically invariant way, the integer
κM(p0) is a biholomorphic invariant of the germ (M, p0). Note furthermore that
the condition for a germ of real-analytic generic submanifold to belong to the
class C is an open condition in the sense that, if M ∈ C is given by the equation
ρ(Z, Z̄) = 0 as above, then M̃ ∈ C for any M̃ given by the equation ρ̃(Z, Z̄) = 0
with ρ̃ sufficiently close to ρ in the C∞ topology (see e.g. [GG73] for details on
this topology; here it is enough to assume that ρ̃ is close to ρ in the Ck-topology
for a suitable k). In particular, there exists a neighborhood V of p0 in M such
that (M, q) ∈ C for all q ∈ V and moreover, it is clear from the definition that
κM(q) is upper semi-continuous on V .

We also recall that M is essentially finite (resp. finitely nondegenerate) at p0

if the map πk
p0

is finite near p0 (resp. an immersion at p0) for k sufficiently large
(see [BHR96], [BER99b] for more details). It follows that finite nondegeneracy
of M at p0 implies essential finiteness of M at p0 which in turn implies that
(M, p0) ∈ C. Recall also that M is minimal at p0 if there does not exist any CR
submanifold of lower dimension contained in M and passing through p0 with the
same CR dimension as that of M (see [Tu88], [BER99b]).

For a real-analytic CR submanifold M ⊂ CN which is not necessarily generic
and for a point p0 ∈ M, we say that (M, p0) is in the class C if it is in the
class C when considered as a generic submanifold of its intrinsic complexi-
fication, i.e. the minimal germ of a complex submanifold of CN containing
(M, p0) (see e.g. [BER99b] for this notion). Finally we should also note that
the local nondegeneracy conditions defined above are defined in the same way
for abstract real-analytic CR manifolds since such manifolds can always be lo-
cally embedded in some complex euclidean space Cq for some integer q, see
e.g. [BER99b].

Finally, we refer the reader to [LM07] for examples of manifolds that belong
to the class C, as well as for a more thorough discussion of the relation between
this nondegeneracy condition and other well-known nondegeneracy conditions
such as essential finiteness and finite nondegeneracy. We only stress in this paper
the following fact that will be used implicitly in the proofs of Corollaries 1.1
and 1.3 and that follows from a result of [DF78]: for every compact real-analytic
CR submanifold Σ embedded in some Stein manifold and for every q ∈ Σ, Σ is
essentially finite at q, and in particular (Σ, q) ∈ C (see [LM07] for more details).

The following parametrization theorem is the second main ingredient of the
proof of Theorem 1.2.

THEOREM 3.1. Let M ⊂ CN be a real-analytic CR submanifold of codimension
d and p0 ∈ M. Assume that (M, p0) is minimal and belongs to the class C and
set �0 := 2(d + 1)κM(p0). Then the set of all germs h: (M, p0) → M of local CR
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diffeomorphisms of M has the real-analytic jet parametrization property of order
�0 at p0.

As mentioned above, the difference between Theorem 3.1 and [LM07, The-
orem 7.3] is due to the fact that the parametrization theorem given in [LM07] is
obtained for the set of germs h: (M, p0) → (M, p0) of local CR diffeomorphisms
with fixed source p0 but also with fixed target p0. The version given here by
Theorem 3.1 allows to parametrize local CR diffeomorphisms which send the
point p0 to a varying target point p ∈ M (close to p0) that has to be regarded
as an additional parameter. We will provide a deformation version of [LM07,
Theorem 7.3] which allows us to treat this additional parameter in Theorem 3.2
below. (Note that it is not always possible to parametrize in a proper sense the
germs of all local CR diffeomorphisms with varying both source and targets, see
Remark 3.3 below).

Before we proceed, we need to introduce some additional terminology. Given
a real-analytic manifold E and a point p0 ∈ CN , a real-analytic family of germs
at p0 of real-analytic generic submanifolds (Mε)ε∈E of CN , is given by a family
of convergent power series mapping in Z and Z̄ centered at p0, ρ(Z, Z̄; ε) =
(ρ1(Z, Z̄; ε), . . . , ρd(Z, Z̄; ε)) with ρ(p0, p̄0; ε) = 0 and ∂ρ1(·; ε)∧ · · · ∧ ∂ρd(·; ε) �= 0
for every ε ∈ E such that there exists a neighborhood of {p0} × E ⊂ CN × E on
which ρ(Z, Z̄; ε) is real-analytic in all its arguments. In particular, for each ε ∈ E,
the set {Z ∈ CN : ρ(Z, Z̄; ε) = 0} defines a germ at p0 of a real-analytic generic
submanifold Mε ⊂ CN of codimension d. Given a fixed germ of a real-analytic
generic submanifold M ⊂ C

N through p0 and (Mε)ε∈E a real-analytic family
through p0 as defined above, we say that (Mε)ε∈E is a real-analytic deformation
of (M, p0) if there exists ε0 ∈ E such that (M, p0) = (Mε0 , p0).

We are now ready to state the following result.

THEOREM 3.2. Let (M, p0) be a germ of a real-analytic generic submanifold of
codimension d that is minimal and in the class C and set �0 = 2(d + 1)κM(p0). Let
(Mε)ε∈E be a real-analytic deformation of the germ (M, p0) (parametrized by some
real-analytic manifold E) with (Mε0 , p0) = (M, p0) for some ε0 ∈ E. Then there exist
open neighborhoods U0 of ε0 in E, U1 of p0 ∈ CN and Ω of j�0

p0
Id in G�0

p0
(CN) and a

real-analytic map Ψ(Z, Λ; ε): U1 × Ω × U0 → C
N, holomorphic in its first factor

such that for every germ of a biholomorphic map H: (CN , p0) → (CN , p0) sending
(Mε, p0) for some ε ∈ U0 into (M, p0) with j�0

p0
H ∈ Ω, we have

H(Z) = Ψ(Z, j�0
p0

H; ε), for Z ∈ CN close to p0.

Remark 3.3. It is natural to ask whether Theorem 3.2 remains true with the
target manifold (M, p0) also varying. Such a result holds for finitely nondegenerate
manifolds [BER99a], [KZ05]. However, it cannot hold for the more general class
C (even in the real-analytic case) as the example with M ⊂ C

2
(z,w) given by

Im w = |z|4 shows, see [KZ05, Example 1.5].
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Let us now show how Theorem 3.1 follows from Theorem 3.2.

Proof of Theorem 3.1 assuming Theorem 3.2. Without loss of generality, we
may assume that M is generic. Let ρ = ρ(Z, Z̄) be a real-analytic vector valued
defining equation for M in a neighborhood U of 0. Consider the real-analytic
deformation of the germ (M, p0) obtained by varying the base point in some
small neighborhood Ũ ⊂ U i.e. defined by the family (Mp)p∈Ũ where Mp is
the germ at p0 of the real-analytic generic submanifold given by the equation
{Z ∈ CN : ρ(Z−p0+p, Z̄−p̄0+p̄) = 0}. Applying Theorem 3.2 to this deformation,
it is not difficult to derive the following:

PROPOSITION 3.4. Under the assumptions of Theorem 3.1, the set of all germs
h: (M, p) → (M, p0) of local CR diffeomorphisms of M with variable source point
p has the real-analytic jet parametrization property of order �0 at p0.

The conclusion of Theorem 3.1 then follows easily from Proposition 3.4
and an application of the inverse function theorem. We leave the details to the
reader.

4. Proof of Theorem 3.2. We assume that we are in the setting of The-
orem 3.2. Without loss of generality, suppose that p0 coincides with the origin
in CN and set n = N − d. Consider the given real-analytic family (Mε)ε∈E and
ε0 ∈ E satisfying (Mε0 , 0) = (M, 0).

4.1. Normal coordinates and Segre mappings for the deformation. The
first basic fact needed for the construction of a mapping Ψ satisfying the conclu-
sion of Theorem 3.2 is the choice of a certain set of coordinates (the so-called
“normal coordinates”) for each manifold Mε near the origin and depending real-
analytically on ε for ε close to ε0.

The coordinates we need are obtained from the standard construction of the
normal coordinates (cf. e.g. [BER99b]):

LEMMA 4.1. Let (Mε)ε∈E be a real-analytic family of real-analytic generic sub-
manifolds through the origin in CN of codimension d and ε0 ∈ E as above. Then
there exist germs of real-analytic maps

Z: (CN × E, (0, ε0)) → (CN , 0) and Q: (Cn × Cn × Cd × E, (0, 0, 0, ε0)) → (Cd, 0),

holomorphic in all their components except E, such that for every fixed ε ∈ E
sufficiently close to ε0, the following hold:

(i) Z(0; ε) = 0 and the map Z(·; ε): (CN , 0) → (CN , 0) is locally biholomorphic
near 0;

(ii) in the local coordinates Z(·; ε) = (z, w) ∈ Cn ×Cd near 0, the manifold Mε

is given by

w − Q(z, z, w; ε) = 0;(4.1.1)

(iii) one has Q(z, 0, τ ; ε) ≡ Q(0,χ, τ ; ε) ≡ τ .
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We fix an open neighborhood U0 of ε0 in E so that Lemma 4.1 holds. After
possibly shrinking U0 we may assume that for every ε ∈ U0, Mε is minimal at 0
and that κMε(0) ≤ κM(0); we set Q(z,χ, τ ) := Q(z,χ, τ , ε0).

The next tools we need are the Segre mappings associated with the manifolds
Mε, ε ∈ U0. Recall that for every integer k ≥ 1, the k-th Segre (germ of a)
mapping

vk
ε : (Ckn, 0) → (Cn × Cd, 0)

associated to (Mε, 0) and the chosen normal coordinates is defined inductively as
follows (see [BER99a]):

v1
ε (t1) := (t1, 0), vk+1

ε (t[k+1]) :=
(

tk+1, Q
(
tk+1, vk

ε (t[k]); ε
))

,(4.1.2)

where tk ∈ Cn, t[k] := (t1, . . . , tk) ∈ Ckn. Here and throughout the paper, for any
power series mapping θ, we denote by θ̄ the power series obtained from θ by
taking complex conjugates of its coefficients.

For every ε ∈ U0 and a germ of a biholomorphic map H: (CN , 0) → (CN , 0)
sending (Mε, 0) into (M, 0), we define

Hε: (CN , 0) → (CN , 0), Hε := H(Z(·; ε)−1),(4.1.3)

where Z(·; ε)−1: (CN , 0) → (CN , 0) is the local inverse of Z(·; ε); Hε sends (Mε, 0)
written in the Z-coordinates into (M, 0), and Mε is given by (4.1.1). It is clear from
the construction of the above coordinates and from the Inverse Function Theorem
that it is enough to prove the parametrization property for all our mappings Hε

for ε sufficiently close to ε0 to obtain the conclusion of Theorem 3.2.
After choosing normal coordinates Z′ = (z′, w′) ∈ C

n × Cd for the target
manifold M at p0, which are fixed here, we write Hε = ( fε, gε) ∈ Cn × Cd and
also denote by Mε the germ at the origin of the complexification of Mε. In our
coordinates, it is defined as the germ of the complex submanifold of CN ×CN at
the origin given by

Mε = {(Z, ζ) = ((z, w), (χ, τ )) ∈ Cn × Cd × Cn × Cd : w = Q(z,χ, τ ; ε)}.

4.2. Reflection identities with parameters. We now want to state a version
with parameters of the reflection identities given in [LM07, Propositions 9.1 and
9.2, Lemma 9.3 and Proposition 9.4]. For this, as in [LM07], it is convenient to
introduce the following notation.

For every positive integer k, we denote by Jk
0,0(CN) the space of all jets at

the origin of order k of holomorphic mappings from C
N into itself and fixing

the origin. In our normal coordinates Z = (Z1, . . . , ZN) in CN , we identify a jet
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J ∈ Jk
0,0(CN) with a polynomial map of the form

J = J (Z) =
∑

α∈Nr , 1≤|α|≤k

Λk
α

α!
Zα,(4.2.1)

where Λk
α ∈ CN . We thus have for a jet J ∈ Jk

0,0(CN), the coordinates

Λk := (Λk
α)1≤|α|≤k(4.2.2)

given by (4.2.1). Given a germ of a holomorphic map h: (CN , 0) → (CN , 0),
h = h(t), for t sufficiently small we use for the k-jet of h at t the notation
jkt h =: (t, h(t), ĵkt h) (which is defined as a germ at 0). Moreover, since h(0) = 0,
we may also identify jk0h with ĵk0h, which we will freely do in the sequel.

Given the normal coordinates (z, w) ∈ Cn × Cd = CN , we consider a special
component of a jet Λk ∈ Jk

0,0(CN) defined as follows. Denote the set of all
multiindices of length one having 0 from the n + 1-th to the N-th component by
S, and the projection onto the first n coordinates by proj1:CN → C

n (that is,
proj1(z, w) = z). Then set

Λ̃1 := (proj1(Λα))α∈S.(4.2.3)

Note that for any local holomorphic map

(Cn × Cd, 0) � (z, w) �→ h(z, w) = ( f (z, w), g(z, w)) ∈ (Cn × Cd, 0),

if jk0h = Λk, then Λ̃1 = (∂f
∂z (0)). We can therefore identify Λ̃1 with an n× n matrix

or equivalently with an element of J1
0,0(Cn). Throughout the paper, given any jet

λk ∈ Jk
0,0(CN), λ̃1 will always denote the component of λk defined by (4.2.3).

In addition, for every positive integer r and an open neighborhood U0 of ε0

in E, we denote by Sr = Sr(U0) the ring of germs at {0} × U0 of real-analytic
functions on Cr × E that are holomorphic in their first argument. Recall that this
is the space of all real-analytic functions that are defined in a connected open
neighborhood (depending on the function) of {0}×U0 in Cr×E (and holomorphic
in their first argument).

We now collect the following versions of the reflection identities of [LM07,
Section 9] with parameters that are necessary in order to complete the proof
of Theorem 3.2. The first basic identity given by (4.2.4) is standard and may
obtained by complexifying the identity Hε(Mε) ⊂ M and applying the vector
fields tangent to Mε.

PROPOSITION 4.2. In the above setting, there exists a polynomial D =
D(Z, ζ, ε, Λ1) ∈ S2N[Λ1] and, for every α ∈ Nn \ {0}, a Cd-valued polynomial
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map Pα = Pα(Z, ζ, ε, Λ|α|) whose components are in the ring S2N[Λ|α|] such that
for ε ∈ U0 and for every map Hε: (Mε, 0) → (M, 0) the following hold:

(i) D(0, 0, ε, Λ1) = det Λ̃1;
(ii) for all (Z, ζ) ∈ Mε near 0,

(D(Z, ζ, ε, ĵ1ζHε))
2|α|−1 Q̄χα(f̄ε(ζ), Hε(Z)) = Pα(Z, ζ, ε, ĵ|α|ζ Hε).(4.2.4)

The next identity given by (4.2.5) involves the (transversal) derivatives of
the mappings Hε and follows easily from differentiating (4.2.4) and applying the
chain rule.

PROPOSITION 4.3. For any µ ∈ Nd \ {0} and α ∈ Nn \ {0}, there exist a Cd-
valued polynomial map Tµ,α(Z, ζ, Z′, ζ ′, ε,λ|µ|−1, Λ|µ|) whose components belong
to the ringS4N[λ|µ|−1, Λ|µ|] and aCd-valued polynomial mapQµ,α(Z, ζ, ε, Λ|α|+|µ|)
whose components are in the ring S2N[Λ|α|+|µ|], such that for ε ∈ U0, for every map
Hε: (Mε, 0) → (M, 0) and for any (Z, ζ) ∈ Mε close to the origin, the following
relation holds:

∂|µ|Hε

∂wµ
(Z) · Q̄χα,Z(f̄ε(ζ), Hε(Z)) = (∗)1 + (∗)2,(4.2.5)

where

(∗)1 := Tµ,α

(
Z, ζ, Hε(Z), Hε(ζ), ε, ĵ|µ|−1

Z Hε, ĵ|µ|ζ Hε

)
(4.2.6)

and

(∗)2 :=
Qµ,α(Z, ζ, ε, ĵ|α|+|µ|ζ Hε)

(D(Z, ζ, ε, ĵ1ζHε))2|α|+|µ|−1
.(4.2.7)

In the next lemma, we observe that for any given map Hε = ( fε, gε), the
(transversal) derivatives of the normal component gε can be expressed (in an
universal way) through the (transversal) derivatives of the components of fε and
some other terms that have to be seen as remainders. In particular, this lemma will
allow us (as in [LM07]) to derive the desired parametrizations of the maps Hε

and their derivatives on each Segre set from the corresponding parametrizations
of the maps fε and their derivatives.

LEMMA 4.4. For any µ ∈ Nd \ {0}, there exists a Cd-valued polynomial map

Wµ = Wµ

(
Z, ζ, Z′, ζ ′, ε,λ|µ|−1, Λ|µ|

)
,

whose components belong to the ring S4N[λ|µ|−1, Λ|µ|] and such that for ε ∈ U0,
for every map Hε: (Mε, 0) → (M, 0) and for any (Z, ζ) ∈ Mε close to the origin,
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the identity

∂|µ|gε
∂wµ

(Z) =
∂|µ|fε
∂wµ

(Z) · Qz( fε(Z), Hε(ζ)) + (∗)3(4.2.8)

holds with

(∗)3 := Wµ

(
Z, ζ, Hε(Z), Hε(ζ), ε, ĵ|µ|−1

Z Hε, ĵ|µ|ζ Hε

)
.(4.2.9)

The next statement is obtained as a direct combination of Lemma 4.4 and
Proposition 4.3 and provides the form of the system of equations fulfilled by any
(transversal) derivative of fε.

PROPOSITION 4.5. For any µ ∈ Nd \ {0} and α ∈ Nn \ {0}, there exist a Cd-
valued polynomial map T ′µ,α(Z, ζ, Z′, ζ ′, ε,λ|µ|−1, Λ|µ|) whose components belong

to the ring S4N[λ|µ|−1, Λ|µ|] such that for ε ∈ U0 and for every map Hε: (Mε, 0) →
(M, 0) the following relation holds for (Z, ζ) ∈ Mε close to 0:

∂|µ|fε
∂wµ

(Z) · (Q̄χα,z(f̄ε(ζ), Hε(Z))(4.2.10)

+ Qz( fε(Z), Hε(ζ)) · Q̄χα,w(f̄ε(ζ), Hε(Z))) = (∗)′1 + (∗)2,

where (∗)2 is given by (4.2.7) and (∗)′1 is given by

(∗)′1 := T ′µ,α

(
Z, ζ, Hε(Z), Hε(ζ), ε, ĵ|µ|−1

Z Hε, ĵ|µ|ζ Hε

)
.(4.2.11)

Since the proof of the above relations is analogous to those derived in [LM07],
we leave the details to the reader. We should point out that, in the reflection
identities with parameters mentioned above, the most relevant fact is the location
of the parameter ε in the identities. Indeed, the parameter ε appears always in an
appropriate place so that the results concerning the parametrization of solutions
of singular analytic systems given in the next paragraph will be applicable. This
crucial fact explains why we can follow the analysis of [LM07] in order to derive
Theorem 3.2.

4.3. Parametrization of solutions of singular analytic systems. We state
here the two versions of the parametrization results for singular systems needed
for the proof of Theorem 3.2. The first one is needed to have a parametrization
of the compositions Hε ◦ v j

ε for all integers j, where v j
ε is defined by (4.1.2).

THEOREM 4.6. Let A: (Cm, 0) → C
m be a germ of a holomorphic map of generic

rank m, X a real-analytic manifold, Y a complex manifold and b = b(z, x, y) a Cm-
valued real-analytic map defined on an open neighborhood V of {0} × X × Y
in Cm × X × Y, holomorphic in (z, y). Then there exists a real-analytic map Γ =
Γ(z,λ, x, y):Cm × GLm(C) × X × Y → C

m, defined on an open neighborhood Ω
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of {0} ×GLm(C)× X × Y, holomorphic in all its components except X, satisfying
the following properties:

(i) If u : (Cm, 0) → (Cm, 0) is a germ of a biholomorphism satisfying A(u(z)) =
b(z, x0, y0) for some (x0, y0) ∈ X × Y, then necessarily u(z) = Γ(z, j10u, x0, y0);

(ii) For every λ ∈ GLm(C) and (x0, y0) ∈ X × Y, the map Γ satisfies

Γ(0,λ, x0, y0) = 0 and
∂Γ
∂z

(0,λ, x0, y0) = λ.

The statement given by Theorem 4.6 follows directly from [LM07, Corollary
3.2] after an obvious complexification argument.

The second version given below is needed to get a parametrization of the
mappings (∂βHε) ◦ v j

ε for all integers j and all multiindices β ∈ NN \ {0}.

PROPOSITION 4.7. Let Θ be an r × r matrix with holomorphic coefficients near
the origin in Cm, m, r ≥ 1, such that Θ is of generic rank r. Let X be a real-
analytic manifold and Y a complex manifold. Assume that c:Cm × X × Y → C

m

and b:Cm ×X × Y → C
r are real-analytic maps defined on some neighborhood V

of {0} × X × Y such that (z, y) �→ b(z, x, y) and (z, y) �→ c(z, x, y) are holomorphic
on Vx = {(z, y) ∈ Cm × Y: (z, x, y) ∈ V} for each x ∈ X. Assume furthermore that c
satisfies

c(0, x, y) = 0, det cz(0, x, y) �= 0, for every (x, y) ∈ X × Y .

Then there exists a real-analytic map Γ:Cm × X × Y → C
r defined on a neigh-

borhood of {0} × X × Y, holomorphic in all its components except X, such that if
u: (Cm, 0) → C

r is a germ of a holomorphic map satisfying Θ(c(z, x0, y0)) · u(z) =
b(z, x0, y0) for some (x0, y0) ∈ X × Y, then u(z) = Γ(z, x0, y0).

The statement given by Proposition 4.7 follows from [LM07, Proposition 6.3]
and again a simple complexification argument.

4.4. Completion of the proof of Theorem 3.2. With the statements given
in Sections 4.2 and 4.3 at our disposal, we can follow the plan of the proof of
[LM07, Theorem 7.3] to get the needed parametrization of the maps Hε restricted
to any Segre set. More precisely, the reader may verify that after applying the
above statements as in [LM07], one obtains the following:

PROPOSITION 4.8. In the above setting and shrinking the neighborhood U0 if
necessary, for every positive integer j, there exists a real-analytic map

Ψj:C
nj × U0 × JjκM(0)

0,0 (CN) → C
N ,

defined in a neighborhood of {0}×U0×Wj where Wj is an open set in the jet space
containing all the jets (at 0) of the maps Hε for ε ∈ U0, that is holomorphic in its
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first factor and satisfying in addition

(
Hε ◦ v j

ε

) (
t[ j]
)

= Ψj

(
t[ j], ε, jjκM(0)

0 Hε

)
,(4.4.1)

for all t[ j] sufficiently close to the origin.

We are now in a position to finish the proof of Theorem 3.2. For this, recall
first that �0 = 2(d + 1)κM(0) and consider the equation (4.4.1) for j = 2(d + 1) that
we localize near the point (ε0, j�0

0 Id) ∈ E × J�0
0,0(CN). Shrinking U0 if necessary,

there exist open neighborhoods O ⊂ C2n(d+1) of the origin and O′ ⊂ J�0
0,0(CN) of

j�0
0 Id such that Ψ2(d+1) is defined over O×U0×O′ and such that for every ε ∈ U0

satisfying j�0
0 Hε ∈ O′, the identity (4.4.1) holds (with j = 2(d + 1)) for t[2(d+1)]

sufficiently close to the origin.
The rest of the proof closely follows the lines of [KZ05, Section 4]; it consists

of using a version of the implicit function with singularities [KZ05, Lemma 3.4]
and resolving the obtained singularities by using [KZ05, Lemma 4.3]. The dif-
ferences between the situation treated in the present paper and that of [KZ05] are
the parameter dependence which is real-analytic in our case (instead of smooth
in [KZ05]) and the absence of the error terms in the formula (4.4.1) (in contrast
to [KZ05]). The details are left to the reader.

5. Proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose first that M is a connected real-analytic CR-
submanifold in CN . Then we claim that the conclusion of Theorem 1.2 follows
from the conjunction of Theorem 2.2 and Theorem 3.1. Indeed, assumption (i)
of Theorem 1.2 and Theorem 3.1 imply that assumption (i) of Theorem 2.2 is
satisfied. (Note that the upper semi-continuity of the integer κM(p) on p ∈ K ⊂ M
in Theorem 3.1 is also used here in order to deduce the existence of the integer
k satisfying the conclusions of Theorem 2.2 (i)). Furthermore, assumption (ii) of
Theorem 1.2 together with the results of [BER99a], [KZ05] imply that assumption
(ii) of Theorem 2.2 is also satisfied. This proves the claim.

If M is not connected, we may repeat the arguments of the proof of [BRWZ04,
Theorem 6.2] since M is assumed to have finitely many connected components.

Finally, when M is an abstract real-analytic CR manifold, the proof is the
same as before since it is based on purely local arguments and since any such man-
ifold can locally be embedded as a CR submanifold of some complex euclidean
space Cq for some integer q (see e.g. [BER99b]). The proof of the theorem is
complete.

6. An elementary proof of Corollary 1.3. We conclude this paper by pro-
viding an elementary proof of Corollary 1.3 which avoids the use of Theorem 2.2
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and rather follows the proof of [Z97, Corollary 1.3]. Note that in any case one
has to make use of Theorem 3.1.

Proof of Corollary 1.3. Since M is compact (and everywhere minimal) and
embedded in some Stein manifold, we may apply Theorem 3.1 to conclude that
there exists a finite number of points p1, . . . , pk ∈ M and open neighborhoods Ω′j
of pj in M covering M such that for every h ∈ AutCR (M) sufficiently close to
the identity mapping, say in an open neighborhood N of it, Theorem 3.1 holds
at all points pj with a parametrization Ψj defined in a neighborhood of Ω′j ×{pj}
with the jet order �j. Write � = max �j. As in [Z97], our goal is to show that the
image of the neighborhood N ⊂ AutCR (M) under the homeomorphism (onto its
image)

h �→ η(h) =
(

j�p1
h, . . . , j�pk

h, j�p1
h−1, . . . , j�pk

h−1
)
∈
(

G�
p1

(M) × . . .× G�
pk

(M)
)2

=: Y2

is a real-analytic subset of the target space, and that the group law is real-analytic.
But it is easy to single out the points in the image which give rise to a global
automorphism of M. Any (α,β) = (α1, . . . ,αk,β1, . . . ,βk) ∈ Y2 belongs to η(N )
if and only if for every j, m = 1, . . . , k, the following identities are satisfied:

Ψj(·,αj) = Ψm(·,αm), Ψj(·,βj) = Ψm(·,βm) on Ω′j ∩ Ω′m,

Ψm (Ψm (·,αm) ,βm) = Ψm (Ψm (·,βm) ,αm) = Id near pm,

αj = j�pj

(
Ψj(·,αj)

)
, βm = j�pm (Ψm(·,βm)) .

From this, it is clear that η(N ) is a real-analytic subset of Y2, and again follow-
ing [Z97], we see that the group law is indeed real-analytic. This concludes the
proof of Corollary 1.3.
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