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ANALYTIC REGULARITY OF CR MAPS INTO SPHERES

Nordine Mir

Abstract. Let M ⊂ C
N be a connected real-analytic hypersurface and S

2N′−1 ⊂
C

N′
the unit real sphere, N ′ > N ≥ 2. Assume that M does not contain any

complex-analytic hypersurface of C
N and that there exists at least one strongly

pseudoconvex point on M . We show that any CR map f : M → S
2N′−1 of class

CN′−N+1 extends holomorphically to a neighborhood of M in C
N .

1. Introduction

In this paper we are interested in the analytic regularity of CR mappings
from real-analytic hypersurfaces into higher dimensional unit spheres in com-
plex space. While there is a wide literature deciding when CR maps, of a given
smoothness, between two real-analytic hypersurfaces in the same complex space
must be real-analytic (see e.g. [BN90, Fo93, BER99, Hu01] for complete ref-
erences up to 1999), very little is known about the analyticity of such maps
when the hypersurfaces lie in complex spaces of different dimension. The case of
CR maps with target unit spheres, arising e.g. from the embedding problem for
pseudoconvex domains into balls (see e.g. [Fo86, EHZ02]), has attracted the at-
tention of many authors. The first regularity result in such a situation was given
by Webster [W79] who showed that any CR map of class C3 from a real-analytic
strongly pseudoconvex hypersurface in C

N into the unit sphere S
2N+1 ⊂ C

N+1 is
real-analytic on a dense open subset of the source hypersurface. Later Forstnerič
[Fo89] generalized Webster’s result by showing that the same conclusion holds
for any CR map of class CN ′−N+1 with an arbitrary unit sphere S

2N ′−1 ⊂ C
N ′

as a target, N ′ > N ≥ 2 (see also [Hu94]). He also asked in the same paper
whether the real-analyticity, or equivalently, the holomorphic extendability of
such maps holds at every point. A partial positive answer in codimension one
(i.e. for N ′−N = 1) was given by Baouendi, Huang and Rothschild [BHR96] for
the case of CR maps from a real-algebraic hypersurface of D’Angelo finite type
(i.e. not containing any positive dimensional complex-analytic subvariety) in C

N

into the unit sphere S
2N+1 ⊂ C

N+1. (In [BHR96], the required smoothness for
the maps depends on the so-called D’Angelo type of the reference point, which
is always greater or equal to two.) In this paper we prove the following theorem,
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which provides a positive answer to Forstnerič’s question and at the same time
generalizes the quite independent result of Baouendi-Huang-Rothschild.

Theorem 1.1. Let M ⊂ C
N be a connected real-analytic hypersurface and

S
2N ′−1 ⊂ C

N ′
the unit sphere, N ′ > N ≥ 2. Assume that M does not con-

tain any complex-analytic hypersurface of C
N and that there exists at least one

strongly pseudoconvex point on M . Then any CR map f : M → S
2N ′−1 of class

CN ′−N+1 extends holomorphically to a neighborhood of M in C
N .

Observe that if M is a real hypersurface as in Theorem 1.1 and admits a
non-constant CR map into a higher dimensional unit sphere, then it has to be
pseudoconvex and therefore the set of strongly pseudoconvex points forms a
Zariski open subset of M (see Lemmas 2.3 and 2.4). Hence Theorem 1.1 gives
the holomorphic extension of f not only near any strongly pseudoconvex point
of M , but also near all weakly pseudoconvex ones. It is worth noticing that,
under the assumptions of Theorem 1.1, the set of weakly pseudoconvex points
of M may even contain complex curves. Example 2.11 below provides a simple
illustration of such a situation where Theorem 1.1 applies. On the other hand,
Theorem 1.1 in conjunction with Lemma 2.3 (ii) below implies the following
corollary for real-analytic hypersurfaces of D’Angelo finite type.

Corollary 1.2. Let M ⊂ C
N be a real-analytic hypersurface which does not

contain any nontrivial complex-analytic subvariety and S
2N ′−1 ⊂ C

N ′
the unit

sphere, N ′ > N ≥ 2. Then any CR map f : M → S
2N ′−1 of class CN ′−N+1

extends holomorphically to a neighborhood of M in C
N .

Concerning the initial required regularity in Theorem 1.1, we do not know
whether the CN ′−N+1-smoothness assumption is optimal. It is however known
(see [L85, G87, Ha90, D90]) that C0-smoothness (and even Cα-smoothness, 0 <
α < 1/6; see [S96]) is not enough to guarantee the holomorphic extendability
of any map f in Theorem 1.1. On the other hand, when M is a unit sphere
too, it follows from the work of Huang [Hu99] that Theorem 1.1 holds with only
C2-smoothness assumption on the map f provided N ′ < 2N − 1 (see also the
previous related work in [CS83, Fa90]). We should also mention that for a map
f of class C∞, Theorem 1.1 follows from the work of Pushnikov [Pu90a, Pu90b]
(whose proof, however, is incomplete and contains a gap; see [MMZ03]). In the
case where M is assumed to be strongly pseudoconvex (at every point) and f

is of class CN ′−1, Theorem 1.1 was announced by Pinchuk in [Pi83] but a proof
has not been published.

Our strategy for the proof of Theorem 1.1 is similar to that of the above
mentioned result of Baouendi-Huang-Rothschild [BHR96]. The first step is to
prove that in the setting of Theorem 1.1, the map f extends meromorphically to
a neighborhood of M in C

N . The desired holomorphic extension of f will then
follow by applying a result due to Chiappari [C91]. The main novelty of this
paper consists in the proof of the above mentioned meromorphic extension of f
regardless of the codimension N ′ − N (see Proposition 2.1). The ingredients of
the proof rely on another meromorphic extension result for a class of CR ratios
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proved in [MMZ02], and an inductive dichotomy (in Lemma 2.8 below) showing
that necessarily each component of the map f belongs to this class of ratios
(see also [M02] for a related argument in the one-codimensional case in another
context).

2. Proof of Theorem 1.1

For basic concepts and notions about CR maps, we refer the reader to [B91,
BER99]. Theorem 1.1 is an immediate consequence of the following two results
and Lemma 2.3 (i).

Proposition 2.1. Let M ⊂ C
N and S

2N ′−1 ⊂ C
N ′

be as in Theorem 1.1 and
f : M → S

2N ′−1 a CR map of class CN ′−N+1. Then f extends meromorphically
to a neighborhood of M in C

N .

Theorem 2.2. Let D ⊂ C
N be a domain, M ⊂ ∂D a real-analytic hypersurface

and F : D → C
N ′

a holomorphic map extending continuously up to M , N ′ ≥
N ≥ 2. Assume that F maps D into the unit ball B

2N ′−1 ⊂ C
N ′

, that F |M sends
M into the unit sphere S

2N ′−1 ⊂ C
N ′

and that F |M extends meromorphically to a
neighborhood of M in C

N . Then F |M extends holomorphically to a neighborhood
of M in C

N .

The remainder of the paper is devoted to the proof of Proposition 2.1 while
the second ingredient (Theorem 2.2) was already proved by Chiappari in [C91]
(see also [CS90] for a previous version where the source manifold is a sphere).
We should also mention that in the case N ′ = N + 1 and M is a real-algebraic
hypersurface of D’Angelo finite type, a result analogous to Proposition 2.1 has
been proved in [BHR96].

2.1. Some preliminary facts. We start by collecting a few facts from the
known literature. Recall here that a real-analytic hypersurface M ⊂ C

N is said
to be minimal at a point p0 ∈ M if there is no complex-analytic hypersurface of
C

N contained in M through p0 (see e.g. [Tr86, Tu88, BER99]). The following
lemma follows from the same arguments as those of [BHR96, Lemma 6.2].

Lemma 2.3. Let M ⊂ C
N be a real-analytic hypersurface, S

2N ′−1 ⊂ C
N ′

the
unit real sphere, N ′ > N ≥ 2, and let f : M → S

2N ′−1 be a non-constant CR
map of class C2. Then,

(i) if M is minimal at every point, it is pseudoconvex and moreover, for every
p ∈ M , f extends near p to a holomorphic map F on the pseudoconvex
side of M and F maps this side into the unit ball B

2N ′−1 of C
N ′

.
(ii) if M does not contain any nontrivial complex-analytic subvariety, it is

pseudoconvex and the set of strongly pseudoconvex points of M is dense in
M .

Lemma 2.3 (i) together with an elementary unique continuation argument
implies:
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Lemma 2.4. In the situation of Proposition 2.1, if f is not constant, the set of
strongly pseudoconvex points of M is dense in M .

Lemma 2.4 in conjunction with standard Hopf lemma type arguments (see
e.g. [Fo89, Hu94, BHR96, EL02]) implies in particular:

Lemma 2.5. In the situation of Proposition 2.1, if f is not constant, it is an
immersion at a generic point of M , i.e. there is a dense open subset Ω of M
such that for all p ∈ Ω the differential df(p) : CTpM → CTf(p)S

2N ′−1 is injective.
(Here CTpM (resp. CTf(p)S

2N ′−1 ) denotes the complexified tangent space of M

(resp. of S
2N ′−1) at p (resp. at f(p)).)

Finally we state the hypersurface version of a meromorphic extension result
proved in [MMZ02, Thereom 2.6] that will be very useful for the proof of Propo-
sition 2.1.

Theorem 2.6. Let W ⊂ C
N , V ⊂ C

k be open subsets, M ⊂ W a connected real-
analytic hypersurface, G : M → V a continuous CR map and Φ, Ψ: V ∗×W → C

holomorphic functions, where V ∗ := {ζ : ζ ∈ V }. Assume that M is minimal at
every point and that there exists a nonempty open subset of M where Ψ(G(z), z)
does not vanish and where the quotient

H(z) :=
Φ(G(z), z)
Ψ(G(z), z)

(2.1.1)

is CR. Then Ψ(G(z), z) does not vanish on a dense open subset M̃ ⊂ M and H

extends from M̃ meromorphically to a neighborhood of M in C
N .

We should mention that a preliminary version of Theorem 2.6, namely the
case where G is C∞ over M and H is CR on a dense open subset of M , is
contained in [CPS99]. It will be however important for the proof of Proposition
2.1 (and therefore of Theorem 1.1) to have the continuous version provided by
Theorem 2.6.

2.2. Reflection identities and a linear system with coefficients of mero-
morphic type. We start here the effective proof of Proposition 2.1. It is enough
to prove that f extends meromorphically to a neighborhood of a given point
p0 ∈ M . Without loss of generality we may assume that p0 = f(p0) = 0,
that f is not constant and moreover, that S

2N ′−1 is replaced by the Heisenberg
hypersurface i.e.

(2.2.1)
H

2N ′−1 = {(z′, w′) ∈ C
N ′−1 × C : ρ′(z′, w′, z′, w′) := Imw′ − |z′|2 = 0},

with |z′|2 =
∑N ′−1

j=1 |z′j |2, z′ = (z′1, . . . , z′N ′−1). Shrinking M if necessary near
the origin, we may assume that M is connected and may also choose an open
connected neighborhood U ⊂ C

N of the origin such that M ⊂ U and such that
we are given a family L = (L1, . . . , LN−1) of (0, 1) vector fields with real-analytic
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coefficients in U with L1|M , . . . , LN−1|M spanning T 0,1M , the (0, 1) tangent
bundle of M . In what follows, for γ = (γ1, . . . , γN−1) ∈ N

N−1, γ1+. . .+γN−1 =:
|γ| ≤ N ′ − N + 1, L

γ
denotes the standard differential operator L

γ1

1 . . . L
γN−1

N−1

acting on CN ′−N+1-smooth functions (or maps) on M . It will be convenient to
define the following classes of functions over M .

Definition 2.7. For M , f , L as above and 0 ≤ l ≤ N ′−N +1, we let Sl denote
the set of functions on M that can be written as a polynomial in (L

γ
f)|γ|≤l with

coefficients that are real-analytic functions over M . Denote also by S−1 the set
of all real-analytic functions over M . For −1 ≤ l ≤ N ′ − N + 1, we also define
Rl to be the set of all ratios of the form a/b with (a, b) ∈ (Sl)2 and b �≡ 0.

Obviously the class Sl forms a subring of those functions over M that are of
class CN ′−N+1−l and satisfies Sl ⊂ Sl+1. Note also that since M is everywhere
minimal, a function in Sl can not vanish on any open subset of M unless it
is identically zero (see e.g. [MMZ02, Section 6]). Therefore any ratio in Rl is
defined on a dense open subset of M , and can not vanish on any open subset
of this dense set unless it is identically zero too. This fact will be useful for the
proof of Lemma 2.8 below.

The main observation of this paper relies on the following lemma.

Lemma 2.8. In the situation of Proposition 2.1 and with the above notation,
shrinking M around the origin if necessary, each component of the map f can
be written as a ratio belonging to RN ′−N+1.

Proof. In the (z′, w′) coordinates we split the map f as follows f = (f̃ , g) =
(f̃1, . . . , f̃N ′−1, g) ∈ C

N ′−1 × C. Since f(M) ⊂ H
2N ′−1, we have the relation

satisfied on M

g − g = 2i


N ′−1∑

ν=1

|f̃ν |2

 .(2.2.2)

By Lemma 2.5 the map f is an immersion at a generic point and in particu-
lar, for a generic point p ∈ M , df(p) : T 0,1

p M → T 0,1
f(p)H

2N ′−1 is injective. Pick
such a point p0 ∈ M . Then we may select N − 1 components among those
of f̃ , say f̃1, . . . , f̃N−1, such that the matrix (Lj f̃k)1≤j,k≤N−1 is invertible at

p0. The above matrix (Lj f̃k)1≤j,k≤N−1 has necessarily rank N − 1 in a dense
open subset of M since its determinant belongs to the class S1 (see Defini-
tion 2.7). Now we split the map f̃ as follows f̃ = (h, ψ) ∈ C

N−1 × C
N ′−N

where h = (h1, . . . , hN−1) := (f̃1, . . . , f̃N−1) and ψ = (ψ1, . . . , ψN ′−N ) :=
(f̃N , . . . , f̃N ′−1), so that f = (h, ψ, g). Applying for each j = 1, . . . , N − 1
the vector field Lj to (2.2.2) and using the fact that f is CR, we obtain

−Ljg = 2i


N−1∑

ν=1

hν · Ljhν +
N ′−N∑
ν=1

ψν · Ljψν


 on M.(2.2.3)
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Since the CN ′−N -smooth function given by M � z �→ det
(
Ljhν(z)

)
1≤j,ν≤N−1

does not vanish on a dense open subset M1 of M , we may apply Cramer’s rule
to (2.2.2) and (2.2.3) to obtain a relation of the form

(h, g) = r
(1)
0 +

N ′−N∑
ν=1

ψν · r(1)
ν on M1.(2.2.4)

Here for ν = 0, . . . , N ′ − N , each r
(1)
ν is a C

N -valued ratio with components in
the ring R1, and is defined on M1. Since f is of class at least C2, we may again
apply for each j = 1, . . . , N − 1 the vector field Lj to (2.2.4) on M1 to obtain :

0 = Ljr
(1)
0 +

N ′−N∑
ν=1

ψν · Ljr
(1)
ν on M1.(2.2.5)

Define the following N(N − 1)× (N ′ −N) matrix with CN ′−N−1-smooth coeffi-
cients over M1 by setting

A(2) :=




L1r
(1)
1 . . . L1r

(1)
N ′−N

L2r
(1)
1 . . . L2r

(1)
N ′−N

... . . .
...

LN−1r
(1)
1 . . . LN−1r

(1)
N ′−N


 ,

where each r
(1)
ν ∈ C

N is viewed as a column vector. Since any minor of A(2)

has its coefficients in the class R2 the matrix A(2) achieves its maximal rank,
that we denote by n(2), on a dense open subset of M1. Now similarly to [Fo89,
Hu94, BHR96, M02], we come to a dichotomy according to whether n(2) > 0 or
n(2) = 0.

Case 1: n(2) > 0. By taking a suitable minor of the matrix A(2), which does
not vanish on a dense open subset M2 of M1, and using (2.2.5) and Cramer’s rule
we see that at least one of the components of ψ, say ψN ′−N , can be expressed
as an affine combination of the following form:

ψN ′−N = c
(2)
0 +

N ′−N−1∑
ν=1

ψν · c(2)
ν .(2.2.6)

Here for ν = 0, . . . , N ′−N−1, each c
(2)
ν is a C

N+1-valued ratio with components
in the ring R2, and is defined on M2. By using (2.2.4) and (2.2.6), we may write

(h, ψN ′−N , g) = r
(2)
0 +

N ′−N−1∑
ν=1

ψν · r(2)
ν , on M2,(2.2.7)

where each r
(2)
ν is a C

N+1-valued ratio with components in R2, and is defined
on M2.

Case 2: n(2) = 0. We claim that also in this case, we may reduce the starting
system of equations (2.2.4) on M1 to another system of the form (2.2.7) that
holds on a possibly other dense subset of M , possibly after interchanging the
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components of ψ and shrinking M near the origin. For this, note that n(2) = 0
is equivalent to saying that each ratio r

(1)
ν , ν = 1, . . . , N ′ − N , is a CR map on

M1, and hence r
(1)
0 too in view of (2.2.5). Since each component of each ratio

r
(1)
ν can clearly be written in the form (2.1.1) for a suitable Ψ,Φ and G (see

[MMZ02, Lemma 6.1] for more details), we may apply Theorem 2.6 to conclude
that each r

(1)
ν extends as a meromorphic mapping to a neighborhood of the

origin in C
N . Let uν be a C

N -valued holomorphic map and vν a nonvanishing
holomorphic function both defined near the origin in C

N such that uν/vν gives
the meromorphic extension of r

(1)
ν near 0. Then after shrinking M near the

origin if necessary, we may rewrite (2.2.4) as follows

(h(z), g(z)) =
u0(z)
v0(z)

+
N ′−N∑
ν=1

ψν(z)
uν(z)
vν(z)

, z ∈ M̃1,(2.2.8)

on some suitable dense open subset M̃1 of M . Following the splitting used in
(2.2.8), for any ν = 0, . . . , N ′−N , we write uν = (u′

ν , ûν) ∈ C
N−1×C. Consider

the family (Pz)z∈M̃1
of N ′ − N dimensional affine complex planes defined via

the following parametrization ηz : C
N ′−N → C

N ′
, z ∈ M̃1,

(2.2.9) t = (t1, . . . , tN ′−N ) �→
u′

0(z)
v0(z)

+
N ′−N∑
ν=1

tν
u′

ν(z)
vν(z)

, t1, . . . , tN ′−N ,
û0(z)
v0(z)

+
N ′−N∑
ν=1

tν
ûν(z)
vν(z)


 .

Since the Heisenberg hypersurface cannot contain any positive-dimensional affine
complex subspace, we have Pz �⊂ H

2N ′−1 for all z ∈ M̃1 i.e.

ρ′(ηz(t), ηz(t)) �≡ 0, for z ∈ M̃1, t ∈ C
N ′−N ,(2.2.10)

where ρ′ is given by (2.2.1). It is clear that ρ′(ηz(t), ηz(t)) may be written as
follows

µ +
N ′−N∑

i=1

λiti +
N ′−N∑
j=1

tj


N ′−N∑

k=1

ξjktk + σjk


 ,(2.2.11)

where µ, λi, ξjk and σjk are ratios in R−1 and defined on M̃1. (We have de-
liberately omitted to write the dependence on z for those ratios in (2.2.11).)
But since f sends M into H

2N ′−1, in view of (2.2.9) and (2.2.8), we have
ρ′(ηz(ψ(z)), ηz(ψ(z))) = 0 for z ∈ M̃1 i.e.

µ +
N ′−N∑

i=1

λiψi +
N ′−N∑
j=1

ψj


N ′−N∑

k=1

(ξjkψk + σjk)


 = 0 on M̃1.(2.2.12)

Here again we come to a dichotomy.
Subcase 2.1: there exists j0 ∈ {1, . . . , N ′ − N} such that

∑N ′−N
k=1 (ξj0kψk +

σj0k) �≡ 0 (as a ratio in R0). Then from (2.2.12) we see that ψj0 can be written
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as an affine combination, with coefficients in R0 ⊂ R2, of the other components
of ψ. Using (2.2.4) we see that the claim mentioned at the very beginning of
Case 2 is proved.

Subcase 2.2: for any j ∈ {1, . . . , N ′ − N},
N ′−N∑
k=1

(ξjkψk + σjk) ≡ 0, on M̃1.(2.2.13)

If there exists j1, k1 ∈ {1, . . . , N ′ − N} such that ξk1j1 �≡ 0, then after tak-
ing complex conjugates of (2.2.13) , ψk1 can be written as an affine combi-
nation, with coefficients in R−1 ⊂ R2, of the other components of ψ. The
desired claim therefore follows as in Subcase 2.1. If not, then necessarily all
ξjk and

∑
1≤k≤N ′−N σjk (by (2.2.13)) are identically zero. Equation (2.2.12)

therefore leads to µ +
∑

1≤i≤N ′−N λiψi = 0. Then there exists necessarily
i2 ∈ {1, , . . . , N ′ −N} such that λi2 �≡ 0 since otherwise all quantities µ, λi, ξjk

and
∑

1≤k≤N ′−N σjk would be identically zero, which would contradict (2.2.10)
in view of (2.2.11). Hence here again we obtain that ψi2 can be written as an
affine combination, with coefficients in R−1 ⊂ R2, of the other components of
ψ, which completes, as explained before, the proof of the claim announced at
the beginning of Case 2.

We are now able to finish the proof of Lemma 2.8. The conclusion of the
dichotomy studied in Cases 1 and 2 states that we can always reduce a system
of the form (2.2.4) with coefficients in R1 to another system of the form (2.2.7)
with coefficients in R2. If N ′ = N + 1, we are clearly done. If not, by using
similar arguments as in the above process, it is easy to show that the obtained
system with coefficients in R2 can also be reduced to a system where N + 2
components of the map can be expressed as an affine combination of the other
ones with coefficients in R3. (Note that the only ingredients needed for such
a process are Theorem 2.6 and the fact that the Heisenberg hypersurface does
not contain any complex affine subspace of positive dimension.) By pursuing
this procedure N ′ − N − 2 more times, we conclude that each component of f
can be written as a ratio belonging to RN ′−N+1. The proof of Lemma 2.8 is
complete.

2.3. Completion of the proof of Proposition 2.1. By Lemma 2.8 we know
that after shrinking M near the origin, each component of f agrees on a dense
open subset of M with a ratio in the class RN ′−N+1. Moreover since M is
minimal at 0, f extends to a holomorphic map F defined on one side of M
near the origin [BT84, Tr86]. Therefore by using this extension F , it is easy
to see that any ratio in the class RN ′−N+1 can be written in the form (2.1.1)
for a suitable Ψ, Φ and G (for further details on that matter see [MMZ02,
Lemma 6.1]). Since each component of f is CR, we conclude from Theorem 2.6
that each such component extends meromorphically to a neighborhood of the
origin in C

N . This completes the proof of Proposition 2.1 and hence that of
Theorem 1.1.
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Remark 2.9. In the proof of Theorem 1.1, the assumption that M does not
contain any complex-analytic hypersurface of C

N is essential when applying
several times Theorem 2.6. We do not know whether Theorem 1.1 holds without
such an assumption. (The main problem without such a hypothesis would be to
prove the meromorphic extension of the map f near any non-minimal point.) On
the other hand, the assumption that M be strongly pseudoconvex at some point
in Theorem 1.1 is used to know that any non-constant CR map f : M → S

2N ′−1

is a local embedding near a generic point of M . Without assuming the existence
of a strongly pseudoconvex point on M , the conclusion of Theorem 1.1 still holds
if f is assumed to be of class CN ′−rf+1 where rf := Sup {Rank df(p)|T 0,1

p M : p ∈
M} (with a trivial modification in the beginning of the proof of Lemma 2.8).
This implies in particular that Theorem 1.1 still holds for all CR maps of class
CN ′

without assuming the existence of any strongly pseudoconvex point on M .
We leave the details to the reader.

We conclude this paper by giving examples of situations covered by Theo-
rem 1.1 and Corollary 1.2 where previously known results do not apply.

Example 2.10. Given nonnegative integers k, l, k ≥ 1, l ≥ 3, and h a holomor-
phic function defined near the origin in C with h(0) = h′(0) = 0, define Mk ⊂ C

2

to be the real-analytic hypersurface through the origin given by

Mk := {(z1, z2) ∈ C
2 : Im z2 = |z1|2k + |h(z1)|2}.

Note that there are non-constant CR maps from Mk into the Heisenberg repre-
sentation

H
2l−1 := {(w1, . . . , wl) ∈ C

l : Imwl = |w1|2 + . . . + |wl−1|2}(2.3.1)

of the unit sphere in C
l, namely the restriction to Mk of the holomorphic map

(z1, z2) �→ (zk
1 , h(z1), 0, . . . , 0︸ ︷︷ ︸

l − 3 times

, z2).

For k = 1, M1 is strongly pseudoconvex and the analyticity (at every point of
M1) of Cl−1-smooth CR maps from M1 into H

2l−1 follows from Corollary 1.2
but not from [Fo89]. In the case l = 3, the regularity of such maps does not
follow neither from [BHR96] if the function h is chosen not be algebraic.

For k > 1, Mk is weakly pseudoconvex of D’Angelo finite type and the set
of weakly pseudoconvex points is a real line. Here again the analytic regularity
(at every point of Mk) of Cl−1-smooth CR maps from Mk into H

2l−1 follows
from Corollary 1.2 but not from [Fo89]. Moreover, even if l = 3 and h is chosen
to be algebraic, the analyticity at the origin of such maps does not follow from
[BHR96] since the type of Mk at 0 is clearly greater or equal to 4 (and the
required initial order of smoothness for the maps in [BHR96] equals this type).

Example 2.11. Let M ⊂ C
3 be the real-algebraic hypersurface given by M :=

{(z1, z2, z3) ∈ C
3 : Im z3 = |z1z2|2 + |z2|2}. Then M obviously contains a

complex line through the origin and the set of strongly pseudoconvex points of
M is dense in M . (Note also that M is not essentially finite at the origin in the
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sense of [BJT85].) For any nonnegative integer l ≥ 4, the restriction to M of
the following holomorphic map

(z1, z2, z3) �→ (z1z2, z2, 0, . . . , 0︸ ︷︷ ︸
l − 3 times

, z3) ∈ C
l

maps M into H
2l−1 (given by (2.3.1)), and is near a generic point a local em-

bedding. The analyticity (at every point of M) of Cl−2-smooth CR maps from
M into H

2l−1 follows from Theorem 1.1 but neither from [Fo89] nor from Corol-
lary 1.2.
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