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FORMAL BIHOLOMORPHIC MAPS OF REAL ANALYTIC
HYPERSURFACES

Nordine Mir

Abstract. Let f : (M, p) → (M ′, p′) be a formal biholomorphic mapping between
two germs of real analytic hypersurfaces in C

n, p′ = f(p). Assuming the source
manifold to be minimal at p, we prove the convergence of the so-called reflection
function associated to f . As a consequence, we derive the convergence of formal
biholomorphisms between real analytic minimal holomorphically nondegenerate
hypersurfaces. Related results on partial convergence of formal biholomorphisms
are also obtained.

1. Introduction

A formal (holomorphic) mapping f : (Cn, p) → (Cn, p′), p, p′ ∈ C
n, n ≥ 1,

is a vector (f1(z), . . . , fn(z)) where each fj(z) ∈ C[[z − p]], the ring of formal
holomorphic power series in z − p, and f(p) = p′. The mapping f is called
a formal biholomorphism if its Jacobian does not vanish at p. If M, M ′ are
two smooth real real-analytic hypersurfaces in C

n through p and p′ respectively,
we say that a formal mapping f as above sends M into M ′ if ρ′(f(z), f(z)) =
a(z, z̄)ρ(z, z̄), where ρ, ρ′ are local real-analytic defining functions for (M, p)
and (M ′, p′) respectively and a ∈ C[[z − p, z̄ − p̄]]. In this paper we study
the convergence (and partial convergence) of formal biholomorphic mappings
between germs of real analytic hypersurfaces in C

n in terms of optimal and
natural geometric conditions on the source and target manifolds.

A natural geometric condition which appears in this regularity problem is the
concept of holomorphic nondegeneracy. Following Stanton, a real analytic hyper-
surface M ⊂ C

n is called holomorphically nondegenerate if, near any point in M ,
there is no non-trivial holomorphic vector field, with holomorphic coefficients,
tangent to M near that point [16, 2]. Baouendi and Rothschild [7] recognized
the importance of such a condition and used it to characterize those real al-
gebraic hypersurfaces for which any biholomorphic self-map must be algebraic
(see also [6]). In this paper we establish a similar statement for formal biholo-
morphic mappings of real analytic hypersurfaces (Theorem 2.2 below), namely
that any formal biholomorphism between germs of real analytic minimal and
holomorphically nondegenerate hypersurfaces is convergent. This statement will
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in fact be a consequence of our main result, Theorem 2.1, where a description of
the analyticity properties of formal biholomorphic maps of minimal real analytic
hypersurfaces is given. An application of this theorem to partial convergence of
such maps is also given in §7.

The study of the convergence of formal mappings between real analytic CR
submanifolds goes back to Chern and Moser [9], who established the convergence
of formal biholomorphisms between real analytic Levi-nondegenerate hypersur-
faces. More recently, Baouendi, Ebenfelt and Rothschild [3, 4, 5] addressed this
problem in more general situations. In particular, the following two facts follow
from their work:

i) Given a generic minimal real analytic connected holomorphically nondegen-
erate submanifold M in C

N , N ≥ 2, there exists a proper real analytic subvariety
S ⊂M , such that for any point p ∈M \ S, any formal biholomorphism sending
(M, p) onto another germ of a generic real analytic submanifold in C

N , must be
convergent.

ii) If M is a connected generic holomorphically degenerate submanifold in C
N ,

then, for any point p ∈M , there exists a formal biholomorphism sending (M, p)
into itself which does not converge.

In view of these facts and other related results in the mapping problems ([2]),
it appears likely that the subvariety S in i) could be taken to be empty. In
this paper, we actually prove such a result in the case of hypersurfaces. Our
proof is based on an analysis of a so-called reflection function associated to
the mapping and the hypersurfaces, which was used in many other situations
(cf. [11, 13]). We should also mention that, recently in [14], we showed that the
real analytic subvariety S in i) can also be taken to be empty when the generic
submanifold M is assumed to be real algebraic (and with no such assumption
on the target manifold).

2. Statement of main results

Let (M ′, p′) ⊂ C
n, n ≥ 2, be a germ at p′ of a smooth real real-analytic

hypersurface. Let ρ′ = ρ′(ζ, ζ̄) be a real analytic defining function for M ′ near p′,
i.e.,

M ′ = {ζ ∈ (Cn, p′) : ρ′(ζ, ζ̄) = 0}.
After complexification of ρ′, one defines the so-called invariant Segre varieties
attached to M ′ by

Q′
ω = {ζ ∈ (Cn, p′) : ρ′(ζ, ω̄) = 0},

for ω close to p′. We can assume, without loss of generality, that p′ = 0 and
∂ρ′

∂ζn
(0) 
= 0, ζ = (ζ ′, ζn) ∈ C

n−1 × C. Thus, the implicit function theorem
exhibits any Segre variety as a graph of the form

Q′
ω = {ζ ∈ (Cn, 0) : ζn = Φ′(ω̄, ζ ′)},

where Φ′ is a holomorphic function in its arguments in a neighborhood of 0 ∈
C

2n−1 and such that Φ′(0) = 0. Equivalently, this Segre variety can be defined
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by
Q′

ω = {ζ ∈ (Cn, 0) : ζ̄n = Φ̄′(ω, ζ̄ ′)}.
Here, we have used the following notation. If g = g(x) is some formal holomor-
phic power series in C[[x]], x = (x1, . . . , xk), ḡ is the formal holomorphic power
series obtained by taking the complex conjugates of the coefficients of g. (This
convention of notation will be used throughout the paper.) Our main result is
the following.

Theorem 2.1. Let f : (M, 0) → (M ′, 0) be a formal biholomorphism between
two germs at 0 of real-analytic hypersurfaces in C

n. Assume, furthermore, that
M is minimal at 0. Then, the formal holomorphic map

C
n × C

n−1 � (z, λ) 
→ Φ̄′(f(z), λ)

is convergent.

Such a result has several applications. One of its main applications lies in the
following theorem mentioned in the introduction.

Theorem 2.2. Any formal biholomorphic mapping between germs of minimal,
holomorphically nondegenerate, real analytic hypersurfaces in C

n is convergent.

As explained in the introduction, the interest in such a result lies in the fact
that, in view of [3], the condition of holomorphic nondegeneracy is optimal for
the class of formal biholomorphisms. However, it remains an open problem to
decide whether or not the condition of minimality is necessary in Theorem 2.2.
Another application of Theorem 2.1 deals with partial convergence of formal
biholomorphisms. For this, we refer the reader to §7.

Remark 1. After this work was completed, I received a preprint by J. Merker,
“Convergence of formal biholomorphic mappings between minimal holomorphi-
cally nondegenerate real analytic hypersurfaces”, in which a similar statement
to Theorem 2.2 is given. In that preprint, Theorem 2.1 above is also stated for
the special case where M ′ is a rigid and polynomial hypersurface.

3. Definitions and notations

3.1. Real analytic hypersurfaces. Let M be a smooth real real-analytic
hypersurface in C

n, n ≥ 2. Since the situation is purely local, we shall always
work near a point p ∈ M , which will be assumed, without loss of generality, to
be the origin. Let ρ be a real analytic defining function for M near 0 i.e.,

M = {z ∈ (Cn, 0) : ρ(z, z̄) = 0},
with dρ 
= 0 on M . The complexification M of M is the complex hypersurface
through 0 in C

2n given by

M = {(z, w) ∈ (C2n, 0) : ρ(z, w) = 0}.
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We shall assume, without loss of generality, the coordinates z = (z′, zn) ∈ C
n

are chosen so that
∂ρ

∂zn
(0) 
= 0. In this case, we define the following holomorphic

vector fields tangent toM

Lj =
∂ρ

∂wn
(z, w)

∂

∂wj
− ∂ρ

∂wj
(z, w)

∂

∂wn
, j = 1, . . . , n− 1,(3.1)

which are the complexifications of the usual (0,1) vector fields tangent to M .
We recall that for a point w near 0, its associated Segre surface is the complex
hypersurface defined by Qw = {z ∈ (Cn, 0) : ρ(z, w̄) = 0}. Observe that by the
complex analytic implicit function theorem, each Segre variety can be described
as a graph of the form

Qw = {z ∈ (Cn, 0) : zn = Φ(w̄, z′)},
Φ denoting a convergent power series in some neighborhood of the origin in C

2n−1

satisfying the relations Φ(0) = 0 and

Φ(w′, Φ̄(z, w′), z′) ≡ zn, (z, w′) ∈ C
n × C

n−1.(3.2)

Equation (3.2) is a consequence of the fact that M is a real hypersurface. The
coordinates z are said to be normal with respect to M if the additional condition

Φ(w′, wn, 0) = Φ(0, wn, z′) ≡ wn, (w′, wn, z′) ∈ C
n−1 × C× C

n−1,

holds. It is well-known that given a real-analytic hypersurface through the origin,
one can always construct such coordinates [9]. Thus, from now on and for
simplicity, we will always assume that the z-coordinates are chosen to be normal
for the manifold M .

The real analytic hypersurface M is called minimal at 0 (in the sense of
Trépreau and Tumanov), or, equivalently of finite type (in the sense of Kohn
and Bloom-Graham) if it does not contain any complex-analytic hypersurface
through 0. To use such a nondegeneracy condition, we will need the Segre set
mappings associated to M (see [2]) up to order 3, which, in normal coordinates,
are the following three maps :

(Cn−1, 0) � z′ 
→ v1(z′) = (z′, 0) ∈ C
n,(3.3)

(C2n−2, 0) � (z′, ξ) 
→ v2(z′, ξ) = (z′,Φ(ξ, 0, z′)) ∈ C
n,

(C3n−3, 0) � (z′, ξ, η) 
→ v3(z′, ξ, η) = (z′,Φ(ξ, Φ̄(η, 0, ξ), z′)) ∈ C
n.

These maps are of fundamental importance since they parametrize the so-called
Segre sets (up to order three) associated to M . Moreover, the interest in such
Segre sets or Segre set mappings lies in the fact that the minimality assumption
is equivalent to the fact that the generic rank of v2 (and also v3) equals n (see [2]).
This will be useful for the proof of Theorem 2.1.

All the notations introduced in this section will be used for the source hy-
persurface M . For the target real analytic hypersurface M ′, we shall use the
notations introduced in §2, before the statement of Theorem 2.1. In particular,
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we denote by z the coordinates in the source space and by ζ the coordinates at
the target space.

3.2. Some commutative algebra. We recall here, for the reader’s conve-
nience, some basic definitions, needed in §7, about regular local rings and their
ideals. All these definitions can be found for instance in [12, 17].

Let A be a Noetherian ring. If I and J are two ideals of A, we use the notation
I < J to mean that I ⊂ J and I 
= J . Given a prime ideal I ⊆ A, the height
of I is defined by the formula

h(I) = max{k ∈ N : {0} < I1 < . . . < Ik = I},
where I1, . . . , Ik are prime ideals of A. If J is any ideal of A, we define the
height of J by the formula

h(J) = inf{h(I) : J ⊂ I, I prime ideal of A}.
If A is furthermore assumed to be a local ring, one defines the Krull dimension
of A to be the height of its maximal ideal. Observe that if A is a Noetherian local
ring and if I is a proper ideal of A, the quotient ring A/I is also a Noetherian local
ring. This allows one to consider the Krull dimension of such a ring. Finally, a
Noetherian local ring is said to be regular if its maximal ideal has δ generators,
where δ is the Krull dimension of the ring A. The rings of formal holomorphic
power series or convergent power series in p indeterminates, p ∈ N

∗, are regular
rings of Krull dimension p [17].

4. Two convergence results

In this section, we first state and prove a convenient lemma which will be
used twice in the paper. This lemma may already be known.

Lemma 4.1. Let (ui(t))i∈I be a family of convergent power series in C{t}, t =
(t1, . . . , tq), q ∈ N

∗. Let also (Ki(ς))i∈I be a family of convergent power series
in C{ς}, ς = (ς1, . . . , ςr), r ∈ N

∗. Assume that:
(i) There exists R > 0 such that the radius of convergence of any Ki, i ∈ I, is

at least R.
(ii) For all ς ∈ C

r with |ς| < R, |Ki(ς)| ≤ Ci, with Ci > 0.
(iii) There exists V (t) = (V1(t), . . . , Vr(t)) ∈ (C[[t]])r, V (0) = 0, such that

(Ki ◦ V )(t) = ui(t) (in C[[t]]) for all i ∈ I.
Then, there exists R′ > 0 such that the radius of convergence of any ui, i ∈ I,
is at least R′ and such that for all t ∈ C

q with |t| < R′, |ui(t)| ≤ Ci.

Proof. By Artin’s approximation theorem [1], one can find a convergent power
series mapping ϑ(t) = (ϑ1(t), . . . , ϑr(t)) ∈ (C{t})r such that ϑ(0) = 0 and for all
i ∈ I, (Ki ◦ ϑ)(t) = ui(t) in C{t}. Let R′ > 0 so that if |t| < R′ then |ϑ(t)| < R.
Since the radius of convergence of the Ki, i ∈ I, is at least R, the radius of
convergence of any Ki ◦ ϑ, i ∈ I, is at least R′. Thus, the family (ui(t))i∈I has
a radius of convergence at least equal to R′ and for all t ∈ C

q with |t| < R′, one
has |ui(t)| = |(Ki ◦ ϑ)(t)| ≤ Ci, i ∈ I.
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To derive Theorem 2.2 from Theorem 2.1, we will need the following consequence
of Artin’s approximation theorem, which is contained for instance in [15]. (See
also §7 for another formulation of such a result.)

Proposition 4.2. Let R(x, y) = (R1(x, y), . . . , Rr(x, y)) ∈ (C{x, y})r, x ∈ C
q,

y ∈ C
r, q, r ∈ N

∗. Let g(x) = (g1(x), . . . , gr(x)) ∈ (C[[x]])r satisfy R(x, g(x)) =

0. If det
(∂R

∂y
(x, g(x))

) 
≡ 0 in C[[x]], then g(x) is convergent.

Proof. We reproduce here the arguments of [15]. Write

R(x, y)−R(x, z) = Q(x, y, z) · (y − z)(4.1)

where Q is an r × r complex-analytic matrix such that Q(x, y, y) =
∂R

∂y
(x, y);

i.e., Q(x, y, z) =
∫ 1

0

∂R

∂y
(x, ty + (1 − t)z)dt. By assumption, we know that we

have detQ(x, g(x), g(x)) 
≡ 0. This implies that one can find an integer kg such
that if H(x) is any formal power series which agrees up to order kg with g then
det Q(x, g(x), H(x)) 
≡ 0. For this integer kg, according to Artin’s approximation
theorem, one can find a convergent power series H0(x) satisfying R(x, H0(x)) = 0
and agreeing with g(x) up to order kg. By (4.1), we get Q(x, g(x), H0(x))·(g(x)−
H0(x)) ≡ 0 in C[[x]]. Since detQ(x, g(x), H0(x)) 
≡ 0, we obtain g(x) = H0(x)
and thus g is convergent.

5. The reflection principle

Let f : (M, 0)→ (M ′, 0) be a formal biholomorphic mapping between germs
at 0 of real analytic hypersurfaces in C

n. We shall use the notations intro-
duced in §2 and §3. In particular, we denote f = f(z) = (f1(z), . . . , fn(z)) =
(f ′(z), fn(z)) in the ζ-coordinates. In this section, we shall make no further
assumptions on M and M ′.

As in [13, 14], we define the following formal holomorphic power series

C
n × C

n−1 � (z, λ) 
→ R(z, λ) := Φ̄′(f(z), λ).(5.1)

The goal of this section is to prove the following proposition.

Proposition 5.1. Let f : (M, 0)→ (M ′, 0) be a formal biholomorphism between
germs at 0 of real analytic hypersurfaces in C

n, and R defined by (5.1). Then
for any multi-index γ ∈ N

n, the formal holomorphic map

(C2n−2, 0) � (z′, λ) 
→ (∂γ
zR(z, λ))

∣∣
z=v1(z′)

is convergent in some neighborhood Vγ of 0 ∈ C
2n−2. Here, v1 is the first Segre

set mapping for M as defined in (3.3).

Before proceeding to the proof of Proposition 5.1, we need a preliminary
lemma (Lemma 5.2 below). Since f maps formally M into M ′, there exists
a(z, z̄) ∈ C[[z, z̄]] such that

fn(z)− Φ̄′(f(z), f ′(z)) = a(z, z̄)ρ(z, z̄), in C[[z, z̄]].
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Equivalently, we have

f̄n(w)− Φ̄′(f(z), f̄ ′(w)) = a(z, w)ρ(z, w), in C[[z, w]].(5.2)

We write Φ̄′
λα(ω, λ) for ∂α

λ Φ̄′(ω, λ). By applying the vector fields Lj , j =
1, . . . , n − 1, as defined by (3.1), to (5.2) and using the fact that f is invert-
ible, one obtains the following known statement (see [4] for instance).

Lemma 5.2. Under the assumptions of Proposition 5.1, one has, for any multi-
ndex α ∈ N

n−1, the formal power series identity

Φ̄′
λα(f(z), f̄ ′(w)) = χα

(
(∂β f̄(w))|β|≤|α|, z, w

)
, (z, w) ∈M,

where each χα is a convergent power series of its arguments.

Proof of Proposition 5.1. We write the expansion

Φ̄′(ω, λ) =
∑

α∈Nn−1

φ′
α(ω)λα.(5.3)

For the sake of clarity, we shall first give the proof of the Proposition in the case
γ = 0.

The case γ = 0. We restrict all the identities given by Lemma 5.2 to the
(n− 1)-dimensional subspace

{(0, v1(z′)) : z′ ∈ (Cn−1, 0)} ⊂ M.

This gives, for any multiindex α ∈ N
n−1,

α! (φ′
α ◦ f ◦ v1)(z′) = χα((∂β f̄(0))|β|≤|α|, v1(z′), 0) := uα(z′),(5.4)

where φ′
α is given by (5.3). Observe that for each multiindex α, uα(z′) is con-

vergent.
To show that C

n−1 × C
n−1 � (z′, λ) 
→ R(v1(z′), λ) is convergent, we claim

that it suffices to show that there exists a > 0 and R0 > 0 such that the radius
of convergence of each uα is at least a, and such that the following Cauchy
estimates hold:

∀α ∈ N
n−1, ∀z′ ∈ C

n−1, |z′| < a, |uα(z′)| ≤ α! R
|α|+1
0 .(5.5)

Indeed, if (5.5) holds, then the formal holomorphic power series

C
n−1 × C

n−1 � (z′, λ) 
→ R0(z′, λ) :=
∞∑

|α|=0

uα(z′)
α!

λα

defines a convergent power series in Bn−1(0, a)×Bn−1(0, 1/2R0). (Here and in
what follows, for any c > 0 and for any k ∈ N

∗, Bk(0, c) denotes the euclidean
ball centered at 0 in C

k of radius c.) Moreover, by (5.4) and (5.1), we have for
any multiindex α ∈ N

n−1,[
∂|α|R0

∂λα
(z′, λ)

]
λ=0

=
[
∂|α|R
∂λα

(v1(z′), λ)
]

λ=0

(5.6)

in C[[z′]] and hence
R0(z′, λ) = R(v1(z′), λ).
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This proves that under the assumption (5.5), R(v1(z′), λ) is a convergent power
series in (z′, λ). It remains to prove (5.5). Since Φ̄′ is holomorphic in a neigh-
borhood of 0 ∈ C

2n−1, in view of (5.3), one can find δ > 0 and a constant R > 0
such that for any multiindices α ∈ N

n−1, ν ∈ N
n,

∀ω ∈ C
n, |ω| < δ,

∣∣∣∣∂|ν|φ′
α(ω)

∂ων

∣∣∣∣ ≤ ν! R|α|+|ν|+1.(5.7)

In view of (5.4) and (5.7) (in the case ν = 0), we can apply Lemma 4.1 to conclude
that there exists a > 0 such that the family (uα(z′))α∈Nn−1 is convergent in
Bn−1(0, a) and such that (5.5) holds with R0 = R. This finishes the proof of
Proposition 5.1 in the case γ = 0.

The case |γ| > 0. We proceed now to the proof of Proposition 5.1 for general
γ ∈ N

n. For this, we need the following lemma.

Lemma 5.3. Under the assumptions of Proposition 5.1, for any multiindices
α ∈ N

n−1, γ ∈ N
n, the formal holomorphic power series

C
n−1 � z′ 
→ ∂γ

z ((φ′
α ◦ f)(z))

∣∣
z=v1(z′)

is convergent.

Proof of Lemma 5.3. We prove the Lemma by induction on |γ| (for any multi-
index α ∈ N

n−1). For γ = 0, the statement follows from (5.4), as we previ-
ously noticed. Let γ ∈ N

n. For α ∈ N
n−1, using Lemma 5.2, we obtain for

(z′, zn, 0, zn) ∈ (M, 0),

Φ̄′
λα(f(z), f̄ ′(0, zn)) = χα

(
(∂β f̄(0, zn))|β|≤|α|, z, 0, zn

)
.

If we apply ∂γ
z to this equation, we obtain

∂|γ|

∂zγ

[Rλα(z, f̄ ′(0, zn))
]

=
∂|γ|

∂zγ

[
χα((∂β f̄(0, zn))|β|≤|α|, z, 0, zn)

]
.(5.8)

One can easily check that this implies that there exist a polynomial Sγ such that
the left-hand side of (5.8) is equal to

(5.9) Rzγλα(z, f̄ ′(0, zn)) +

Sγ

[(Rzνλβ (z, f̄ ′(0, zn))
)

|ν|<|γ|
|β|≤|α|+|γ|

,
(
∂µf̄(0, zn)

)
|µ|≤|γ|

]
,

where µ, ν ∈ N
n, β ∈ N

n−1. Furthermore, we observe that the right-hand side
of (5.8) can be written in the form

χ1
α,γ

(
(∂β f̄(0, zn))|β|≤|α|+|γ|, z

)
,(5.10)
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where χ1
α,γ is a convergent power series. Restricting (5.8), (5.9) and (5.10) to

z = v1(z′), one obtains

(5.11) α! ∂γ
z ((φ′

α ◦ f)(z))
∣∣
z=v1(z′) +

Sγ

[(
β! ∂ν

z

(
(φ′

β ◦ f)(z)
) ∣∣

z=v1(z′)

)
|ν|<|γ|

|β|≤|α|+|γ|
, (∂µf̄(0))|µ|≤|γ|

]
=

χ1
α,γ

(
(∂β f̄(0))|β|≤|α|+|γ|, z′, 0

)
.

The induction hypothesis tells us that for any multiindex β ∈ N
n−1 and for any

multiindex ν ∈ N
n such that |ν| < |γ|, the formal holomorphic power series

z′ ∈ C
n−1 
→ ∂ν

z

(
(φ′

β ◦ f)(z)
) ∣∣

z=v1(z′)

is convergent. Thus, we obtain the desired similar statement for C
n−1 � z′ 
→

∂γ
z ((φ′

α ◦ f)(z))
∣∣
z=v1(z′), for any multiindex α ∈ N

n−1.

We come back to the proof of Proposition 5.1. For all multiindices γ ∈ N
n,

α ∈ N
n−1, we put

Ψα,γ(z′) := α! ∂γ
z ((φ′

α ◦ f)(z))
∣∣
z=v1(z′) = Rzγλα(v1(z′), 0).(5.12)

By Lemma 5.3, the Ψα,γ(z′) are convergent. We now fix γ, |γ| ≥ 1. We want to
prove that Rzγ (v1(z′), λ) is convergent in some neighborhood Vγ of 0 ∈ C

2n−2.
For this, as in the case γ = 0, it suffices to prove that one can find qγ > 0 and
Rγ > 0 such that the radius of convergence of the family (Ψα,γ)α∈Nn−1 is at
least qγ and such that the following estimates hold:

∀α ∈ N
n−1, ∀z′ ∈ C

n−1, |z′| < qγ , |Ψα,γ(z′)| ≤ α! R|α|+1
γ .(5.13)

We first observe that for any multiindex ν ∈ N
n with |ν| ≤ |γ|, there exists a

universal polynomial Pν,γ , such that

(5.14) Rzγλα(z, λ) = ∂γ
z

(
Φ̄′

λα(f(z), λ)
)

=∑
|ν|≤|γ|

Pν,γ

(
(∂βf(z))1≤|β|≤|γ|

)
Φ̄′

ωνλα(f(z), λ).

This means in particular that the polynomials Pν,γ , |ν| ≤ |γ|, are independent
of α. Putting λ = 0 and z = v1(z′) in (5.14), we obtain

(5.15) Rzγλα(v1(z′), 0) =

α!
∑

|ν|≤|γ|
Pν,γ

(
((∂βf)(v1(z′)))1≤|β|≤|γ|

) (
∂|ν|φ′

α

∂ων
◦ f ◦ v1

)
(z′).

Recall that γ is fixed. For α ∈ N
n−1, consider the convergent power series of the

variables ((Λβ)1≤|β|≤|γ|, ω) defined by

hα,γ((Λβ)1≤|β|≤|γ|, ω) := α!
∑

|ν|≤|γ|
Pν,γ

(
(Λβ + ∂βf(0))1≤|β|≤|γ|

) ∂|ν|φ′
α

∂ων
(ω).
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Let r(γ) = n Card{ν ∈ N
n : 1 ≤ |ν| ≤ |γ|}. In view of (5.7), each hα,γ ,

α ∈ N
n−1, is convergent in Br(γ)(0, 1) × Bn−1(0, δ). Moreover, we have the

following estimates for ((Λβ)1≤|β|≤|γ|, ω) ∈ Br(γ)(0, 1)×Bn−1(0, δ),

|hα,γ((Λβ)1≤|β|≤|γ|, ω)| ≤ α!
∑

|ν|≤|γ|
|Pν,γ

(
(Λβ + ∂βf(0))1≤|β|≤|γ|

)| ν! R|α|+|ν|+1.

Put

(5.16) Cγ := sup{|Pν,γ

(
(Λβ + ∂βf(0))1≤|β|≤|γ|

)| :
|ν| ≤ |γ|, (Λn

β)1≤|β|≤|γ| ∈ Br(γ)(0, 1)}.
This implies that in Br(γ)(0, 1) × Bn−1(0, δ), the following estimates hold for
some suitable constant C1

γ :

|hα,γ((Λβ)1≤|β|≤|γ|, ω)| ≤ α! Cγ

∑
|ν|≤|γ|

ν!R|α|+|ν|+1 ≤ C1
γ α! R|α|+|γ|+1.

From this, we see that there exists Rγ > 0 such that for ((Λβ)1≤|β|≤|γ|, ω) ∈
Br(γ)(0, 1)×Bn−1(0, δ),

|hα,γ((Λβ)1≤|β|≤|γ|, ω)| ≤ α! R|α|+1
γ .(5.17)

In view of (5.12) and (5.15), we have for any multiindex α ∈ N
n−1,

hα,γ

(
((∂βf)(v1(z′))− ∂βf(0))1≤|β|≤|γ|, (f ◦ v1)(z′)

)
= Ψα,γ(z′),

as formal power series in z′. Thus, in view of (5.17), we are in a position to
apply Lemma 4.1 to conclude that there exists qγ > 0 such that the family
(Ψα,γ(z′))α∈Nn−1 is convergent in Bn−1(0, qγ), in which, moreover, the desired
estimates (5.13) hold. This implies that Rzγ (v1(z′), λ) ∈ C{z′, λ}. The proof of
Proposition 5.1 is thus complete.

Remark 2. It is clear that Proposition 5.1 still holds in higher codimension with
the same proof. More precisely, the following holds. Let M, M ′ be two germs
through the origin in C

n, n ≥ 2, of smooth real real-analytic generic submani-
folds of CR dimension N and of real codimension d. Let f : (M, 0) → (M ′, 0)
be a formal biholomorphic map. Assume that the coordinates at the target
space ζ = (ζ ′, ζ∗) ∈ C

N × C
d are chosen so that, near the origin, M ′ =

{(ζ ′, ζ∗) ∈ (Cn, 0) : ζ̄∗ = Φ̄′(ζ, ζ̄ ′)}, for some C
d-valued holomorphic map

Φ̄′ = (Φ̄′
1, . . . , Φ̄′

d) near 0 ∈ C
2N+d. Assume also that the coordinates at the

source space are chosen to be normal coordinates for M . Then, if we define
C

n × C
N � (z, λ) 
→ R(z, λ) := Φ̄′(f(z), λ) ∈ C

d, the following holds. For any
multiindex γ ∈ N

n, the formal holomorphic power series mapping

C
N × C

N � (z′, λ) 
→ Rzγ ((z′, 0), λ) ∈ C
d

is convergent.
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6. Proofs of Theorem 2.1 and Theorem 2.2

For the proof of Theorem 2.1, we first need to prove a lemma (also used in
[14]) which will allow us to bypass the second Segre set and to work directly on
the third Segre set.

Lemma 6.1. Let T (x, u) = (T1(x, u), . . . , Tr(x, u)) ∈ (C[[x, u]])r, x ∈ C
q,

u ∈ C
s, with T (0) = 0. Assume that T (x, u) satisfies an identity in the ring

C[[x, u, y]], y ∈ C
q, of the form

ϕ(T (x, u);x, u, y) = 0,

where ϕ ∈ C[[W, x, u, y]] with W ∈ C
r. Assume, furthermore, that for any

multi-index β ∈ N
q, the formal power series

[
∂|β|ϕ
∂yβ

(W ; x, u, y)
]

y=x

is conver-

gent, i.e., belongs to C{W, x, u}. Then, for any given positive integer e, there
exists an r-tuple of convergent power series T e(x, u) ∈ (C{x, u})r such that
ϕ(T e(x, u);x, u, y) = 0 in C[[x, u, y]] and such that T e(x, u) agrees up to order
e (at 0) with T (x, u).

Proof. First observe that T (x, u) is a formal power series solution of the analytic
system in the unknown W ,[

∂|β|ϕ
∂yβ

(W ;x, u, y)
]

y=x

≡ 0, β ∈ N
q.(6.1)

Thus, an application of Artin’s approximation theorem [1] gives, for any positive
integer e, an r-tuple of convergent power series T e(x, u) ∈ (C{x, u})r solution
in W of (6.1), and which agrees up to order e with T (x, u). The Lemma follows
by noticing that ϕ(T e(x, u);x, u, y) ≡ 0 in C[[x, u, y]] if and only if T e(x, u) is
solution of (6.1). The proof of Lemma 6.1 is complete.

The following proposition will also be useful in the proof of Theorem 2.1 (see [8,
Lemma 7.8] for a proof for instance).

Proposition 6.2. Let J (x) = (J1(x), . . . ,Jr(x)) ∈ (C{x})r, x ∈ C
k, k, r ≥ 1,

J (0) = 0, and V(t) ∈ C[[t]], t ∈ C
r. If V ◦ J is convergent and J is generically

submersive, then V itself is convergent.

Proof of Theorem 2.1. Restricting the identity (5.2) to the set

{(v3(z′, ξ, η), v̄2(ξ, η)) : (z′, ξ, η) ∈ (C3n−3, 0)} ⊆ M,

where vj , j = 2, 3, are the Segre sets mappings defined by (3.3), we obtain

R(v3(z′, ξ, η), (f̄ ′ ◦ v̄2)(ξ, η)) = (f̄n ◦ v̄2)(ξ, η).(6.2)

Here, R is the formal power series defined by (5.1). We would like to apply
Lemma 6.1 to the formal equation (6.2) with y = z′, x = η, u = ξ, T (x, u) =
(f̄ ◦ v̄2)(ξ, η), W = (λ, µ), λ ∈ C

n−1, µ ∈ C and

ϕ((λ, µ); η, ξ, z′) := R(v3(z′, ξ, η), λ)− µ.
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For this, one has to check that any derivative of the formal holomorphic power
series C

4n−4 � (z′, ξ, η, λ) 
→ R(v3(z′, ξ, η), λ) with respect to z′ evaluated at
z′ = η is convergent with respect to the variables λ, ξ and η. All these derivatives
involve derivatives of v3 at z′ = η (which are convergent) and derivatives of the
form [Rzγ (v3(z′, ξ, η), λ)]z′=η, for γ ∈ N

n. Because of the reality condition (3.2)
and the definition of v1 and v3 given by (3.3), we have

v3(η, ξ, η) = v1(η).

This implies that for each γ ∈ N
n, we have

[Rzγ (v3(z′, ξ, η), λ)]z′=η = Rzγ (v1(η), λ),

with the right-hand side being convergent in (η, λ) by Proposition 5.1. Thus,
by Lemma 6.1, we have, for any positive integer e, a convergent power series
mapping, denoted T e(ξ, η) = (T ′e(ξ, η), T e

n (ξ, η)) ∈ C
n−1 × C, which agree up

to order e with (f̄ ◦ v̄2)(ξ, η) and such that

R(v3(z′, ξ, η), T ′e(ξ, η)) = T e
n (ξ, η), in C[[z, ξ, η]].(6.3)

Since T e(ξ, η) is a convergent power series mapping, in order to show that
R(z, λ) ∈ C{z, λ}, it suffices to show by Proposition 6.2 that for e large enough
the generic rank of the holomorphic map

(C3n−3, 0) � (z′, ξ, η) 
→ (v3(z′, ξ, η), T ′e(ξ, η)) ∈ C
2n−1(6.4)

is 2n−1. For this, note that since M is minimal at 0, the map v̄2 is of generic rank
n, and thus, by the form of v3 given in (3.3), the holomorphic map (C3n−3, 0) �
(z′, ξ, η) 
→ (v3(z′, ξ, η), v̄2(ξ, η)) ∈ M is of generic rank 2n − 1 (see [2]). More-
over, since f is invertible, we have det

(
∂f ′

∂z′ (0)
)

= 0, which implies that the rank

of the formal mapM� (z, w) 
→ (z, f̄ ′(w)) is 2n− 1 (at the origin). From this,
we see that the formal map (C3n−3, 0) � (z′, ξ, η) 
→ (v3(z′, ξ, η), (f̄ ′ ◦ v̄2)(ξ, η))
has rank 2n − 1. (The rank of such a formal map is its rank in the quotient
field of C[[z′, ξ, η]].) Since T e(ξ, η) agrees up to order e with (f̄ ◦ v̄2)(ξ, η), we
obtain that for e large enough, the mapping (6.4) is of generic rank 2n−1. This
completes the proof of Theorem 2.1.

Remark 3. When the target hypersurface M ′ is given in normal coordinates
i.e., Φ̄′(ω, 0) ≡ ωn, then the normal component fn of a formal biholomorphism
f : (M, 0) → (M ′, 0) is convergent provided that the source hypersurface M is
minimal. Indeed, this follows by taking λ = 0 in Theorem 2.1.

Proof of Theorem 2.2. By the Taylor expansion (5.3) and by Theorem 2.1, we
obtain that all the φ′

α ◦ f are convergent in a common neighborhood U of
0 ∈ C

n. Since M ′ is holomorphically nondegenerate, by [7, 16], there exists
φ′

β1(ω), . . . , φ′
βn(ω), βi ∈ N

n−1, i = 1, . . . , n, such that

det

[
∂φ′

βi

∂ωj
(ω)

]
1≤i,j≤n


≡ 0.
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Since f is a formal biholomorphism, this implies that

det

[
∂φ′

βi

∂ωj
(f(z))

]
1≤i,j≤n


≡ 0,(6.5)

as a formal power series in z. Put ψi(z) := (φ′
βi ◦f)(z) and Ri(z, ω) := φ′

βi(ω)−
ψi(z), i = 1, . . . , n. Observe that since ψi(z) is convergent, Ri(z, ω) ∈ C{z, ω}
for i = 1, . . . , n. Moreover, since Ri(z, f(z)) = 0, i = 1, . . . , n, in C[[z]], by
(6.5), we may apply Proposition 4.2 to conclude that f is convergent.

7. Transcendence degree and partial convergence of formal maps

In this last section, we want to indicate how Theorem 2.1 can be viewed
as a result of partial convergence for formal biholomorphic mappings of real
analytic hypersurfaces. Before explaining what we mean by this, we need to
recall the following. If M is a real analytic hypersurface in C

n and p ∈ M ,
let K(p) be the quotient field of C{z − p}, and H(M, p) be the vector space
over K(p) consisting of the germs at p of (1,0) vector fields, with meromorphic
coefficients, tangent to M (near p). We then define the degeneracy of M at p,
denoted d(M, p), to be the dimension of H(M, p) over K(p). It is shown in [7]
that the mapping M � p 
→ d(M, p) ∈ {0, . . . , n} is constant on any connected
component of M . Thus, if M is a connected real analytic hypersurface, one can
define its degeneracy d(M) to be the degeneracy d(M, q) at any point q ∈ M .
Observe that the germ (M, p), p ∈ M , is holomorphically nondegenerate if and
only if d(M) = d(M, p) = 0.

Theorem 2.1 gives the following result of partial convergence for formal bi-
holomorphic mappings of real analytic hypersurfaces. By this, we mean that we
have the following.

Theorem 7.1. Let f : (M, 0) → (M ′, 0) be a formal biholomorphism between
two germs at 0 of smooth real real-analytic hypersurfaces in C

n. Assume that M
is minimal at 0 and let d(M ′) be the degeneracy of the germ (M ′, 0). Then, there
exists g(ω) = (g1(ω), . . . , gn−d(M ′)(ω)) ∈ (C{ω})n−d(M ′), ω ∈ C

n, of generic
rank n− d(M ′) such that the mapping g ◦ f is convergent.

Proof. We again use the notations of §2. As in the proof of Theorem 2.2, we
have, using the expansion (5.3),

Φ̄′(f(z), λ) =
∑

β∈Nn−1

(φ′
β ◦ f)(z)λβ .

Thus, we know, by Theorem 2.1, that for any multi-index β ∈ N
n−1, (φ′

β ◦ f)(z)
is convergent in some neighborhood U of 0 in C

n. We choose φ′
β1(ω), . . . , φ′

βr (ω),
r = n− d(M ′), of generic maximal rank equal to n− d(M ′) in a neighborhood
U ′ of 0 in C

n (see [7]). Then, if we define gj(ω) = φ′
βj (ω), j = 1, . . . , n− d(M ′),

we obtain the desired statement of the Theorem.



356 NORDINE MIR

Remark 4. One should observe that the convergent power series mapping g in
Theorem 7.1 is obtained in a constructive way from the target manifold M ′.
Indeed, this is a consequence of the statement of Theorem 2.1.

Now, we want to make explicit links with the notion of transcendence de-
gree introduced in [10] in the C∞ mapping problem. For this, we first set the
corresponding definitions in the formal case.

Definition 7.1. Let H : (CN , 0) → (CN ′
, 0) be a formal (holomorphic) map-

ping, and V be a complex analytic set through the origin in C
N ×C

N ′
. Assume

that V is given near the origin in C
N+N ′

by

V = {(x, y) ∈ C
N × C

N ′
: b1(x, y) = . . . = bq(x, y) = 0},

bi(x, y) ∈ C{x, y}, i = 1, . . . , q. Then, the graph of H is said to be formally
contained in V if b1(x,H(x)) = . . . = bq(x,H(x)) = 0 in C[[x]].

It follows from the Nullstellensatz that this definition is independent of the
choice of the defining functions (bi) for V .

Definition 7.2. Let H : (CN , 0)→ (CN ′
, 0) be a formal holomorphic mapping.

Let VH be the germ of the complex analytic set through the origin in C
N+N ′

defined as the intersection of all the complex analytic sets through the origin in
C

N+N ′
which formally contain the graph of H. Then the transcendence degree

of H is the nonnegative integer dimC VH −N .

This definition is motivated by the following result.

Proposition 7.2. Let H : (CN , 0) → (CN ′
, 0) be a formal holomorphic map-

ping. Then, the following conditions are equivalent:
i) H is convergent.
ii) The transcendence degree of H is zero.

Proof. The implication i) ⇒ ii) is clear. The other implication is equivalent to
the following proposition.

Proposition 7.3. Let H : (CN , 0) → (CN ′
, 0) be a formal (holomorphic) map-

ping. If there exists a germ at 0 of a complex analytic set V ⊂ C
N+N ′

which
formally contains the graph of H with dimCV = N , then H is convergent.

Proof. Let V be as in the proposition. We can assume that, near 0 ∈ C
N+N ′

,

V = {(x, y) ∈ C
N × C

N ′
: b1(x, y) = . . . = bp(x, y) = 0},

where each bj(x, y) ∈ C{x, y}. To this complex analytic set V , as is customary,
we associate the following ideal of C{x, y} defined by

I(V ) = {s ∈ C{x, y} : s vanishes on V }.
By the Noetherian property, we can assume that I(V ) is generated by a family
(hi(x, y))i=1,... ,k ⊆ C{x, y}. Furthermore, by the Nullstellensatz [12, 17], for i =
1, . . . , k, there exists an integer µi such that hµi

i (x, y) is in the ideal generated by
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the bj(x, y), j = 1, . . . , p. This implies that for i = 1, . . . , k, hi(x,H(x)) = 0 in
C[[x]]. The following result, a consequence of the Artin approximation theorem,
is contained in [17] (p.63). Assume that the height of the ideal I(V ) (generated
by the family (hj(x, y))1≤j≤k in C{x, y}) is equal to N ′. Then, any formal
solution Y(x) ∈ (C[[x]])N ′

, Y(0) = 0, of the system h1(x, y) = . . . = hk(x, y) = 0
(in the unknown y) is convergent. Thus, to obtain the convergence of our original
formal power series H, it suffices to check that the height of I(V ) is equal to N ′.
Since C{x, y} is a local regular ring of Krull dimension N + N ′, by Proposition
6.12, p. 22 of [17], we have the formula

height (I(V )) + dim C{x, y}/I(V ) = N + N ′,

where dim C{x, y}/I(V ) is the Krull dimension of the ring C{x, y}/I(V ). Since
the Krull dimension of such a ring coincides with the dimension of the complex
analytic set V (cf. [12], p. 226, Proposition 1), which is, here, equal to N , we
obtain that the height of I(V ) is N ′. This completes the proof of Proposition 7.3,
and hence, the proof of Proposition 7.2.

With these tools at our disposal, we can now state a result which follows from
Theorem 7.1.

Corollary 7.4. Let f : (M, 0) → (M ′, 0) be a formal biholomorphism between
two germs at 0 of smooth real real-analytic hypersurfaces in C

n. Assume that M
is minimal at 0 and denote by Df the transcendence degree of the map f . Then,
Df ≤ d(M ′), where d(M ′) is the degeneracy of M ′. In other words, there exists
a complex analytic set of (pure) dimension n + d(M ′) which formally contains
the graph of f .

Proof. By Theorem 7.1, there exists a convergent power series mapping g(ω) =
(g1(ω), . . . , gn−d(M ′)(ω)) ∈ (C{ω})n−d(M ′) such that for each j = 1, . . . , r,
δj(z) := (gj ◦ f)(z) is convergent, r = n − d(M ′). Then, the graph of f is
formally contained in the complex analytic set

A = {(z, ω) ∈ (C2n, 0) : g1(ω)− δ1(z) = . . . = gr(ω)− δr(z) = 0}.
Let A = ∪k

i=1Γi be the decomposition of A into irreducible components. For
any positive integer σ, one can find, according to the Artin approximation the-
orem [1], a convergent power series mapping fσ(z) ∈ (C{z})n defined in some
small neighborhood Uσ of 0 in C

n, which agrees with f(z) up to order σ (at 0)
and such that the graph of fσ, denoted G(fσ), is contained in A. Since G(fσ)
is contained in A, it must be contained in an irreducible component of A. Thus,
by the pigeonhole principle, at least one subsequence of (fσ)σ∈N∗ is contained
in one of such irreducible components, say Γ1. There is no loss of generality in
assuming that such a subsequence is (fσ)σ∈N∗ itself. We first observe that this
implies that the graph of f is formally contained in Γ1. Moreover, since f is
a formal biholomorphism, the family (fσ)σ∈N∗ is also a family of local biholo-
morphisms. In particular, this implies that the generic rank of the family of
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holomorphic functions
((gi ◦ f1)(z))1≤i≤r,

is r. As a consequence, if z0 is close enough to 0 in C
n and is chosen so that the

rank of the preceding family at z0 equals r, the implicit function theorem shows
that A is an n + d(M ′)-dimensional complex submanifold near (z0, f

1(z0)) ∈
Γ1. Since Γ1 is irreducible, it is pure-dimensional; thus Γ1 is an n + d(M ′)
pure-dimensional complex analytic set formally containing the graph of f . By
definition of the transcendence degree, this implies that Df ≤ d(M ′).

The following example illustrates the applications of Theorem 7.1 and Corol-
lary 7.4.

Example 1. Let M = M ′ be the minimal real algebraic hypersurface through
the origin in C

3 given by
Im z3 = |z1z2|2.

Here, M is holomorphically degenerate and its degeneracy d(M) is equal to 1.
Consider the following formal biholomorphic self-map of M :

fh : C
3 � (z1, z2, z3) 
→ (z1e

h(z), z2e
−h(z), z3) ∈ C

3,

where h(z) = h(z1, z2, z3) is any non-convergent formal power series vanishing at
the origin. Observe that Theorem 2.1 gives in this example that for any formal
biholomorphic self-map f = (f1, f2, f3) of M , the product f1f2 and the third
component f3 are necessarily convergent. Observe in this example that the first
two components of fh are not convergent, but that the transcendence degree of
the map fh is actually 1 = d(M). Indeed, the graph of fh is formally contained
in the complex analytic set of dimension 4

V = {(z, ω) ∈ C
3 × C

3 : ω1ω2 = z1z2, ω3 = z3},
and cannot be formally contained in a complex analytic set of dimension 3, since
otherwise fh would be convergent by Proposition 7.3.

We conclude by observing that Theorem 2.2 can be regarded as a direct con-
sequence of Corollary 7.4. Indeed, when M ′ is holomorphically nondegenerate,
as mentioned above, d(M ′) = 0 and hence Df = 0 by Corollary 7.4. It then
follows from Proposition 7.2 that f is convergent in that case. We should also
mention that Theorem 2.2, Theorem 7.1 and Corollary 7.4 are all consequences
of our main result, namely Theorem 2.1.
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[13] N. Mir, Germs of holomorphic mappings between real algebraic hypersurfaces. Ann. Inst.

Fourier (Grenoble) 48 (1998), 1025–1043.
[14] , On the convergence of formal mappings, preprint, 1999.
[15] T.S. Neelon, On solutions of real analytic equations, Proc. Amer. Math. Soc. 125 (1997),

2531–2535.
[16] N. Stanton, Infinitesimal CR automorphisms of real hypersurfaces, Amer. J. Math 118

(1996), 209–233.
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