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ANALYTIC REGULARITY OF CR-MAPPINGS

Francine Meylan, Nordine Mir and Dmitri Zaitsev

1. Introduction

In this paper we give general conditions that guarantee the analyticity of
C∞-smooth CR-mappings between real-analytic CR-submanifolds M ⊂ C

N and
M ′ ⊂ C

N ′
(see Theorem 1.1). The proof of the analyticity is based on results on

holomorphic and meromorphic extension of functions on wedge-like domains to
boundary points (see Theorems 2.4 and 2.6) that may be of independent interest.

The analyticity problem for CR-mappings f : M → M ′ between real-analytic
CR-submanifolds goes back to the work of Lewy [Le56, Le77] and Pinchuk
[Pi75], where the analyticity of a CR-diffeomorphism f was shown for M, M ′ ⊂
C

N Levi-nondegenerate hypersurfaces. The condition of Levi-nondegeneracy of
M (resp. of M ′) can be seen as a nonvanishing condition involving first and
second order partial derivatives of a local defining function ρ(z, z) of M (resp.
ρ′(z′, z′) of M ′). Motivated by this and other conditions due to the work of
other authors (see below), one may pose the analyticity problem in the following
more precise form:

(∗) Find open conditions, each involving finitely many derivatives of f and of
ρ and ρ′ at the reference points which imply, in the above setting, that f
is real-analytic.

Here, by an open condition, we mean a condition on finitely many derivatives
that holds on an open subset in the space of derivatives. For instance, the
condition of minimality (which is equivalent to that of finite type in the sense
of Kohn and Bloom-Graham for a real-analytic CR-manifold M), as well
as that of essential finiteness of M (see e.g. [BER99]), can be expressed as
open conditions on the derivatives of ρ. The reader is referred to the papers
[W78, DW80, W82, Ha83, CKS84, BJT85, BBR88, BR88, BP88, DF88, Fo89,
BR90b, Fa90, Su92, DFY94, Hu94, DP95, Me95, Hu96, BHR95, HP96, Ha97,
CPS99, BER00, La01] containing as main results analyticity statements for CR-
mappings under open conditions in the above sense. In a different direction, the
analytic regularity of CR-mappings has been studied by many authors under
other types of conditions, for instance assuming a priori holomorphic extension
of f to a wedge. Other results assume weak pseudoconvexity that is, in contrast
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to strong pseudoconvexity, not an open condition in the above sense (see also
[E00] for another kind of such non-open condition). These results are beyond
the scope of the present work.

In this paper we prove a new analyticity result for CR-mappings between real-
analytic CR-submanifolds, of any CR dimension, in complex spaces of arbitrary
dimension. The analyticity is proved for a source manifold M minimal and under
a condition that holds, to the authors’ knowledge, in all previous works in the
context of (∗).

To formulate our result, consider the family of Segre varieties associated to
M and M ′ given by

Qw := {z : ρ(z, w) = 0}, Q′
w′ := {z′ : ρ′(z′, w′) = 0},(1.1)

for w and w′ near the reference points p ∈ M and p′ ∈ M ′ respectively, where
ρ(z, z) and ρ′(z′, z′) are any real-analytic (vector-valued) defining functions of M
and M ′ near p and p′ respectively. Given a C∞-smooth CR-mapping f : M → M ′

with f(p) = p′, it is known (see e.g. [BER99, Proposition 1.7.14]) that the
Taylor series of f at p extends to a formal (holomorphic) power series mapping
Fp : (CN , p) → (CN ′

, p′) sending (formally) Qp into Q′
p′ . Define a germ of a

complex-analytic subset of C
N ′

through p′ by

rp := {w′ : Q′
w′ ⊃ Fp(Qp)},(1.2)

where the inclusion is understood in the sense of formal power series (see §3 for
more details). Subsets similar to rp have been considered by many authors (see
e.g. [DW80, BJT85, BR88, DF88, Fo89, DP95, Hu96, CPS99, Z99, Mi00]).

The main result of this paper is the following.

Theorem 1.1. Let M ⊂ C
N , M ′ ⊂ C

N ′
be real-analytic CR-submanifolds and

f : M → M ′ a C∞-smooth CR-mapping. Assume that M is minimal at a point
p ∈ M and that p′ = f(p) is isolated in rp. Then f extends holomorphically to
a neighborhood of p in C

N .

The equivalence of the analyticity of f and its holomorphic extension is a
consequence of a theorem of Tomassini [To66]. In the case when M ⊂ C

N is a
real hypersurface, Theorem 1.1 is due to Coupet-Pinchuk-Sukhov [CPS99].
One additional difficulty for a source manifold M of higher codimension is that
a one-sided extension for CR-functions on M has to be replaced by a wedge
extension, where the additional directions of the wedges may change as M is
shrinked (see [BGN98] and Example 4.1 below). As a consequence, we need to
establish Theorem 2.4 and 2.6 below whose proof requires the full machinery of
Tumanov’s CR-extension theory.

The condition in Theorem 1.1 plays an important role also in different ques-
tions. For instance, under the same assumptions on M and M ′, the second
author showed that a formal mapping is always convergent [Mi00, Theorem 9.1].

Remark 1.2. The statement of Theorem 1.1 holds (with the same proof) when
the target M ′ is any real-analytic subset of C

N ′
.
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Observe that the condition that p′ is isolated in rp in Theorem 1.1 involves
all the data M, M ′ and f . It may be of interest to give independent conditions
on M , M ′ and f . We conclude by giving a corollary of Theorem 1.1 assuming
separate conditions on M , M ′ and f . For this, recall that M ′ is called essentially
finite (see [DW80, BJT85]) at a point p′ ∈ M ′ if p′ is isolated in the set {w′ :
Q′

w′ ⊃ Q′
p′}. Furthermore, we say that f is not totally degenerate at p if the

(generic) rank of the formal map between Qp and Q′
p′ induced by the above map

Fp equals the dimension of Q′
p′ (see §3 for more details).

Corollary 1.3. In the setting of Theorem 1.1, suppose that M is minimal at a
point p ∈ M , M ′ is essentially finite at p′ = f(p) and f is not totally degenerate
at p. Then f extends holomorphically to a neighborhood of p in C

N .

In the case N = N ′, dimM = dimM ′ and dimQp = dimQ′
p′ , Corollary 1.3

was obtained by Baouendi-Rothschild [BR90b] when M and M ′ are hyper-
surfaces and by the first author [Me95] in higher codimension. We would like to
point out that, even in the case when M, M ′ ⊂ C

N are real hypersurfaces of the
same dimension, the situation considered in Theorem 1.1 is more general than
that in Corollary 1.3 as will be illustrated by Example 6.5.

The paper is organized as follows. In §2 we present the statements of the
main tools needed for the proof of Theorem 1.1. In §3 we introduce and explain
the necessary notation and terminology needed throughout the paper. In §4 we
study holomorphic hulls of wedges, introduce the notion of generalized wedge
and prove Theorem 2.4. §5 is devoted to the proof of Theorem 2.6 obtained by
combining Theorem 2.4, a separate meromorphicity result due to Shiffman and
a result due to Ivashkovich concerning envelopes of holomorphy and meromor-
phy. Finally in §6 we prove Theorem 1.1 and show how Corollary 1.3 can be
derived from it.

2. Main tools

We begin with the case of real hypersurfaces in C
n which is essentially simpler

than that of higher codimension. An important phenomenon in several complex
variables is the “forced” extension of holomorphic functions from one side of a
real hypersurface M ⊂ C

N to the other side. For strongly pseudoconcave sides,
such an extension is a consequence of the classical Hartogs theorem. More gen-
erally, by a theorem of Trépreau [Tr86] (see also Baouendi-Treves [BT84]
for M real-analytic), such an extension holds for at least one of the two sides if
and only if M does not contain complex hypersurfaces. As a corollary, one has
holomorphic extension of CR-functions on M to the same side.

A similar phenomenon for generic submanifolds M ⊂ C
N of higher codimen-

sion is much less understood and is one of the main subjects of the present paper.
Here the natural substitutes for one-sided neighborhoods are wedges with edge
M and the necessary and sufficient condition for holomorphic extension of CR-
functions on M to such a wedge is the minimality (see §3) due to the theorems
of Tumanov [Tu88] and of Baouendi-Rothschild [BR90a].
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A significant difficulty when working with wedge extensions instead of one-
sided extensions is due to the fact that the normal directions of the wedges, where
the extension takes place, depend not only on the local geometry of M but also
on the size of M near a given point as e.g. an example of Boggess-Glenn-
Nagel [BGN98] (see Example 4.1) shows. This difficulty becomes visible when
studying extension properties of CR-mappings between real-analytic generic sub-
manifolds. Here the reflection principle yields natural reflections associated to
real-analytic submanifolds going back to the Schwarz reflection in one complex
variable. More generally, we define:

Definition 2.1. Let M ⊂ R
n be a real submanifold of class Ck, k = 1, . . . ,∞.

A reflection with respect to M is a diffeomorphism ν : ω → ω of class Ck, where
ω is a neighborhood of M in R

n, such that ν|M = id and the induced self-map
of the normal space TqR

n/TqM equals −id for each q ∈ M .

If M and ω are as above, any involution ν : ω → ω for which the fixed point
set is M is a reflection as in Definition 2.1. Furthermore, for a real hypersurface
M , any reflection locally exchanges the sides of M . Motivated by this case, we
are led to study the following question:

If M is minimal at a point p ∈ M and ν : ω → ω is a reflection with respect
to M , is there a wedge W ⊂ ω with edge M such that

(i) all CR-functions on M extend holomorphically to W;
(ii) all holomorphic functions on ν(W) extend holomorphically to a fixed neigh-

borhood of p?

It turns out that, for wedges in the classical sense obtained by adding transver-
sal cones to neighborhoods of p in M , the answer to the above question is neg-
ative. In fact we show that Example 4.1 provides a counterexample. However,
the answer becomes positive if one allows W to have variable normal directions.
Such W will be called a generalized wedge and is defined as follows:

Definition 2.2. Let M ⊂ R
n be a real submanifold through a point p ∈ M and

Π ⊂ R
n a linear subspace with TpM ⊕ Π = R

n. A generalized wedge with edge
M at p (relative to Π) is a connected open subset W ⊂ R

n of the form

W = {x + y : x ∈ U, y ∈ Γx ∩ Ω},
where U ⊂ M is an open neighborhood of p, Γx ⊂ Π is an open convex cone
with vertex the origin for each x ∈ U and Ω ⊂ Π is an open neighborhood
of 0. We call U the base of W. In the classical case when Γx = Γ ⊂ Π is
independent of x ∈ U , we call W a standard wedge (in the direction Γ) and write
W = W (U,Ω,Γ).

Remark 2.3. Note that if W is a generalized wedge as in Definition 2.2, then
there exists ε > 0 and a C∞-smooth mapping U � x �→ vx ∈ Γx ⊂ Π such that
for any point x ∈ U , there exists a (standard) wedge Wx ⊂ W with edge M at
x with x + tvx ∈ Wx for t ∈ R, |t| < ε.
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We have the following result answering positively the above question for gen-
eralized wedges:

Theorem 2.4. Let M ⊂ C
N ∼= R

2N be a generic submanifold of class C2,α

which is minimal at a point p ∈ M . Fix Π ⊂ R
2N as in Definition 2.2. Then for

any sufficiently small open neighborhood U of p in M , there exists a generalized
wedge W with edge M at p with base U satisfying the following properties:

(i) all continuous CR-functions on M extend holomorphically to W;
(ii) for any reflection ν : ω → ω with respect to M , all holomorphic functions

on ν(W ∩ ω) extend holomorphically to a fixed neighborhood of p in C
N .

As will be explained in §4, the statement of Theorem 2.4 does not hold for
standard wedges instead of generalized wedges. Theorem 2.4 will be one of
the main steps in proving the analyticity result for CR-mappings provided by
Theorem 1.1. The authors know of no other examples of an analyticity result of
this kind whose proof requires the use of generalized wedges instead of standard
ones.

Property (ii) in Theorem 2.4 expresses the fact that the envelope of holomor-
phy of the open subset ν(W ∩ω) contains a neighborhood of p in C

N . Together
with a theorem of Ivashkovich [I92], we obtain:

Corollary 2.5. In the setting and with the notation of Theorem 2.4, all mero-
morphic functions on ν(W ∩ ω) extend meromorphically to a fixed neighborhood
of p in C

N .

As an application of Corollary 2.5, we shall prove in §5 the following result
on meromorphic extension:

Theorem 2.6. Let U ⊂ C
N , V ⊂ C

m be open subsets, M ⊂ U a connected
generic real-analytic submanifold, g : M → V a continuous CR-function and
u, v : U × V ∗ → C holomorphic functions, where V ∗ := {z̄ : z ∈ V }. Assume
that M is minimal at every point and that there exists a nonempty open subset
of M , where v(z, g(z)) does not vanish and where the quotient

u(z, g(z))
v(z, g(z))

(2.1)

is CR. Then v(z, g(z)) does not vanish on a dense open subset M0 ⊂ M and the
quotient (2.1) extends from M0 meromorphically to a neighborhood of M in C

N .

In the case when M is a real hypersurface, analogous results were obtained
by Baouendi-Huang-Rothschild [BHR96] in an algebraic context and later
by Coupet-Pinchuk-Sukhov [CPS99] for M real-analytic (see also [Pu90a,
Pu90b, CPS00]). In each of these papers the corresponding meromorphic ex-
tension result was an important step in proving analyticity of CR-mappings.
Theorem 2.6 in the hypersurface case is stronger than the corresponding results
in the two papers mentioned above. Indeed, the quotient (2.1) is required here
to be CR only on an open subset instead of an open dense subset and g is only
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required to be continuous. Another application of Theorem 2.6 to the analyticity
of CR-mappings will be given in the forthcoming paper of the authors [MMZ01].

3. Preliminaries

We say that a submanifold M ⊂ R
n is of class Ck,α, k ≥ 1, 0 < α < 1, if,

near each of its points, M has a set of defining functions of class Ck with k-th
order partial derivatives satisfying a Hölder condition with exponent α. Recall
that M is called a CR-submanifold if the dimension of the complex tangent
space T c

q M := TqM ∩ iTqM is independent of q ∈ M ; M is called generic if
dimC T c

q M = dimR M −N for all q ∈ M . Recall also that a CR-submanifold M
is called minimal (see [Tu88]) at a point p ∈ M if there is no real submanifold
S ⊂ M through p with dimS < dimM such that T c

q M ⊂ TqS for all q ∈ S.
A continuous function on M is called a CR-function if it is annihilated, in

the sense of distributions, by the CR vector fields of M (i.e. (0, 1) vector fields
tangent to M). A continuous mapping between two CR-submanifolds M ⊂ C

N

and M ′ ⊂ C
N ′

is called a CR-mapping if all its components are CR-functions.
Let X ⊂ C

N and X ′ ⊂ C
N ′

be complex-analytic submanifolds through p ∈
C

N and p′ ∈ C
N ′

respectively. We say that a formal (holomorphic) power series
h ∈ C[[z−p]], z = (z1, . . . , zN ), vanishes on X if h◦v = 0 for one (and hence for
any) complex-analytic parametrization v : (Cdim X , 0) → (X, p) of X near p. We
further say that a formal power series mapping F : (CN , p) → (CN ′

, p′) sends X
into X ′ and write F (X) ⊂ X ′ if, for any formal power series h′ ∈ C[[z′ − p′]]
vanishing on X ′, z′ = (z′1, . . . , z′N ′), the composition h′ ◦ F vanishes on X. In
this case the map F induces a formal power series mapping F |X between X and
X ′. Then, by the (generic) rank of F |X we mean the largest integer r such that
some r × r minor of the Jacobian matrix of F ◦ v, where v is as above, does not
vanish identically.

We give here more precise details on the complex-analytic set rp defined in
(1.2). Let M ⊂ C

N and M ′ ⊂ C
N ′

be real-analytic CR-submanifolds through
points p and p′ respectively. Let ρ(z, z), ρ′(z′, z′) be vector-valued local real-
analytic defining functions for M near p and M ′ near p′ respectively, with
complex differentials of constant rank. For sufficiently small neighborhoods
U ⊂ C

N , U ′ ⊂ C
N ′

of p and p′, the family of Segre varieties of M and M ′

is the family of complex submanifolds given by Qw = {z ∈ U : ρ(z, w) = 0}
and Q′

w′ = {z′ ∈ U ′ : ρ′(z′, w′) = 0} for w and w′ sufficiently close to p and
p′ respectively. Given a C∞-smooth CR-map f : M → M ′ with f(p) = p′, we
denote, as in §1, by Fp a C

N ′
-valued formal (holomorphic) power series centered

at p which extends the Taylor series of f at p. (Note that if M is generic, such a
formal power series mapping is unique.) Choose a holomorphic parametrization
γ = γ(t) of the Segre variety Qp, t = (t1, . . . , tn), with n = dimR T c

pM and
γ(0) = p. Then, for a point w′ close to p′, the formal inclusion Q′

w′ ⊃ Fp(Qp) is
equivalent to the identity ρ′(Fp(γ(t)), w′) ≡ 0 in the ring C[[t]]. From this, we
see that (1.2) defines a germ of a complex-analytic set through the point p′. It
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is also easy to see that the set rp is independent of the choice of Fp, γ and local
vector-valued defining functions for M and M ′.

4. Holomorphic extension of functions on wedges; proof of
Theorem 2.4

In this section we shall prove Theorem 2.4. Given a generic submanifold
M ⊂ C

N as in Theorem 2.4 which is minimal at a point p, a natural attempt
would be to apply Tumanov’s theorem [Tu88] to get a standard wedge W with
edge M at p satisfying property (i) of that theorem. Then, given any reflection
ν with respect to M (as in Definition 2.1), in order to show (ii), one can try to
“push” the manifold M a little to get a submanifold M̃ inside ν(W ). Then any
holomorphic function on ν(W ) would restrict to a CR-function on M̃ which, in
turn, would extend to the “pushed wedge”. This last wedge would contain a
neighborhood of p because it is “pushed” in the opposite direction with respect
to that of W .

However, this simple attempt leads to the following problem: in general, the
base U ⊂ M of the wedge W , as in Definition 2.2, is strictly smaller than M .
Hence the reflected wedge ν(W ) will not contain the “pushed” manifold M̃ but
only the “pushed” base Ũ or even a smaller domain. Of course, one may use
Tumanov’s theorem again for the submanifold Ũ to get a new standard wedge
W1. However, the wedge W1 may not have any direction that is opposite to any
direction of ν(W ) and thus W1, when “pushed” into ν(W ), may not cover any
neighborhood of p.

This problem does not appear if M ⊂ C
N is a real hypersurface. In that case,

by applying Trépreau’s theorem [Tr86], one finds a base of neighborhoods of
p in M such that the holomorphic extension takes place to the same side of
M for all neighborhoods. Therefore any smaller one-sided neighborhood with
holomorphic extension can be chosen to be opposite to that of ν(W ) and, hence,
the above argument applies.

In contrast to the hypersurface case, if M ⊂ C
N is a generic submanifold

of higher codimension which is minimal at p, the direction of a wedge of holo-
morphic extension may change when shrinking the base U . This phenomenon is
illustrated on the following example.

Example 4.1. Consider the generic submanifold M ⊂ C
3 of codimension 2

given by
M := {(z, w1, w2) ∈ C

3 : Im w1 = |z|2, Im w2 = |z|4}.
The neighborhood

Uε := {(z, w1, w2) ∈ M : |z| < ε}(4.1)

of 0 in M is contained in the closure of the convex tube domain Vε given by

Vε := {(z, w1, w2) ∈ C
3 : (Im w1)2 < Im w2 < ε2Im w1}.(4.2)
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Hence any wedge Wε with edge Uε at 0, where all CR-functions on Uε holo-
morphically extend, must be contained in Vε. Indeed, otherwise one has a CR-
function on Uε of the form f(z) = 1/(λ(z) − c), where λ is a complex-linear form
and c is a constant, that does not extend to the whole Wε.Then, given any such
Wε0 for Uε0 , if ε1 > 0 is sufficiently small, any wedge Wε1 ⊂ Vε1 will not share
any direction with Wε0 .

Furthermore, we claim that any neighborhood M0 of 0 in M yields a coun-
terexample to the statement of Theorem 2.4 with “generalized wedge” replaced
by “standard wedge”. Indeed, set

ε := sup{|z| : (z, w1, w2) ∈ M0 for some w1, w2} ≤ ∞
and suppose that a standard wedge W = W (U,Ω,Γ) satisfies the conclusion
of Theorem 2.4. Then U is contained in Uε and property (i) in Theorem 2.4
together with the above remark implies that W is contained in Vε. Hence the
convex cone Γ is of the form {(v1, v2) ∈ R

2 : α2v1 < v2 < β2v1} for some
0 < α < β ≤ ε. Since x + (Γ ∩ Ω) ⊂ W ⊂ Vε holds for any x ∈ U ⊂ M , it
follows that U ⊂ Uα (as in (4.1)) and therefore U is contained in the closure of
the convex domain

D := {(z, w1, w2) ∈ C
3 : Im w2 < α2Im w1}.

Finally we choose the reflection ν to be

ν : (z, w1, w2) �→ (z, w1 + 2i|z|2, w2 + 2i|z|4).
Then it is easy to see that ν(W) is also contained in the domain of holomorphy
D and hence property (ii) in Theorem 2.4 cannot hold.

The above mentioned problem is exactly the reason for us to state Theorem 2.4
for a generalized wedge instead of a standard one. We apply Tumanov’s theorem
twice: first to the generic submanifold M to get a wedge W1 with a base U ⊂ M
and then to a smaller neighborhood U ′ ⊂⊂ U to get another wedge W2. We
then use a theorem of Ajrapetian-Henkin [AH81] to “connect” W1 and W2

through a third wedge W3. The generalized wedge W is then chosen to be
contained in the union of W1, W2 and W3. Following the above strategy, given
any reflection ν with respect to M , we “push” U ′ inside ν(W). However, in order
to get the opposite direction near p, we have to push U ′ along a nonconstant
transversal vector field. The fact that U ′ is “deformed” along a nonconstant
vector field makes it impossible to use the statement of Tumanov’s theorem
[Tu88, Tu90] directly, since the statement does not contain any information
about the deformation of the wedge W2 when the edge is deformed. In order to
get control of the size and of the direction of the “deformed wedge” W2, we have
to use Tumanov’s explicit construction of W2 based on the method of analytic
discs and solving Bishop’s equation.

In the explicit construction of Tumanov’s wedge, we follow his approach in
[Tu96]. The construction consists of two steps. The first one is to construct d
analytic discs attached to M through p whose directions spans the normal space
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to M at p, where d is the codimension of M . Recall that an analytic disc in C
N

attached to M is a continuous map A : ∆ → C
N , where ∆ ⊂ C is the unit disc,

such that A is holomorphic in ∆ and A(∂∆) ⊂ M . Each disc Aj , j = 1, . . . , d,
is constructed such that Aj(1) = p and ∂νAj(1) /∈ TpM , where ∂ν is the radial
derivative. Then, each Aj can be deformed with Aj(1) moving in a neighborhood
of p in M to fill a submanifold M ′

j with boundary M . In fact, the submanifold
M ′

j is filled by pieces of radii of analytic discs of the form A((1 − ε, 1]), ε > 0.
The second step is an application of a theorem of Ajrapetian-Henkin. It
implies that any CR-function on the union of the M ′

j ’s extends holomorphically
to a wedge W . Again, we have to use the explicit construction in order to get
the control of W under deformations of the Mj ’s. The construction of W is
also given in [Tu96], where W is obtained as a union of centers of analytic discs
attached to ∪d

j=1M
′
j . The control of the analytic discs entails the control of the

wedge W . Such a control is based on the solution of Bishop’s equation and its
regularity with respect to parameters is obtained by Tumanov in [Tu93].

We now state deformation versions of the CR-extension results from [Tu96]
that we shall need for the proof of Theorem 2.4. Recall that a map ϕ : S → R

m,
where S ⊂ R

n, is in the Hölder space Cα (0 < α < 1) if there exists a constant
C > 0 such that for all x, y ∈ S, |ϕ(x) − ϕ(y)| ≤ C|x − y|α. The map ϕ is
of class Ck,α (k ≥ 1) if it extends to be Ck to a neighborhood of S in R

n such
that each partial derivative of ϕ up to order k is of class Cα. When considering
analytic discs A : ∆ → C

N , it is convenient to assume that they belong to the
Hölder spaces Ck,α, since such discs are preserved by the Hilbert transform (see
e.g. [BER99]). In what follows, given an analytic disc A : ∆ → C

N of class Ck,α,
by a small analytic disc we mean an analytic disc with small Ck,α norm.

We say that a family (Mt)t∈T , where T ⊂ R is an interval, of real submanifolds
in C

N is of class Ck,α if near each point there exists a joint local parametrization
x �→ ϕt(x) ∈ Mt which is Ck,α with respect to (t, x). In particular, for each
t ∈ T , the submanifold Mt is of class Ck,α. In a similar fashion, one may define a
family of submanifolds with boundaries of class Ck,α. Note that, if a submanifold
M ⊂ C

N is generic, any submanifold with boundary M is automatically generic.
Similarly to wedges we say that M ′ is a submanifold with boundary M at p ∈ M
if the boundary of M ′ is an open neighborhood of p in M . The following fact is
a deformation version of Lemma 6.4 in [Tu96].

Proposition 4.2. Given a generic submanifold M ⊂ C
N of class Ck,α (k ≥

1, 0 < α < 1) through 0 and a sufficiently small analytic disc A0 : ∆ → C
N of

class Ck,α with A0(1) = 0 and ξ := ∂νA0(1) /∈ T0M , the following hold:

(i) For any 0 < β < α, there exists a (generic) submanifold M ′ of class Ck,β

with boundary M at 0 such that T0M
′ = Rξ ⊕ T0M and all continuous

CR-functions on M extend to be CR on M ′.
(ii) Moreover, the submanifold M ′ given in (i) can be chosen with the follow-

ing property. Given a Ck,α-family (Mt)0≤t≤ε of generic submanifolds with
M0 = M and given any 0 < β < α, there exists a Ck,β-family of (generic)
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submanifolds M ′
t, 0 ≤ t ≤ ε′ ≤ ε (for some ε′), with boundaries Mt such

that M ′
0 = M ′ and all CR-functions on Mt extend to be CR on M ′

t.
(iii) Each submanifold M ′

t in (ii), 0 ≤ t ≤ ε′, can be chosen to be the union of
open pieces of radii of the form A((1 − γ, 1]), γ > 0, of sufficiently small
analytic discs A of class Ck,α attached to Mt.

The proof can be obtained by following the proof of Lemma 6.4 in [Tu96] and
using Theorem 1.2 in [Tu93] to show the required regularity for the solutions of
Bishop’s equation with parameters. The details are left to the reader.

For the next statement, recall that, given two open cones Γ′ ⊂ Γ ⊂ R
n, Γ′ is

said to be finer than Γ, if the intersection of Γ′ with the unit sphere in R
n is rel-

atively compact in Γ. The following result is a deformation version of a theorem
of Ajrapetian-Henkin [AH81]. We keep the notation from Definition 2.2.

Proposition 4.3. Let M ⊂ C
N be a generic submanifold through 0 of codi-

mension d. Let M1, . . . , Md be (generic) submanifolds with boundary M at 0
of class Ck,α (k ≥ 1, 0 < α < 1) with ξj ∈ T0Mj pointing into Mj such that
T0C

N = T0M ⊕ Rξ1 ⊕ · · · ⊕ Rξd. Set Γ := R+ξ1 + · · · + R+ξd. Then for any
finer cone Γ′ ⊂ Γ, the following hold:

(i) All continuous functions on M∪⋃d
j=1 Mj that are CR on each Mj extend to

be holomorphic in a (standard) wedge W with edge M at 0 in the direction
Γ′.

(ii) Moreover, given a Ck,α-family of (generic) submanifolds (Mt)0≤t≤ε with
M0 = M , Ck,α-families Mj,t, 0 ≤ t ≤ ε, of (generic) submanifolds with
boundaries Mt with Mj,0 = Mj, 1 ≤ j ≤ d, and given any 0 < β < α,
there exists a Ck,β-family of open subsets Ut ⊂ Mt, 0 ≤ t ≤ ε′ < ε (for
some ε′), with 0 ∈ U0, and a neighborhood Ω of 0 in the linear span of
Γ such that all continuous functions on Mt ∪

⋃d
j=1 Mj,t that are CR on

each Mj,t, 1 ≤ j ≤ d, extend to be holomorphic in the (standard) wedge
Wt := W (Ut,Ω,Γ′) for each 0 ≤ t ≤ ε′.

(iii) Each wedge Wt given in (ii), 0 ≤ t ≤ ε′, can be obtained as a union of
centers A(0) of sufficiently small analytic discs A of class Ck,α attached to
Mt ∪

⋃d
j=1 Mj,t.

The proof can be obtained by following the proof of Theorem 4.1 in [Tu96]
and using Theorem 1.2 in [Tu93] as before to show the required regularity with
respect to the parameters. We omit further details.

Proof of Theorem 2.4. We may assume that p = 0. Since the generic submani-
fold M is minimal at 0, it follows from [Tu88, Tu90] that there exists a (standard)
wedge W = W (U1,Ω1,Γ1) with edge M at 0 (whose base is some neighborhood
U1 of 0 in M) such that all CR-functions on M holomorphically extend to W .
We shall prove that any open neighborhood U ⊂ U1 satisfies the conclusion of
Theorem 2.4. For this set W1 := W (U,Ω1,Γ1) and note that any CR-function on
M holomorphically extends to W1. Let M0 ⊂ U be an open relatively compact
neighborhood of 0 and denote by d the codimension of M in C

N .
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By applying Tumanov’s theorem again to the open subset M0 ⊂ M , we ob-
tain another (standard) wedge W2 with edge M0 at 0, where all CR-functions on
M0 holomorphically extend. We shall need more precise information about the
wedge W2 that can be obtained from the theory of defects of analytic discs [Tu88]
(see also the geometric definition due to Baouendi-Rothschild-Trépreau
[BRT94] that has been used in [Tu96]). Here the C2,α-smoothness of M0 is re-
quired to guarantee the C1,α-smoothness of the conormal bundle to M0 needed
for Bishop’s equation. By the theory mentioned above (see e.g. the proof of The-
orem 6.1 in [Tu96]) and the minimality of M0 at 0, there exist d arbitrarily small
analytic discs Aj of class C2,α, 1 ≤ j ≤ d, attached to M0 such that Aj(1) = 0
and

T0C
N = T0M ⊕ Rv1 ⊕ · · · ⊕ Rvd,

where vj := ∂νAj(1) for 1 ≤ j ≤ d. Therefore, from Proposition 4.2 (i), for any
fixed 0 < β < α, we obtain submanifolds Mj , j = 1, . . . , d, with boundary M at
0 of class C2,β with T0Mj = T0M ⊕ Rvj and such that all CR-functions on M
extend to be CR on ∪d

j=1Mj . According to Proposition 4.3 (i), the wedge W2 can
be chosen to have the form W2 := W (U2, Ω2,Γ2), where Γ2 ⊂ R+v1⊕· · ·⊕R+vd

is any finer cone and U2 ⊂ M0 is some neighborhood of 0 in M .
Choose (d − 1) vectors ξ1, . . . , ξd−1 ∈ Γ1 and one vector ξd ∈ Γ2 such that

T0C
N = T0M ⊕Rξ1 ⊕ · · · ⊕Rξd. Applying Proposition 4.3 (i) to these d vectors

(with suitably chosen submanifolds with boundary M in their directions), we
obtain a new (standard) wedge W3 := W (U3,Ω3,Γ3) with edge M at 0, U3 ⊂
U2, where all CR-functions on M holomorphically extend, and such that the
direction cone Γ3 has nonempty intersection with both Γ1 and Γ2. Fix a vector
ξ0 ∈ Γ3 ∩Γ2. We claim that any generalized wedge W (as in Definition 2.2) with
base U , directions (Γx)x∈U , such that W ⊂ W1 ∪W2 ∪W3 and ξ0 ∈ Γ0, satisfies
the conclusion of Theorem 2.4. The existence of such a generalized wedge W is
obvious from the construction. Note that unless ξ0 ∈ Γ1, W cannot be chosen
to be a standard wedge.

For the rest of the proof, we fix W satisfying the above properties. Then
conclusion (i) of Theorem 2.4 follows directly from the construction and the
inclusion W ⊂ W1∪W2∪W3. To show (ii), we fix a smooth section η : U → TC

N

with η(x) ∈ Γx for every x ∈ U and such that η(0) = ξ0. We choose the section
η to be C∞-extendable to a neighborhood of U in C

N . Fix also a reflection
ν : ω → ω with respect to M as in Definition 2.1. Then, by the construction of
η, we have

Mt := {x − tη(x) : x ∈ M0} ⊂ ν(W ∩ ω)(4.3)

for all sufficiently small t ≥ 0, say 0 ≤ t ≤ ε. Unless ξ0 ∈ Γ1, we cannot choose
η to be constant. This is the exactly the reason why, in what follows, we need
the deformation parts of Propositions 4.2 and 4.3 that we shall apply to the C2,α

family of generic submanifolds (Mt)0≤t≤ε given by (4.3).
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From Propositions 4.2 and 4.3 (ii), we conclude the existence of wedges Wt :=
W (Vt,Ω,Γ2), Vt ⊂ Mt, 0 ≤ t ≤ ε′ ≤ ε, such that all CR-functions on Mt extend
holomorphically to Wt. Here it is very important that all wedges Wt, 0 ≤ t ≤ ε′,
have the same direction Γ2 and the same “size” given by Ω. Since η(0) = ξ0 ∈ Γ2,
it follows from the construction of Mt that there exists t0 > 0 sufficiently small
such that Wt0 contains a neighborhood U(0) of 0 in C

N . Since all holomorphic
functions in ν(W∩ω) restrict to CR-functions on Mt0 , it follows that they extend
holomorphically to Wt0 and therefore to U(0). This finishes the proof of (ii) and
hence completes the proof of Theorem 2.4.

5. Meromorphic extension of CR-functions; proof of Theorem 2.6

In this section, we prove Theorem 2.6. We follow the proof of [CPS99] in
certain parts and deviate from it at other places, where another approach is
required. We also apply different methods to avoid removing singularities.

The first step is to use a real-analytic reflection ν with respect to M (as
in Definition 2.1) which is antiholomorphic only in certain coordinates. The
following standard lemma is implicitly contained in [BJT85]. For the reader’s
convenience we give a short proof. As in §3, for a point q ∈ M , we denote by
T c

q M the complex tangent space to M at q.

Lemma 5.1. Let M ⊂ C
N be a generic real-analytic submanifold of through a

point p ∈ M and L a complex linear subspace of C
N such that

T c
pM ⊕ L = C

N .(5.1)

Then there exists a connected neighborhood ω of p in C
N and a real-analytic

reflection ν : ω → ω with respect to M ∩ ω which sends each affine subspace
q+L, q ∈ M ∩ω, antiholomorphically into itself. For any given ω, the reflection
ν with the above property is unique.

Proof. Let d be the codimension of M in C
N and n the (complex) dimension

of T c
pM so that one has, in particular, N = n + d. We choose complex-linear

coordinates z = (χ, τ) ∈ C
n × C

d vanishing at p such that L = {χ = 0}. Then,
near 0, there exists a real-analytic parametrization of M given by

C
n × R

d � (χ, s) �→ (χ, ψ(χ, χ, s)) ∈ M

whose complexification with respect to s is denoted by Ψ(χ, χ, τ), where (χ, τ) ∈
C

n ×C
d. It is easy to see that Ψ is a local diffeomorphism of C

N near 0 which is
holomorphic in τ and sends each subspace q + L into itself. It remains to define
ν̃(χ, τ) := (χ, τ) and to set ν := Ψ◦ ν̃ ◦Ψ−1. If ν is defined in a neighborhood U
of p in C

N , by setting ω := U ∩ ν(U), it is then easy to check that ν satisfies the
desired properties. (If U ∩ ν(U) is not connected, we take for ω the component
of U ∩ ν(U) containing p.) The uniqueness of ν is due to the facts that ν is
antiholomorphic on q + L and, by (5.1), M ∩ (q + L) is generic in q + L near q,
for q ∈ M near p.

We shall use the following notion:
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Definition 5.2. Let L ⊂ C
N be a complex vector subspace. We say that a func-

tion h defined on an open subset of C
N is holomorphic along L if, for each fixed

q ∈ C
N , the restriction of h to the affine subspace q + L ⊂ C

N is holomorphic
on its domain of definition.

We then have the following obvious extension property:

Lemma 5.3. Let M , p and L be as in Lemma 5.1 and ν : ω → ω be the corre-
sponding real-analytic reflection. Let g : M → C be a continuous function that
extends holomorphically to a generalized wedge W ⊂ ω with edge M at p (and
continuous up to M). Then the conjugate function M � z �→ g(z) ∈ C extends
to a real-analytic function on ν(W), holomorphic along L, and continuous up to
M . Moreover, for any continuous function on M , such an extension to ν(W),
if it exists, is always unique.

Proof. The required extension is given by ν(W ) � z �→ g(ν(z)). The uniqueness
follows from the boundary uniqueness theorem applied to the intersections of M
with the affine subspaces q + L ⊂ C

N for q ∈ M near p.

Our proof of Theorem 2.6 will use the following result of Shiffman [Sh91]:

Theorem 5.4. Let U ⊂ C
n and V ⊂ Ṽ ⊂ C

m be domains and h a meromorphic
function on U × V . Assume that, for each fixed χ ∈ U , either h(χ, ·) extends
meromorphically to Ṽ or {χ} × V is contained in the pole set of h. Then h

extends meromorphically to U × Ṽ .

Proof of Theorem 2.6. To prove Theorem 2.6, it is sufficient to show the local
statement that, for each point p ∈ M , v(z, g(z)) does not vanish on a dense
subset of a neighborhood of p in M and the quotient (2.1) that we denote by h
extends meromorphically to a neighborhood of p in C

N . Let Ω ⊂ M be the set
of all points p ∈ M with the above property. Clearly Ω is open in M .

We first show that Ω is nonempty. Indeed, by the assumption, there exists a
point p ∈ M such that h is defined and CR in a neighborhood of p in M . By the
minimality of M at p, both g and h extend holomorphically to a (standard) wedge
W with edge M at p. Choose any L satisfying the assumptions of Lemma 5.1 and
let ν : ω → ω be the reflection given by that lemma. We may assume that W ⊂ ω.
Then by Lemma 5.3, g(z) and therefore h(z) extend to real-analytic functions
on ν(W ) ∩ U(p), holomorphic along L and continuous up to M , where U(p) is
some neighborhood of p in C

N . Finally, it follows from the edge-of-the-wedge
theorem (see e.g. [BER99, Theorem 7.6.1] and the references there) and from
Proposition 1.7.5 in [BER99] that h extends holomorphically to a neighborhood
of p in C

N . Hence Ω is not empty. (The above holomorphic extension of h can
be also obtained as a special case of the argument below showing meromorphic
extension instead of the holomorphic one.)

We need to prove that Ω = M . We claim that it is sufficient to show that,
if C ⊂ M is any real-analytic curve with TxC �⊂ T c

xM for each x ∈ C, then
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C ∩ Ω �= ∅ implies C ⊂ Ω. Indeed, any two points of M can be connected by a
chain of curves with the mentioned transversality property.

We now fix such a curve C ⊂ M with C∩Ω �= ∅ and suppose, by contradiction,
that C �⊂ Ω. Then, from the fact that Ω is open, we see that there exists a point
p ∈ C \Ω that is contained in the closure of C ∩Ω. We choose local holomorphic
coordinates in C

N vanishing at p such that C becomes a real line. Because of
the property TpC �⊂ T c

pM , we can choose a complex vector subspace L ⊂ C
N

(possibly different from the previous one) passing through C and satisfying (5.1).
By a linear change of coordinates (χ, τ) ∈ C

n × C
d, we may assume that L =

{χ = 0} and M is locally given by Im τ = ϕ(χ, χ,Re τ) for some real-analytic
function ϕ defined near 0 ∈ R

2n+d. (Here the integers d and n are as in the
proof of Lemma 5.1.) We further define a neighborhood basis (Uk)k≥1 of p in
M by

Uk := {(χ, τ) ∈ M : |χ| < εk, |Re τ | < 1/k},(5.2)

where 0 < εk < 1/k is chosen such that (q + L) ∩ Uk ∩ Ω �= ∅ for every q ∈ Uk.
Such a choice of εk is always possible because C ⊂ L, p is contained in the
closure of C ∩ Ω and Ω is open in M .

Let ν : ω → ω be the real-analytic reflection given by Lemma 5.1 (for the new
subspace L). By shrinking M around p, we may assume that M ⊂ ω. We finally
set Π := {χ = 0,Re τ = 0} so that TpM ⊕ Π = C

N . By Theorem 2.4, there
exists a generalized wedge W ⊂ ω with edge M at p, whose base is Uk for some
k, satisfying properties (i) and (ii) of that theorem. By (i), the CR-function g
admits a holomorphic extension to W denoted by g̃.

By Lemma 5.3, g(z) extends to a real-analytic function on ν(W) that is
holomorphic along L. By composing with holomorphic functions u and v, we
conclude that the functions u(z, g(z)) and v(z, g(z)) extend to real-analytic func-
tions ũ(z) and ṽ(z) respectively in a neighborhood of M in ν(W), holomorphic
along L and continuous up to M . By shrinking ω and then W, we may assume
that this extension takes place in ν(W) ⊂ ω. The assumption C ∩ Ω �= ∅ im-
plies that the extension ṽ cannot vanish identically and therefore vanishes on
a closed proper real-analytic subset Σ ⊂ ν(W). Moreover, the uniqueness part
of Lemma 5.3 implies that v(z, g(z)) does not vanish on a dense subset of the
base Uk. It follows then that the quotient h extends to a real-analytic function
h̃ := ũ/ṽ on ν(W)\Σ that is holomorphic along L. Hence, for each q ∈ Uk either
(q + L) ∩ ν(W) ⊂ {z ∈ ν(W) : ṽ(z) = 0}, or h̃|q+L is meromorphic.

We claim that h̃ extends to a meromorphic function on ν(W). Since h̃ is
already defined on a dense open subset of ν(W), it is sufficient to show that h̃
extends meromorphically to a neighborhood of any given point z0 = (χ0, τ0) ∈
ν(W). By the construction and by Definition 2.2, for any z0 ∈ ν(W), there
exists a point q0 ∈ (z0 + L) ∩ Uk ∩ Ω. By the definition of the set Ω ⊂ M , h

extends to a meromorphic function h̃′ in a neighborhood G of q0 in C
N . On the
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dense subset of Uk, where h is defined, we have the identity

v(z, g(z))h(z) ≡ u(z, g(z)).(5.3)

Without loss of generality, G ∩ ν(W) is connected. Then, by the uniqueness
part of Lemma 5.3, (5.3) implies ṽh̃′ = ũ on G∩ ν(W). In particular, we obtain
h̃′ = h̃ on G∩ (ν(W) \Σ). Now it is clear that there exist domains U ⊂ C

n and
V ⊂ Ṽ ⊂ C

d such that q0 ∈ U × V ⊂ G and z0 ⊂ U × Ṽ ⊂ G ∪ ν(W). We may
thus apply Theorem 5.4 to conclude that h̃ extends meromorphically to U × Ṽ
and, in particular, to a neighborhood of z0 as required.

Since z0 ∈ ν(W) was chosen arbitrarily, we conclude that h̃ extends mero-
morphically to ν(W). Therefore Corollary 2.5 yields the required meromorphic
extension of h̃ to a neighborhood of p and hence that of h. This contradicts our
assumption that p �∈ Ω and thus proves that Ω = M . The proof of Theorem 2.6
is complete.

6. Analyticity of CR-mappings; proof of Theorem 1.1

Let M ⊂ C
N be a generic real-analytic submanifold through a point p ∈ C

N .
Following [CPS99], we denote by Ap(M) the ring of germs at p of C∞-smooth
functions ϕ on M that can be written near p in the form

ϕ(z) = Φ(z, g(z)), z ∈ M,(6.1)

where g is a C∞-smooth CR-function in a neighborhood of p in C
N with values in

C
k for some k, and Φ is a holomorphic function near (p, g(p)). Note that the ring

of germs at p of real-analytic functions on M is contained in Ap(M). In what
follows, we write Op(M) for the subring of Ap(M) consisting of all restrictions of
germs (at p) of holomorphic functions in C

N . Observe that, if the submanifold
is furthermore assumed to be minimal at p, it follows from Tumanov’s theorem
and Lemma 5.3 that the ring Ap(M) is an integral domain. We further need the
following lemma.

Lemma 6.1. Let M ⊂ C
N be a generic real-analytic minimal submanifold

through a point p ∈ C
N , ϕ a germ in Ap(M) and L a real-analytic (0, 1) vector

field on M defined near p. Then Lϕ is also in Ap(M).

Proof. We first consider the case when ϕ(z) = g(z), where g is a CR-function
in a neighborhood of p in M . Write L =

∑N
j=1 aj(z, z)(∂/∂zj) with aj(z, z)

real-analytic near p. By Tumanov’s theorem, g extends holomorphically to a
wedge W with edge M at p. Moreover, this extension that we call g̃ is smooth up
to the edge (see e.g. [BER99, Theorem 7.5.1]). The partial derivatives ∂g̃/∂zj ,
j = 1, . . . , N , are holomorphic in W and have boundary values on M that are
smooth CR-functions. Denote by L̃ =

∑N
j=1 ãj(z, z̄)(∂/∂z̄j) any real-analytic

extension of L as a (0, 1) vector field in a neighborhood of p in C
N . Then Lϕ is
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the boundary value of the function

L̃g̃ =
N∑

j=1

ãj(z, z̄)∂g̃/∂zj ,

and therefore can be written as a holomorphic function in z, z and the boundary
values of ∂g/∂z1, . . . , ∂g/∂zN . This shows that Lϕ ∈ Ap(M).

To prove the statement for an arbitrary ϕ ∈ Ap(M), write ϕ(z) = Φ(z, g(z))
as in (6.1), Φ = Φ(ζ, z), and apply the chain rule to conclude

(Lϕ)(z) =
∑

j

Φζj (z, g(z))(Lgj)(z).

Since Lgj ∈ Ap(M) by the first part of the proof, we have Lϕ ∈ Ap(M) as
required.

Proposition 6.2. Let M ⊂ C
N be a generic real-analytic submanifold through

a point p ∈ C
N and h a germ at p of a C∞-smooth CR-function on M . Assume

that M is minimal at p and that h satisfies a nontrivial polynomial identity with
coefficients in Ap(M). Then h also satisfies a nontrivial polynomial identity
with coefficients in Op(M).

Proof. Choose a nontrivial polynomial P (T ) =
∑r

j=0 PjT
j , Pj ∈ Ap(M), of

minimal degree r satisfying for z ∈ M close to p,
r∑

j=0

Pj(z)(h(z))j ≡ 0, and Pr(z) �≡ 0.(6.2)

For j = 1, . . . , r, we may write Pj(z) = Φj(z, g(z)), where g : M → C
k is a

CR-map near p and each Φj is holomorphic near (p, g(p)). Therefore, we may
rewrite (6.2) as

r∑
j=0

Φj(z, g(z))(h(z))j ≡ 0,(6.3)

for z ∈ M close to p.
We claim that the quotients

Θj(z) :=
Φj(z, g(z))
Φr(z, g(z))

, j = 0, . . . , r − 1,

are CR on their domains of definition. Indeed, otherwise we could choose one
real-analytic (0, 1) vector field L for M near p and some 1 ≤ j0 < r such
that LΘj0 �≡ 0. Then we could divide both sides of (6.3) by the nontrivial
function Φr(g(z), z) and apply L to obtain, in view of Lemma 6.1, another
nontrivial polynomial P̃ (T ) of degree strictly less than r with coefficients in
Ap(M) satisfying P̃ (h) ≡ 0. This would contradict the choice of P and hence
the claim follows.
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Now, by Theorem 2.6, each quotient Θj(z), j = 0, . . . , r − 1, extends mero-
morphically to a neighborhood of p in C

N . By writing each meromorphic exten-
sion as a quotient of two holomorphic functions near p, we obtain the required
conclusion in view of (6.3). This completes the proof of Proposition 6.2.

As a consequence of theorems of Malgrange (see e.g. [BHR96]) and
Tomassini [To66], Proposition 6.2 implies the following:

Corollary 6.3. Let M ⊂ C
N be a generic real-analytic submanifold through a

point p ∈ C
N and h be a germ at p of a C∞-smooth CR-function on M . Assume

that M is minimal at p and that h satisfies a nontrivial polynomial identity with
coefficients in Ap(M). Then h extends holomorphically to a neighborhood of p
in C

N .

Finally, we mention the following well-known fact (see e.g. [BER99, Theorem
5.3.9]) which will be needed for the proof of Theorem 1.1:

Proposition 6.4. Let A ⊂ C
m
z × C

l
w be a complex-analytic subset through 0

such that A ∩ ({0} × C
l) = {0}. Then for j = 1, . . . , l, there exist Weierstraß

polynomials

Qj(z, wj) = w
rj

j +
rj−1∑
k=0

Qjk(z)wk
j , w = (w1, . . . , wl),

such that for every (z, w) ∈ A near 0, Qj(z, wj) = 0 holds for all j.

Proof of Theorem 1.1. Let M , M ′, f and p ∈ M satisfy the assumptions of
Theorem 1.1. Without loss of generality, we may assume M to be generic.
Denote by d′ the codimension of the submanifold M ′ in C

N ′
, by n the (complex)

dimension of T c
pM (cf. §3). Choose a set of real-analytic defining functions

ρ′(z′, z′) = (ρ′1(z
′, z′), . . . , ρ′d′(z′, z′)) for M ′ defined in some neighborhood U ′

of p′ in C
N ′

. Shrinking M if necessary around p, we may assume that, for
every z ∈ M , we can fix a holomorphic parametrization γz : (Cn, 0) → (Qz, z)
depending real-analytically on z. Recall here that Qz denotes the Segre variety
of z associated to the generic submanifold M , as defined in (1.1). We may also
assume that f(M) ⊂ U ′ ∩ M ′.

Recall that for all points z ∈ M , the Taylor series of f at z extends to a
formal (holomorphic) power series mapping Fz : (CN , z) → (CN ′

, f(z)). In view
of (1.2) (see also §3), a point w′ ∈ U ′ belongs to rz if and only if the following
formal power series identity

ρ′(Fz(γz(t)), w′) ≡ 0(6.4)

holds in the ring C[[t]], t = (t1, . . . , tn). Differentiating (6.4) with respect to t
and evaluating at t = 0 yields that w′ ∈ rz if and only if, for all k ∈ N,

0 ≡ jk
t

(
ρ′(Fz(γz(t)), w′)

)
(0) :=

(
∂ν

t (ρ′(Fz(γz(t)), w′))|t=0

)
|ν|≤k

.(6.5)
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It follows from the chain rule that there exists a universal polynomial mapping
Pk such that

jk
t

(
ρ′(Fz(γz(t)), w′)

)
(0) ≡ P k

(
(jk

z′ρ′)(f(z), w′), (jk
z f)(z), (jk

t γz)(0)
)
.(6.6)

Here as in (6.5), we have used standard notations relative to jet spaces i.e.

(jk
z′ρ′)(z′, z′) :=

(
(∂α

z′ρ′)(z′, z′)
)
|α|≤k

,

(jk
t γz)(t) :=

(
(∂β

t γz)(t)
)
|β|≤k

,

(jk
z f)(z) := (∂α

z f(z))|α|≤k.

The last derivatives are understood as boundary values on M of the partial
derivatives of the holomorphic extension of f to a wedge with edge M (such an
extension is a consequence of the minimality of M at p). We write the mapping
in the right-hand side of (6.6) as

Ψk(z, gk(z), w′),(6.7)

where gk(z) := (z, jk
z f(z)) is CR on M and Ψk is holomorphic in a neigh-

borhood of (p, p, jk
z f(p), f(p)). Note also that, for all z ∈ M , the map w′ �→

Ψk(z, gk(z), w′) is defined and antiholomorphic in U ′. By the definition of rz,
z ∈ M , we have

rz = {w′ ∈ U ′ : Φk(z, gk(z), w′) = 0 for all k ∈ N},(6.8)

where Φk is the conjugate of Ψk.
By the Noetherian property, there exist a neighborhood Ũ ′ ⊂ U ′ of p′ and

a positive integer κ such that w′ ∈ rp ∩ Ũ ′ if and only if Φκ(p, gκ(p), w′) = 0.
If Jκ

p (CN , CN ′
) denotes the jet space at p of order κ of holomorphic mappings

from C
N to C

N ′
equipped with coordinates Λ = (Λβ)|β|≤κ, β ∈ N

N , Λβ ∈ C
N ′

,
we define a complex-analytic subset A ⊂ C

N
z × C

N
w × Jκ

p (CN , CN ′
) × C

N ′
w′ in a

neighborhood of the point J1 := (p, p, jκ
z f(p), f(p)) by setting

A := {(z, w,Λ, w′) : Φκ(z, (w,Λ), w′) = 0}.
Then, for z ∈ M and w′ ∈ U ′, it follows from (6.8) that if w′ ∈ rz, then
(z, z, jκ

z f(z), w′) ∈ A. Since, by assumption, p′ = f(p) is isolated in rp, we
conclude that A ∩ ({(p, p, jκ

z f(p))} × Ũ ′) = {J1}. Hence, by Proposition 6.2,
we obtain Weierstraß polynomials Qj(z, w,Λ; w′

j) in w′
j for j = 1, . . . , N ′, w′ =

(w′
1, . . . , w′

N ′), defined near J1 such that, if (z, w,Λ, w′) ∈ A is close enough to
J1, then Qj(z, w,Λ; w′

j) = 0 for all j. Since, for z ∈ M , one always has f(z) ∈ rz,
it follows that (z, z, jκ

z f(z), f(z)) ∈ A. As a consequence, we have

Qj(z, z, jκ
z f(z); fj(z)) = 0(6.9)

for j = 1, . . . , N ′, and z ∈ M close to p. From (6.9), we conclude that each
component of f satisfies near p a nontrivial polynomial identity with coefficients
in Ap(M) (as defined above). To conclude that f extends holomorphically to a
neighborhood of p in C

N , it suffices to apply Corollary 6.3.
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Proof of Corollary 1.3. The proof follows from Theorem 1.1 and the fact that,
under the assumptions of Corollary 1.3, the point f(p) is isolated in rp. The
latter fact can be proved by following the techniques of [BR88, Me95]. We leave
the details to the reader.

We conclude by giving, as mentioned in the introduction, an example of a
situation of Theorem 1.1 which is not covered by Corollary 1.3.

Example 6.5. Consider the unit spheres M0 := ∂B
2 ⊂ C

2 and M ′ := ∂B
3 ⊂ C

3

and the map f : M0 × C → M ′ given by f(z, w, v) := (z2,
√

2zw, w2). It is easy
to check that f is totally degenerate but p′ = (1, 0, 0) is isolated in rp with
p = (1, 0, 0).
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