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On Artin approximation for formal
CR mappings

NORDINE MIR

Let M be a real-analytic CR submanifold of CV and S’ be a real-
analytic subset of CV*N'. We say that the pair (M,S’) has the
Artin approximation property if for every point p € M and every
positive integer ¢, if H: (CV,p) — CN " is a formal holomorphic
map such that Graph H N (M x CN') € ', there exists a germ at
p of a holomorphic map h*: (CV,p) — CV " which agrees with H
at p up to order ¢ satisfying Graphh! N (M x CN') ¢ §’. In this
paper, we give some sufficient conditions on a pair (M, S’) to have
the Artin approximation property. We show that if the CR orbits
of M are all of the same dimension and at most of codimension
one in M and if S’ is any partially algebraic subset of CV x CV y
then (M, S’) has the Artin approximation property.

1. Introduction

In 1968, Artin [A68] provided a general and powerful tool in order to find
solutions of systems of analytic equations : given any system of real-analytic
equations, if there exists a formal solution to such a system at a given point,
then there exists a real-analytic one that is as close as we want in the Krull
topology to the formal one. A question that naturally thereafter arises is
whether the conclusion of Artin’s approximation theorem is still preserved
if the system of equations is coupled with a specific PDE. In 1978, Milman
[M78] investigated such a question when the PDE consists of the standard
Cauchy-Riemann operator in R?" ~ C" : he showed that any formal solution
of a system of real-analytic equations and of the standard CR equations in
C™ can be approximated (in the Krull topology) by a sequence of convergent
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solutions of the system of analytic and CR equations. Hence, Milman’s result
provided the first CR version of Artin’s approximation theorem.

The present paper aims at investigating a similar question when the stan-
dard Cauchy-operator in C" is replaced by the tangential Cauchy-Riemann
operator associated to a general real-analytic CR manifold. As explained e.g.
in [M14], one of the motivations for such a study comes from CR geome-
try itself : given two real-analytic CR manifolds and a formal nondegenerate
CR map between them, does there exist a convergent nondegenerate one be-
tween them? Establishing a CR version of Milman’s approximation theorem
implies a corresponding affirmative answer to the above mentioned existence
question in CR geometry. Furthermore, it has only been discovered recently
by Kossovskiy and Shafikov [KS13] that there exist pairs of real-analytic CR
manifolds that are formally but not biholomorphically equivalent. As an im-
mediate consequence, this also shows that the conclusion of Milman’s result
fails to hold in general if the CR equations in C" are replaced by tangential
CR equations.

In this paper, we shall provide some sufficient conditions ensuring that
approximation of formal solutions of analytic and CR equations by conver-
gent ones is however possible. These conditions are related to the form of
the analytic equations to be fulfilled by a formal solution and to the CR
geometry of the associated CR manifold.

Our main result will be formulated as an approximation result for formal
holomorphic mappings from CV to CV' rather than an approximation result
for formal mappings from R¥ to CV' satisfying some CR equations; the cor-
respondence between these two points of view is explained e.g. in [M14]. To
this end, we need to introduce the following terminology. Suppose that M
is a real-analytic CR submanifold of CY and S’ is a real-analytic subset of
CN+N'. We say that the pair (M, S’) has the Artin approzimation property
if for every point p € M and every positive integer ¢, if H: (CV,p) — CV'
is a formal holomorphic map such that Graph H N (M x CN') C S’ (see
Section 2.1 for the precise definition), there exists a germ at p of a holo-
morphic map hf: (CV,p) — CV' which agrees with H at p up to order ¢
with Graphh* N (M x CN') € §'. We also say that a real-analytic subset
S’ c Cg X (Cg,/ is partially algebraic if it is locally given by the vanishing
of finitely many functions that are real polynomials in Z’ with real-analytic
coefficients in Z (see [L88] for a similar notion).

Finally, recall that given any real-analytic CR submanifold M c CV
with complex tangent bundle T°M C T'M, for every point p € M, there
exists a unique germ of a real-analytic CR submanifold O,, through p, called
the CR orbit of M at p, such that every point ¢ € O, can be reached from
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p by following a piecewise differentiable curve in M whose tangent vectors
are in T°M (see e.g. [BER99a, BCHOS]).
We may now state our main result:

Theorem 1.1. Let M C CN be a connected real-analytic CR submanifold.
Assume that the CR orbits of M are all of the same dimension and at most of
codimension one in M. Then for every partially algebraic real-analytic subset
S c CN x CN', the pair (M, S") has the Artin approzimation property.

In view of the above mentioned examples of CR manifolds found in
[KS13], the assumption about the CR orbits be all of the same dimension is
quite natural in Theorem 1.1; indeed, these examples correspond to germs
of real-analytic CR manifolds whose dimension of CR orbits does jump. In
the case where all CR orbits are all open pieces of M (i.e. M is everywhere
minimal), then Theorem 1.1 was proved by Meylan, Zaitsev and the author
[MMZ03]. Hence, the main new contribution of Theorem 1.1 deals with the
case of nowhere minimal real-analytic CR submanifolds whose CR orbits are
all one-codimensional. It is an open problem to decide whether the conclu-
sion of Theorem 1.1 remains valid for CR orbits of arbitrary codimension or
for arbitrary real-analytic subsets S’. For other related results (in a CR or
non-CR setting), we refer the reader to [M12, HY09, HY10].

Let us now describe the proof of Theorem 1.1. Given a real-analytic CR
submanifold M C CV, a partially algebraic subset S’ ¢ CV x CV', a point
p € M and a formal holomorphic mapping H: (CV,p) — CV' such that
Graph H N (M x CN") ¢ §’, the induced formal map H!M satisfies both the
CR equations on M and the system of analytic equations defining S’ near
(p, H(p)). The main step of the proof consists of reducing the desired ap-
proximation property for the original system of analytic and CR equations
to a so-called “nested” approximation property for a certain system of real-
analytic equations. By “nested” approximation property, we mean that the
obtained system of equations admits a formal solution such that some of
its components depend on fewer variables and that it is possible to approx-
imate such a formal solution by convergent ones whose components satisfy
the same property. We would like to point out that this step of the proof
is valid without any assumption on the codimension of the CR orbits. The
“nested” approximation property for systems of polynomial or analytic equa-
tions has been quite well studied, see e.g. [R15] for a complete account on
this topic. While such a property is known to be true for polynomial systems
(see [P86]), this is not the case for general systems of real-analytic equations
as an example due to Gabrielov [Ga71] shows. However, when the so-called
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“nested” part of a formal solution as above does depend only on one vari-
able, Denef and Lipshitz [DL80] have shown that any system of analytic
equations does have the “nested” approximation property. In our context,
it happens that when CR orbits of M are of codimension one, one may use
the result by Denef-Lipshitz, yielding the desired final result.

The paper is organized as follows. Section 2 is devoted to the proof of
a key result, Proposition 2.4, which can be seen as an algebraic dependence
propagation property for formal maps. Such a property has been proved in
some different and simpler situations in [MMZ03, Proposition 4.3] and [M12,
Proposition 3.7]. Our proof in this more general setting differs and is simpler
from the ones given in [MMZ03, M12] by avoiding the use of “CR ratios”
and of any of Artin’s approximation theorems [A68, A69]. In Section 3, we
set up a certain system of real-analytic equations associated to any formal
holomorphic mapping and to any real-analytic generic submanifold with CR
orbits of constant dimension. We then prove that the desired approximation
property for the formal mapping follows from the “nested” approximation
property of the constructed system (Proposition 3.3). We should mention
that the arguments used in Section 3 are adapted from those developed
in an algebraic context in [M12]. The proof of Theorem 1.1 is finalized in
Section 4.

2. An algebraic dependence propagation property

In order to state and prove the main result of this section, Proposition 2.4 be-
low, we need to set-up the notation used throughout this paper as well as re-
call some facts about generic submanifolds in complex space. For basic back-
ground about CR manifolds, we refer the reader to e.g. [BER99a, BCHOS|.

2.1. Notation

Throughout the paper, for K = R, C, we shall denote the rings of convergent
and formal power series in r variables with coefficients in K by K{z} and
K[[z]] respectively, x = (21, ..., ;). For § € C[[z]], we denote by  the formal
power series obtained from 6 by taking complex conjugates of its coefficients.

Let 6 € K|[[z]] and m be a nonnegative integer. We write j™6 for the
collection of all partial derivatives of # up to order m. If we can split the
indeterminates x = (&, ), (50)(0,Z) stands for the power series mapping
76 evaluated at & = 0. Furthermore, if X is a germ at the origin of a K-
analytic submanifold in K", we say that 6 vanishes on X and write «9‘ v =0or
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0(x) ‘ + = 0 to mean that for some (and hence any) K-analytic parametriza-
tion @: (K4mX 0) — (X,0) € K", one has o ¢ = 0.

Let ¢: (R7,0) = RY be a formal mapping. Let X C R" be a germ at
the origin of a real-analytic submanifold and let Y be a real-analytic subset
of R™4. We write Graph N (X x R?) C Y to mean that for every germ at
(0,%4(0)) € R™*4 of a real-analytic function p vanishing on Y, p(z, ¢ (x))|x =
0. When v is convergent, this latter definition coincides with the usual set
theoretic notion.

Finally, we set up appropriate notation for coordinates in jets spaces.
Recall that for every integer k, J¥(CV,CN") denotes the jet space of order k
at the origin of holomorphic maps from CV to CV'. Throughout the paper,
we will use A¥ and T'* as coordinates in J¥(CN,CN') (where k is allowed to
vary) and write AF = (A’fy)|a\§k with Ak € CV" and similarly for T'*.

2.2. Generic real-analytic submanifolds of constant
orbit dimension

Suppose that M C CV is a real-analytic generic submanifold and denote by
T°M C TM its complex tangent bundle. Recall that for every point p € M,
there exists a unique germ of a real-analytic CR submanifold O, through p
such that every point ¢ € O, can be reached from p by following a piece-
wise differentiable curve in M whose tangent vectors are in T°M (see e.g.
[BER99a, BCHO08]). This germ is called the CR orbit of M at p and M is
called minimal at p if this CR orbit is a neighborhood of p in M. It is a stan-
dard fact (see e.g. [BRZ01]) that if M is connected, the dimension of the CR
orbits is maximal except possibly on some proper real-analytic subvariety of
Y of M.

From now on, we assume that M is a connected real-analytic generic
submanifold of CY of CR dimension n and codimension d. We have the
following result that provides suitable holomorphic (normal) coordinates
near every point p € M \ Xjy.

Lemma 2.1. (/BRZ01, Proposition 3.4]) Let M CCN be a connected generic
real-analytic submanifold through a point p € M whose CR orbit at p is of
mazimal dimension and let ¢ € {0,...,d} be the codimension of this CR or-
bit in M. Then there exists normal holomorphic coordinates Z = (z,n) €
C" x C%, n = (w,u) € C¢ x C°, such that M is given near the origin by
an equation of the form

(2.1) n=(w,u)=0(z21n) :=(Q(zz,w,u),u),
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where Q is a C4“-valued holomorphic map near 0 € C**N. Furthermore,
there exist neighborhoods U,V of the origin in R and CN~¢ respectively such
that for every u € U, the real-analytic submanifold given by

(2.2) M, ={(z,w) eV :w=Q(2zw,u)}
is generic in CN=¢ and minimal at 0.

As a real-analytic submanifold, we may complexify M which gives rise
to its so-called complexification M. For a fixed point p € M \ X, using the
coordinates provided by Lemma 2.1, the germ of M at 0 is the complex
submanifold of C2V given by

(2.3) {(Z,¢) € (CY x C¥,0): 0 = O(x, 2,1},

where Z = (z,n7) € C*" x C% and ¢ = (x,0) € C* x C%. It is an easy and
standard fact (see e.g. [BER99a]) that our choice of normal coordinates
implies the following two identities:

(2.4) O(2,0,0) =06(0,x,0) = 0o, O(z,x,0(x,2,1)) =n.

We now define the iterated Segre mappings attached to M near p (see e.g.
[BER99b, BRZ01]). For any nonnegative integer j, we denote by ¢/ a variable
lying in C" and also introduce the variable tV! .= (t!,... #/) € C". Then
we set

Vo(u) := (0,u) e CV

for u € C¢ and define the map V;: (C™ x C¢,0) — C for j > 1 inductively
as follows:

(2.5) Vi (#9),w) == (¢, U5 (9], ),
where  U;(t7), u) := @7, V;_1(tV =1, u)).

From this definition, it follows that each iterated Segre mapping V; defines a
holomorphic map in a neighbhorhood of 0 in C*¢. Note furthermore that
for every point (0,u) € C? sufficiently close to the origin, the map Vj(-, u)
parametrizes the Segre set of order j attached to the point (0,u) (see e.g.
[BER96, BER99a]). Observe that, thanks to (2.4), one has the following
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useful identities

(2.6)  V;(0,u) = (0,u), Vjra(tHH w)|pracy = VitV u), >0,

and that for every j > 0, the germ at 0 of the holomorphic map (Vj41,V ;)
takes its values in M, where M is the complexification of M as defined by
(2.3). Note also that in view of (2.1), one may write V; (U], u) =: (v; (tU], u), u)
where v; is a CN~valued holomorphic map in a neighbhorhood of 0 in
Cnite, In fact, for every sufficiently small u € R¢, the map tl] — vj(t[j], w) is
the iterated Segre mapping (of order j) attached to the generic submanifold
M, at the origin.

We will need the following property about these iterated Segre map-
pings which provides a precise version of the “minimality criterion” due to

Baouendi-Ebenfelt-Rothschild [BER99b] (see also [BRZ01] :

Proposition 2.2. With the above notation, there exists a positive integer
Lo such that the holomorphic map v* is of generic rank N — ¢ (near the
origin) and a connected neighborhood Q of 0 in C*™° such that

(%240

Rk Ot1otblo+29tbo+3 | 9t2bo

(2l 0) = N — ¢

at a generic point t20l € QN E where E is the complex subspace of C2to
given by

E — {tl — O’t£0+2 — tfo’ tf0+3 — t£0_17 R tQZO — t2}

2.3. Propagation of algebraic dependence through iterated
Segre mappings

We now state and prove one key result, Proposition 2.4 below. Quite analo-
gous statements appear in [MMZ03, Proposition 4.3] and in [M12, Proposi-
tion 3.7] but in different and somewhat simpler settings. The approach used
to prove such results in [MMZ03, M12] relies on arguments involving “CR
ratios” and Artin’s approximation theorems [A68, A69]. It seems to us that
such arguments can not be generalized to provide a proof of Proposition 2.4
below. Instead, we will provide a direct proof of Proposition 2.4 avoiding
the above mentioned arguments. As a byproduct, such a proof can be eas-
ily adapted to give simpler proofs of [MMZ03, Proposition 4.3] and [M12,
Proposition 3.7].

In what follows, we assume that M C CV is a germ of a real-analytic
generic submanifold through the origin with N > 2. We also assume that
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the CR orbit of M at the origin is of maximal dimension and choose normal
coordinates Z = (z,w,u) as in Lemma 2.1. Such a choice of coordinates is
fixed for the rest of this section. Let H: (CV,0) — CY" be a fixed formal
holomorphic map.

Recall that for any integer k, A¥ and I'* denote coordinates in J§(CY, CV').

Definition 2.3. With the above notation, let A be the subring of
C[[z, w, u]] consisting of those power series T for which there exists an integer
k and B € C{z,w,u}[A* T'*] such that

T(z,w,u) = Bz, w,u, (j*H)(0,w), (j*H)(0,u)).
We further denote by K the field of fractions of A,

Proposition 2.4. Let M be a connected real-analytic generic submanifold
through the origin and H: (CN,0) — CN' be a formal holomorphic map. As-
sume that the CR orbit of M at 0 is of mazimal dimension and choose nor-
mal coordinates Z = (z,w,u) for M near 0 as in Lemma 2.1. Let M be the
complezification of M as defined in (2.3) and assume the mapping H splits as
follows H = (F,G) € CN'=° x C for some integer b € {1,...,N'}. Assume
that there exists an integer ko and a polynomial R € C{Z, (}[AFo, T*o ¢ o]
where (¢',') € C* x Cb such that:

(i) R(Z,¢, (% H)(0,w), G T)(0,4), 6,7 g conen 2 O,
(i) R(Z.C. (% H)(0,u), G H)(0,u),G(2),G(O))] = 0.

Then the components of the mapping G are algebraically dependent over the
field KH .

In order to prove Proposition 2.4, we further need to introduce a number
of intermediary fields.

Definition 2.5. Let b be a fized positive integer and denote by Y* holo-
morphic coordinates in Jé“((CN, CY). Using the notation defined in Sections
2.1 and 2.2, for every integer j and ¢, define Afj to be the subring of

C[[t!9, u]] of those power series D for which there exists an integer k and
E € C{tl, u}[AF, T* Y] such that

Dt u) = B, u, (7*H)(0,u), G*H)(0,u), (7*G) o Vj(tV], u)).
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Similarly, let Kfj be the subring of C[[tl, u]] of those power series D
that can be written as

D, u) = B, u, (G H)(0,w), GFH)(0, 1), (*C) 0 V(17 w))

for some integer k and some E € C{tl, u}[AF, T* T*].
Denote by X]H the subring of C[[tV], u]] of those power series D for which
there exists an integer k and E € C{tUl, u}[A* T'*] such that

DV, u) = BV, u, (j*H)(0,u), (G*H)(0,u)).

The fields of fractions of the rings Agj, KZJ- and Xf will be respectively
denoted by Kfj, Kfj and Yf.

The following lemma is one of the two ingredients of the proof of Propo-
sition 2.4.

Lemma 2.6. Using the previously defined notation and under the assump-
tions of Proposition 2.4, the components of the formal mapping G o Vo, are
algebraically dependent over Yio where Ly is given by Proposition 2.2.

Proof of Lemma 2.6. By our choice of ¢y (see Proposition 2.2), the holomor-
phic map

(RO u) s (Vg1 ((ROTY 0), Vg, (8200 w))

is generically submersive onto M near the origin. Hence, using assumptions
(i) and (ii), we get the following formal power series identities

R(Véﬁo-i—la V?f@? (]kOH)(Oa U), (]kﬁ)(oa ’LL), G o V2f0+17a o V?Zo) = Oa

(27) = ko ko TT ;.
R(VY2€0+17 V%ov (.7 H)(07u)7 (.7 H)(07u)>§ y W ) ?_é 0,

respectively in the rings C[[t2%F1 ]| and C[[t2%+U u]][¢/,=’]. Set E €
C[[tR+ u]][¢'] as follows:

2= R(‘/QZU—&-M V?Zga (]kOH)(O’ u)? (]koﬁ)(ov U), 5,) é o V?ZO)-
There are two cases to consider:

FIRST CASE : = = 0.
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It follows from (2.7) that there exists W € C{t[2%] u}[A*o ' w'] such
that

W (%], (5% H) (0, u), (j*H)(0,u),=") £ 0

2.8 . o
(28) W (t12%] i, (5% H)(0,w), (GFH)(0,u), G o Vo, (2% u)) = 0,

which means that the components of G o Vg, are algebraically dependent
over Y%O, and so are the components of G o Vyy, .

SECOND CASE : = # 0.

It follows from (2.7) that there exists P € C{t2fot1 y}[Ako Tk ¢ o]
such that

PPy, (5% H)(0,u), (5 H)(0,u),€,G o Vag,) 0

2.9 . o
(2:9) P (20 Ly (%0 1) (0, ), (75T (0,u), G 0 Vag, 41, G 0 Vg, ) = 0.

Note that (2.9) means that the components of G o Vo, 11 are algebraically
dependent over the field K%O +1.2¢,- From (2.9), we first claim that the com-
ponents of G o Vyy, 41 are algebraically dependent over Kﬁn 41,2001 For this,
cgnsider the finitely generated field extension Kfm%o_l — Kio,Q&J—l(G o
Var,). By standard commutative algebra (see e.g. [ZS58]) and interchang-
ing the components of G if necessary, we may write G = (é*,éﬁ) e CY x
CP~Y" | where in the above splitting, the components of G oV, are alge-
braically independent over ngo,%o—l and all components of @ﬁ o Vg, are
algebraically dependent over the field Kg@o,%o—l(é* 0 Vg, ). (Note that if all
components of G o Vi, are algebraically dependent over Kgogéo—l’ then it
follows from (2.9) and the transitivity of the property of being algebraic over
any field, that the components of G o Vo, 11 are algebraically dependent over
Kiﬁl’%rl, the desired claim.) By (2.9), the components of G o Vo, 41 are
algebraically dependent over the field Koy, 41,2¢,—1(G 0 Viay,), and therefore
are also algebraically dependent over the field K2£0+1,2£0—1(§* o Vg[o) (since

Ko, .200—1 C Kagy41,2¢,—1)- Hence there exist an integer k; and a polynomial
Py e C{tR6t1 y}[Ak Th Th ¢ 7], 7% € C¥", such that

Py (20, (57 H)(0,w), GFH) (0, u), (75 G) 0 Vag,—1,€ .G 0 Vo) 0

and

Py (201, (5% H) (0, w), (5 H)(0, 1), (5% G) © Vag,—1,

(2.10) R
G o ‘/v21€0+1’ G o V2€0) = 0'
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Define A € C[[t!?%*1 u, %] by

A= Py (P, (59 H) (0,0, (P H)(0,u), (5% G) 0 Vagy—1, G 0 Vaga1, 77),
and let us prove that

(2.11) A= A@tP0H 4 ) = 0.

By contradiction, suppose it is not the case. Then there exists a multiindex
a € N such that (0,41 A)|pe0r1=¢260-1 # 0. Note that by using (2.6), we
may write

(212) (8%20+1A)|t220+1:t2£0—1 =
Py(tP) u, (% H (0, w), (% H)(0,u), (%G 0 Vag, 1), 7%),

for some Py € C{tl2%] y}[A%> %> Y 1] where ky = max (|al, k1). Using
(2.10), (2.12) and the definition of A given in (2.11), we see that

Py (0], (5% H)(0, ), (75 H)(0,u), (%2 G) 0 Vag, 1, G 0 Vay,) = 0,

which proves that the components of G~ o Vo, are algebraically dependent
over Kgog 4,1 & contradiction. This proves that (2.11) holds. It follows from
the first condition in (2.10) that

Py (P, (5% H) (0, u), (G5 H)(0,u), (7' G) 0 Vag,—1, ', 7%) # 0

and therefore (2.11) proves that the components of G o Vo 41 are alge-
braically dependent over K;ﬂo 12001 which proves the claim.

Now, quite similarly, we claim that the components of G' o Va4 are al-
gebraically dependent over Kgﬂo 41,2003 Indeed, by the previous conclusion,
we get the existence of an integer ks and of a polynomial P, € C{t[%’*”,
u}[AFs, Tks Yks ¢'] such that
(2.13)

Pyt w, (5% H)(0,w), (7 H)(0, ), (j**G) 0 Vag,—1,6) # 0

Py(tP0t ], (5% H) (0, w), (7% H)(0,u), (" G) 0 Vag,—1, G © Vag41) = 0.

By considering the finitely generated field extension

H H &
Koty—1,200—3 > Kagy—1,20,—3((57° G) 0 Vag, 1),
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we may, without loss of generality, split the formal map j ks G =: (é , é) where
G is C%-valued formal map satisfying the following properties : all compo-
nents of the map G o Vyy,_1 are algebraically independent over ngg—l,%o—s
and every component of the map Go Vae,—1 is algebraically dependent over
K§O—172€0—3(G o Viy,—1). Hence, by (2.13) and the transivity of the property
of being algebraic, the components of G o Vo, 11 are algebraically dependent
over Kgf 1 o4,-3(G 0 Vag,—1) (since K ;5 3 CKG 15, _3)- We may
therefore find an integer k4 and a polynomial Py € C{t[+1] 4 }[Aks Tks,
Yk ¢ 7], 7 € C% such that

Py (¢804 (5% H)(0,u), (G5 H) (0, ), (75 G) 0 Vag, 3,6, G 0 Vag,—1) £ 0

and
pay DTG DOu), (H0.), (M) 0 Vs,

G o Vagy41,G 0 Vag—1) = 0.
Setting

B = P3(t[2£0+1] , U, (]k4H) (Oa U), (]k4ﬁ)(0> U), (jk4G o ‘/ng_g), Go V2€0+17 5:)7
we claim that
(2.15) B = B(tl?+1 4, 7) .= 0.

Suppose, by contradiction, that (2.15) does not hold. Then there exists a
multiindex 8 € N?? such that

o°B
at%o +1 at%g

Observe that in view of (2.6),

Z0.

(t2£0+1 7t2£0 ):(tzio -3 7t2€0 —2)

o°B
at%o +1 8t2fo

(t2£0+17t220):(t2£0—3’t2£0—2)
may be written in the form
Py(tl207 Y, (5% H)(0, ), (j*H)(0, ), (j**G) o Vag,—3,7),

for some Py € C{tl200=1 y}[A%s Tk T*s 7] where ks = max (|a, ky). By us-
ing (2.15), (2.14) and the above mentioned observation, we see that

Py (201, (552 H(0,w), (% H)(0,u), (5% G) 0 Vag,—3, G 0 Vag,—1) = 0,
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which proves that the components of Go Vae,—1 are algebraically dependent
over Kgo_l 9¢,3» Which is a contradiction. Hence (2.15) holds. From the
first condition in (2.14) we get that

Py(t20F Ly (5% H) (0, u), GFH) (0, u), (75 G) 0 Vag,_3,€",7) # 0,

which together with (2.15) imply that the components of G o Vo 41 are
algebraically dependent over ngo +1,2¢,—3 Which proves the claim.

Proceeding inductively (i.e. reproducing the above procedure ¢y — 2 more
times), one obtains that the components of G o V11 are algebraically de-
pendent over Kgo 411 Therefore, there exist an integer k, and P, € (C{t[%’*l],
u}[AF-, T Tk ¢'] such that
(2.16)

P (PO, (5% H) (0, u), (7% H)(0,u), (7% G) 0 V1,¢) # 0

P (Pt u, (% H)(0,u), (7% H)(0,u), (% G) 0 Vi, G 0 Vag, 41) = 0.

By considering the field extension Kfo — K{{O((jk* G) o V1) and mimicking
a procedure similar to the one above (the only difference being that the
evaluation of some power series should be done along the subspace 26+ =
t?%0 = .. =2 = 0), one may show that the components of the mapping G o
Vae,+1 are algebraically depending over the field Kio +1,0» Which obviously
coincides with Yoy, 11. We now claim that this statement implies the desired
conclusion of the lemma. Indeed, by the above, there exist an integer k£ and
of a polynomial P € C{t2f+1 y}[A* T ¢] such that

PO o (5% H)(0,u), GFHT)(0,u), &) 2 0

(2.17) . 7 e
PP, (FFH) (0, w), (FH)(0,0), G © Vag, 1) = 0.

Choose v € N” of minimal length such that
(OAP)(0,8, ..., (G H) (0,u), (FH) (0, ), €') # 0.
Since Vag, 1 1(0,12, ... 120y = Vo, (¢2,...,t%0+1) (2.17) implies

(2.18) (9L P)(0, 82,2, (R H)(0, w),
GMH)(0,u), (G 0 Vag, ) (22, ..., 126%1)) = 0,

which provides the desired conclusion of the lemma. Il
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The second ingredient in the proof of Proposition 2.4 is the following
lemma which follows from the statement and an inspection of the proof of
[BER99D, Proposition 4.1.18].

Lemma 2.7. Let ¥: (C}' x C2 x C}2,0) — (C9,0) be a germ of a holo-
morphic map such that ¥(x,s,0) = 0 with rs > q. Assume the q X r3 matriz
[g?g) (z,0, O)} has rank q at a generic point x € C™ sufficiently close to 0.
T

en there exists germs of holomorphic maps
A: (C0) = C, A(z)#0, ¢:(C*xC™ xC%0)— (C™,0)

satisfying

v <m,s,g0 (fox) A?L:))) —w, ¢(z,50) =0,

for all (x,s,w) € C™ x C™ x C? with x sufficiently small, A(z) # 0 and
’ﬁ‘ + ‘%‘ sufficiently small.

Remark 2.8. The first identity in (2.21) also holds in the ring
(Frac C{z})([s, w]]
where Frac C{z} is the field of fractions of C{x}.

Proof of Proposition 2.4. By Lemma 2.6, there exist an integer k and of a
polynomial P € C{t[?%] u}[A¥ T* ¢] such that
PP, (j*H)(0,u), (F*H)(0,u),€") # 0

2.19 -
(19 P(t%) u, (7R H)(0,w), ("H) (0, u), G o Vag, (t2*], w)) = 0.

As in [BRZO01], consider the following linear automorphism L of C2mo+e
defined by

L(:U,y,u) = (y07x17 s 73;(07‘%@071 +y€0717 e ,(El + y17u>7

where z = (z!,...,2%) and y = (v°, %', ...,y 1). Set

(VZZO OL)(.%,:I/,U) = (\I/(x,y,u),u).
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It follows from (2.19) that , there exists a polynomial P € C{xz,y, u}[A* T*,
¢'] such that

(2.20) P(z,y,u, ("H)(0,u), (j"H)(0,u),&) £ 0
P(z,y,u, ("H)(0,u), (j*H)(0,u), G(¥(z,y,u),u)) = 0.

It follows from (2.6) that
(‘/QZD o L)(:L'a O,U) = ‘/éﬁo(071:17 cey xfo’ xfo—l’ e 7'1717”) = (O,U)

and hence ¥(z,0,u) = 0. Since the rank of the matrix (%—3) (x,0,0)} is

the same as the rank of the matrix [(8(U25;OL)> (2,0,0)|, it follows from

Proposition 2.2 that the rank of the matrix [(%—‘3) (2,0,0)| isequal to N — ¢

at generic points z € C™ sufficiently close to 0. Lemma 2.7 together with
Remark 2.8 therefore implies that there exist germs of holomorphic maps

A: (C™0) = C, Ax)#0, ¢: (C" xCN,0)— (C™,0)

satisfying

(2.21) v <x 0 <x A(Zx)> u> = (z,w), olz,(0,1) =0,

as a formal power series identity in the ring (Frac C{z})[[Z]] (where Z =
(z,w,u)). One would like to set y = ¢(z, ﬁ) in the second identity in
(2.20), but a priori, this might lead to a trivial relation. To overcome this,
we claim that there exists 3 € N0 such that

Z _
(222) Py‘* <$, @ <1’, A(:Ij‘)) , U, (]kH)(Oa U’)7 (]kH)(Oa U’)7 €/> 7_é 07
as a power series identity in the ring (Frac C{z})[[Z]][¢/]. Indeed, if (2.22)

]
does not hold for every 8 € N*°_ then setting (z,w) = (0,0) and using the
second identity in (2.21), we would get

Py (,0,u, (FFH)(0,u), (GFH)(0,u),¢') =0

for every 8 € N* which would contradict the first identity in (2.20). This
proves the claim. Choose 3 € N of minimal length such that (2.22) holds.
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From (2.20) and (2.21), we get

(223) Py (m,go <x A(Zx)> u, GFE)(0, 1), (ij)(O,u),G(Z)> — 0

as a power series identity in the ring (Frac C{z})[[Z]]. From (2.22) and
(2.23), it follows that for a generic point xo sufficiently close to 0 in C™
(satisfying in particular A(xo) # 0), the following identities hold in the ring
Cllz1]

224 Pys <xo,s0 (960, A(Zxo)> .U, (ij)(O’u)7(ij)(O,u),G(Z)> Ly

Py (xo, . (:m, A(Zxo)) u, GEH) (0, w), G (0, w), s/) 0

Fix one such point xg. Since ¢ (xo, %) is holomorphic in some neigh-
borhood of the origin in CV, it follows from (2.24) that the components of

the mapping G are algebraically dependent over the field K¥. The proof of
Proposition 2.4 is complete. O

3. Reducing the Artin approximation property to nested
approximation

We show in this section how to reduce the Artin approximation property
to the nested approximation property for a certain system of real-analytic
equations. The precise statement is given by Proposition 3.3 below. We first
construct some system of real-analytic equations associated to any formal
holomorphic mapping and any germ of a generic submanifold whose CR
orbits are all of the same dimension. The tools used here are adapted from
the ones developed in an algebraic context in [M12].

Let M be a germ of a real-analytic generic submanifold through the
origin in CN, N > 2 and H: (CV,0) — C"’ be a fixed formal holomorphic
mapping. The CR orbit of M passing through the origin is assumed to be of
maximal dimension and we choose and fix normal coordinates Z = (z,w, u)
as in Lemma 2.1.

Consider the following field extensions K < K (H) < Frac C[[Z]],
where K is given as in Definition 2.3. As a finitely generated field extension
K < K" (H), we may choose r components of the mapping H, denoted
by G, such that these components form a transcendence basis of the above
field extension, with r € {0,..., N'}. Hence, without loss of generality, we
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may split the map H = (F,G) where F = (F},..., Fy/_,) and G are respec-
tively (Ci\{l_r and (Cg, valued formal power series mappings. We write 7/ =
(7], Tho ), Z' = (&,7") € C" x CNV' =" and introduce @’ as another vari-
able in C". Recall also, that every integer k, A¥ and I'* denote coordinates
in J¥(CN CN'). In the rest of this section, we shall assume that r < N’.
From the fact that G is a transcendence basis of the field extension
K < K7 (H), there exist an integer k and for every integer j € {1,..., N’ —

7} a polynomial o7 € C{Z}[A*,T*, ¢] [7;] such that

(3.1) (2, (§*H)(0,u), (j*H)(0,u),G(Z), F;(2)) = 0.

We may also assume that if we write

Ay(Z, N TR & ) =t (2, A8, TF, &) (),
v=0

then
(32) Ay, (Z, (FFH)(0,u), " H)(0,u), G(Z)) # 0.

The following lemma is a slight variation of [M12, Lemma 4.1]. Its proof,
being analogous to that of [M12, Lemma 4.1], is therefore left to the reader.

Lemma 3.1. With the above notation, the following holds. For every real-
valued real-analytic function p(Z, Z, Z’,Z’) e R{Z, 7}[Z’,7/} in CN x CN',
there exists a non-trivial polynomial 2° € C{Z, (}[A*,T* ¢ ='][X], X € C,
such that for every formal holomorphic map f: (CN,0) — CN' =", g: (CV,0)
— C", T: (C¢,0) — C*, where £y, := card {a € NV : |a| < k}, satisfying

(2,7 (u),T(u),9(Z), f;(Z)) =0, and jm,(Z,T(u),T(u),g(Z)) %0,

forj=1,...,N' —r, then

2°(Z,¢,T(u), T(u),9(2),9(C), p(Z,¢, F(2), 9(2), £(C),3(C))) = 0,
as a power series identity in the ring C[[Z,(]]. In addition, writing

é
DP(Z,C, AN TR ¢ ! X) =" 20(Z, ¢, AR TF ¢ o) X7,
v=0

0 is independent of p and Qg(Z,C,T(u),T(u),g(Z),g(CHM £ 0.
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For every real-valued real-analytic function
p(2,Z,2', 7 e R{z,Z}2Z', 7,
consider the polynomial 27 given by Lemma 3.1. Set

(3.3)  py,=inf{re{0,...,6}:
20(2,¢, (5" H)(0,u), GFH)(0,u),¢',5")| o con 7 0}

that is well defined according to (3.1), (3.2) and Lemma 3.1. The next lemma
is quite analogous to [M12, Lemma 4.2] and we therefore also omit its proof.

Lemma 3.2. With the above notation, there exist A1, ..., %, € C{u}[A* T'*¥]
such that for every formal power series mapping T € (C[[u]])% , T satisfies
the system of equations

Qllj)(Z? ¢ T(u),T(u), 5/7 w/) ’Mx(cZ'r' =0

for every real-valued real-analytic function p € R{Z, 7}[2’,7,] and every
v < p,— 1 if and only if

yfl(uv T(u)’ W)

re =0, ¢=1,...,b.
We now have all the tools to prove the following:

Proposition 3.3. Let M and H be as above. Denote by r the transcendence
degree of the field extension K «— KH (H) and k the integer given by (3.1).
Assume thatr < N'. Forz € RN=¢ u € R¢, AF € JF(CN,CN'), consider the
following system of complex-valued real-analytic equations

(3.4) oy (x,u, A" AR 7T) =0, Fy(u, AF,AF) =0,
je{l,....,N" —r}, ge{1,...,b},

where /; and #y are given by (3.1) and Lemma 3.2 respectively. Then, the
system (3.4) has the following properties:

(i) The formal mapping & = G(z,u), 7" = F(z,u), A¥ = (j*H)(0,u) is a
formal solution of (3.4).

(ii) For every partially algebraic subset ¥’ C CN x CN' passing through
(0, H(0)), and for every sequence of formal mappings & = g*(x,u),
7' = fYx,u), A¥ = T%u) converging as £ — oo in the Krull topology
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to G(z,u), F(x,u) and (j*H)(0,u) respectively and satisfying (3.4),
if Graph H N (M x CN') € ¥/, then for { sufficiently large, one also
has Graph h’ N (M x CN') C ¥/, where in this inclusion, h' = (f*, %)
denotes the complezification over CN of the original power series map-
ping defined over RY .

Proof. Part (i) of the proposition follows from the construction of the sys-
tem (3.4) and, more specifically from (3.1), (3.3) and Lemma 3.2.

In order to prove (ii), we will follow the steps of the proof of [M12, Propo-
sition 4.3] and make use of Proposition 2.4 of the present paper. To this end,
we fix a partially algebraic subset >/ € CV x CV' passing through (0, H(0))
and assume that Graph H N (M x CN') C . Without loss of generality, we
may assume that the germ of ¥’ at (0, H(0)) is different from the germ
at (0, H(0)) of CN x CV' (since otherwise the conclusion of the proposi-
tion is obvious). We also fix a sequence of formal mappings & = ¢*(z, u),
7' = fYx,u), A¥ =T*u) converging as £ — oo in the Krull topology to
G(x,u), F(z,u) and (j*H)(0,u) respectively and satisfying (3.4). Suppose,
by contradiction, that there is a subsequence (h!'); such that for every in-
teger 4, Graph A% N (M x CN') ¢ ¥/, where A% denotes the formal mapping
from (CV,0) to CV" obtained by complexifying the original mapping from
(RN, 0) to CV'. Since ¥/ is partially algebraic, we may find a finite num-
ber of non-trivial real-valued real-analytic functions pi, ..., pe in the ring
R{Z, 7}[2’,7/] such that ¥’ is given by the zero set of these e functions
near (0, H(0)). By the pigeonhole principle, there is a certain subsequence
(h%); of (h')y such that for every integer i, Graphh® N (M x CN') ¢ ¥}
where ¥ is the partially algebraic set near (0, H(0)) given by the zero set
of p1. Without loss of generality, we may assume that (h%); is the whole
sequence (h')y. This means that for every integer £

(3.5) p1(Z,C R Z), R Q)] o, # 0.

Since ¢’ = g'(x,u), 7" = ff(z,u), A¥ = T*(u) satisfy the first set of equations
of (3.4), after complexification, we have .o7;(Z, Tﬁ(u),Te(u), 3(2), f42)) =
0, j=1,...,N' —r. We also note that since & = g‘(z,u), 7" = f'(x,u),
AF = T*(u) converge as ¢ — co in the Krull topology to G(z,u), F(z,u)
and (j*H)(0, u) respectively, we have o7 ,, (Z, T*(u), T*(u), g*(Z)) # 0, j =
1,...,N’' —r, for £ large enough. We may therefore apply Lemma 3.1 to get
that for ¢ large enough

(36) 272, T ), T (u),4"(2),(2), p1(2,¢, B (2), B (())) = 0.
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Using the fact that A¥ = T%(u) satisfy the second set of equations of the
system (3.4) and Lemma 3.2, we get that for v =0,...,p, —1,

1 4 7t _
20 Z,¢, T (), T (u), €, @")| o = O-

Hence (3.6) implies that for ¢ large enough

d

S D2 T W), T (), 6(2),5°(O) (p1(2.6 0 2),H0) [ = 0.

V=DPp,

Therefore, using (3.5) we get
(3.7)
26 (Z,¢, T w), T (u), 9(2),5°(O)| oy =
0 —Ppq
> 20(Z,¢ T W), T w),6'(2),5'(Q) (m(Z G2 RO) T |

v=1+p,,

Observe now that the left-hand side of (3.7) converges as £ — oo (in the Krull
topology) to 20! (Z,¢, (j*H)(0,u), (*H)(0, u),g(Z),g(C))‘M. On the other
hand, since Graph H N (M x CN') ¢ ¥/ € ¥}, the expression p1(Z, ¢, h*(Z),
h*(¢))|m converges as £ — 0o to pi(Z,¢, H(Z), H(¢))|pm = 0. Hence, as £ —
xc, (3.7) implies that 251, (Z, ¢, (iH)(0, u), ) (0,), 9(Z), §(0))] ., = 0.
But by definition of p,,, we have 25! (Z,¢,(j*H)(0,u), (*H)(0,u), &,
w’)’MXc% #£ 0. If r =0, we immediately reach a contradiction. If r > 1,
Proposition 2.4 applies and shows that the components of the mapping G
are algebraically dependent over the field K. This contradicts the fact that
G is a transcendence basis of KZ (H) over K¥. The proof of Proposition 3.3
is therefore complete. O

4. Proof of Theorem 1.1

In order to complete the proof of Theorem 1.1, we need the following result
which follows from the work of Denef-Lipschitz [DL80] providing a positive
answer to the so-called “nested approximation property” for solutions of
analytic systems whose “nested” part depend only on one variable (see e.g.
[R15, Theorem 10.5]). As mentioned in the introduction, such a result does
no longer hold if the nested part of the formal solution depends on two
variables or more.
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Theorem 4.1. Let ® € (R{t,z,y})? where t e R, = (z1,...,2,) € R",
Y= (yla s vym) €R™,n,m,q>1. Letj(t,x) € (R[[t,:p“)m, ﬁ(O) =0, satis-
fying ©(t,z,y(t,x)) = 0. Assume that §(t,x) is of the form (go(t), 91(t,z)) €
R* x R™=* with k € {0,...,m}. Then for every integer £, there exists
yi(t,2) € (R{t,z})™ of the form (y§(t), y{(t,z)) satisfying ®(t,z,9(t, x)) =
0 and agreeing with y(t,x) up to order £ (at 0).

We now proceed to the proof of Theorem 1.1. First, note that in case
N =1, since any real-analytic curve in the complex domain is locally biholo-
morphically equivalent to a piece of the real line, the desired conclusion from
a direct application of Artin’s approximation theorem [A68]. From now, we
may assume that N > 2.

Let M C CV be a real-analytic CR submanifold satisfying the assump-
tions of Theorem 1.1. If the CR orbits have all the same dimension and are
of codimension zero in M (i.e. M is everywhere minimal), the conclusion of
Theorem 1.1 has been obtained in [MMZ03]. We will therefore assume that
all CR orbits of M are of the same dimension and of codimension one in M.
Assume, in addition, that M is generic. Let p € M and choose normal coor-
dinates Z = (z,w,u) € C"* x C4~¢ x C° as in Lemma 2.1, vanishing at p. Let
H: (CN,0) — CY be a formal holomorphic map and S’ C C¥ x CY" be a
partially algebraic subset such that Graph H N (M x CN') ¢ §’. Using the
notation introduced in previous sections, we denote by r the transcendence
degree of the field extension K «— K#(H).

If r = N’, then M x CN'"  S’. Indeed, suppose that it is not the case.
Then we can find a real-analytic function ¢ near (0, H(0)) belonging the
ring R{Z, 7}[Z’,7/], vanishing on S” near (0, H(0)), such that

— —
’(ﬁ(Z, Z, Z,7Z )|M><(CN’ ¢ 0

near (0, H(0)). Since ¥(Z,¢,H(Z),H({))|m = 0, Proposition 2.4 implies
that the components of H are algebraically dependent over K, which con-
tradicts the fact that » = N’. Hence M x CN' ', and, therefore, in order
to approximate H in the Krull topology by a sequence of holomorphic map-
pings h’: (CN,0) — CV satisfying Graph ! N (M x CN') c ', it is enough
to truncate the mapping H.

We may assume now that » < N’. Consider the system of real-analytic
equations given by (3.4). Since all CR orbits of M are of codimension
one in M we have ¢ = 1. We may therefore use Theorem 4.1 in conjunc-
tion with Proposition 3.3 (i) to obtain the existence of a sequence of real-
analytic mappings & = ¢%(x,u), 7’ = f¢(x,u), A¥ = T*(u) converging as ¢ —
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oo to G(z,u), F(z,u) and (j*H)(0,u) respectively and satisfying the sys-
tem (3.4). Complexify the sequence h* = (f*, ¢°) to get a sequence of germs
at 0 of holomorphic mappings from CV to CV'. Then h’ converges to H
as { — oo in the Krull topology and by Proposition 3.3 (ii), it satisfies
Graph h! N (M x CN') c S’ for ¢ large enough. This proves that M has the
Artin approximation property when M is generic.

The general case when M is not necessarily generic can be reduced to
the generic case following the same arguments as in [MMZ03]. The proof of
Theorem 1.1 is complete.
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