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Abstract. We give a new algebraic characterization of holomorphic nonde-
generacy for embedded real algebraic hypersurfaces inC

N+1, N ≥ 1. We
then use this criterion to prove the following result about real analyticity of
smooth CR mappings : any smooth CR mappingH between a real analytic
hypersurface and a rigid polynomial holomorphically nondegenerate hyper-
surface is real analytic, provided the mapH is not totally degenerate in the
sense of Baouendi and Rothschild.
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1 Introduction and statement of results

In [23] and [24], N. Stanton introduced a new geometric invariant for real
analytic hypersurfaces in complex spaces. More precisely, an embedded real
analytic hypersurfaceM of C

N+1, N ≥ 1 is calledholomorphically non-
degenerateatp0 ∈ M if there is no germ atp0 of a non trivial holomorphic
vector field tangent toM (see Sect. 2 for more details). By a real algebraic
hypersurface inCN+1, we shall mean a real hypersurface contained in the
zero set of a non-zero real polynomial. One of the goals of this paper is to
give a new algebraic criterion of holomorphic nondegeneracy for all real
algebraic hypersurfaces. With such a criterion, we shall be able to give new
results about real analyticity of smooth CR mappings between real analytic
hypersurfaces of the same dimension. We introduce now the main results of
this paper.



190 N. Mir

Let (M,p0) be a germ of a real algebraic hypersurface inC
N+1. Let ρ

be a real analytic defining function forM nearp0 such thatρ(p0, p̄0) = 0
anddρ(p0, p̄0) 6= 0. According to [8] and [2], we can find holomorphic
local coordinates(z, w), a neighborhoodΩ of 0 in C

N+1 and a real analytic
functionϕ defined in a neighborhood of 0 inR2N+1 such thatp0 is sent to
0 and such that(M,p0) is given by

=mw = ϕ(<ew, z, z̄), (z, w) ∈ Ω (1)

with ϕ(0) = dϕ(0) = 0, ϕ(s, 0, z̄) = ϕ(s, z, 0) ≡ 0, wheres = <ew.
Such a choice of coordinates is callednormal. Using the implicit function
theorem and shrinkingΩ if necessary, equation (1) is then equivalent to:

w̄ = Q(z, w, z̄), (z, w) ∈ Ω (2)

whereQ = Q(z, w, ξ) is a holomorphic function defined in a neighborhood
of 0 in C

2N+1 such thatQ(0) = 0. Normality of coordinates also gives
Q(z, w, 0) = Q(0, w, ξ) = w.

Write Q(z, w, ξ) =
∑

β∈NN ρβ(z, w)ξβ, where the functionsρβ are
holomorphic in a neighborhood of 0 inCN+1. Such a decomposition was
introduced in [11], [10] and [5]. In the sequel, we will use the following
notations: byON+1, we denote the ring of germs at 0 inCN+1 of holo-
morphic functions; byAN+1, we denote the subring ofON+1 consisting
of those germs at 0 inCN+1 of holomorphic functions which are algebraic
over the field of rational functionsC(Z1, . . . , ZN+1) and byFN+1 we mean
the quotient field ofAN+1, which can be identified with the field of germs
at 0 inC

N+1 of meromorphic functions algebraic overC(Z1, . . . , ZN+1).
Furthermore, we shall putw = zN+1, but we will use both notations for
the same variable. To establish our first result, we will assume that(M,p0)
is algebraic. From this, we deduce that we can choose normal coordinates
(z, w) such thatQ is in A2n+1 [5]. As a consequence, the family(ρβ)β∈NN

is contained inAN+1. Let K(M) andK(M)
(
Z1, . . . , ZN+1

)
denote re-

spectively the smallest field contained inFN+1 containingC and the family
(ρβ)β∈NN , and the smallest field contained inFN+1 and containingK(M)
and the family(Z1, . . . , ZN+1). We thus have the following canonical field
extensions:

C ⊆ K(M) ⊆ K(M)
(
Z1, . . . , ZN+1

)
⊆ FN+1. (3)

To finish with these notations, defineδ(M,p0) by the formula:

δ(M,p0) = [K(M)
(
Z1, . . . , ZN+1

)
: K(M)]

= dimK(M)K(M)
(
Z1, . . . , ZN+1

)
.

With all this in mind, we have the following
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Theorem 1.1 Under the preceding notations, the following conditions are
equivalent:
i) (M,p0) is holomorphically nondegenerate;
ii) FN+1 is an algebraic extension overK(M);
iii) K(M)

(
Z1, . . . , ZN+1

)
is an algebraic extension overK(M);

iv) K(M)
(
Z1, . . . , ZN+1

)
is a finite extension overK(M) i.e.δ(M,p0) <

∞.

This new characterization will be useful to prove holomorphic extendability
of smooth CR mappings between some real analytic hypersurfaces inC

N+1.
In fact, we will consider CR mappings which arenot totally degeneratein the
sense of [4](see Sect. 2 for precise statements). We will prove the following

Theorem 1.2 Let (M,p0) and (M ′, p′
0) be two germs of real analytic hy-

persurfaces inCN+1,N ≥ 1. Suppose that(M ′, p′
0) is given locally by

=mw′ = p(z′, z̄′), (z′, w′) ∈ C
N+1 (4)

wherep is a real polynomial such thatp(0) = 0. LetH be a germ of aC∞
smooth CR mapping betweenM andM ′ which is not totally degenerate atp0
and such thatH(p0) = p′

0. If (M ′, p′
0) is holomorphically nondegenerate,

thenH extends holomorphically to a neighborhood ofp0.

Theorem 1.2 would be a consequence of a recent result of S. Baouendi, X.
Huang and L. Rothschild [1] ifM was furthermore assumed to be algebraic.
For an extensive survey about holomorphic extendability of CR mappings,
we refer the reader to the excellent paper of Forstneric [13]. In the case
whereH is assumed to be a CR diffeomorphism, we obtain the following
corollary:

Corollary 1 Let(M,p0) and(M ′, p′
0) be two germs of real analytic hyper-

surfaces inCN+1, N ≥ 1. Suppose that(M ′, p′
0) is given locally by (4).

If (M ′, p′
0) is holomorphically nondegenerate, then every germ of aC∞

smooth CR diffeomorphism betweenM andM ′ which sendsp0 to p′
0 is in

fact real analytic.

2 Notations and definitions

2.1 Essential finiteness and holomorphic nondegeneracy

In this section, we recall briefly some basic definitions about the geometric
concepts of essential finiteness and holomorphic nondegeneracy. For further
details, see [11], [2], [10] and [23] [24].
Let M be a real analytic hypersurface inCN+1 andp0 ∈ M . Let ρ be a
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real analytic defining function forM nearp0. For each pointv nearp0, we
define a complex hypersurface called theSegre varietyassociated tov by

Qv = {p ∈ U / ρ(p, v̄) = 0},
whereU is a small neighborhood ofp0 in C

N+1. These invariant complex
hypersurfaces appeared in different works concerning mapping problems
such as in [26], [11], [2], [10], to name a few.M is then calledessentially
finite at p0 (according to the terminology of [2]) if the mapv → Qv has
finite fibers nearp0. One can show that it suffices to check this last condition
only for the fiber concerningp0 ([11]). Moreover, ifM is given nearp0 by
(2), it is easily seen thatM is essentially finite atp0 if the ideal generated by
theρβ in ON+1 is of finite codimension [2] [3]. If this is so, we then define

esstypep0(M) = dimCON+1/
(
ρβ

)
.

This number is known to be an invariant ofM (see [3] or [11] for a more
geometric approach).
Now, recall that by a holomorphic vector field (defined in an open setΩ in
C

N+1), we mean a vector field of type(1, 0) with holomorphic coefficients
inΩ. An embedded real hypersurfaceM in C

N+1 is calledholomorphically
nondegenerateatp0 ∈ M if there is no germ atp0 of a nontrivial holomor-
phic vector field tangent to M. It is known that ifM is essentially finite at
p0 ∈ M , thenM is holomorphically nondegenerate at this point. Moreover,
if a connected real analytic hypersurface is holomorphically nondegenerate
at one point, it is holomorphically nondegenerate at each of its point and the
set of essentially finite points is open and dense inM . For more details, see
[23], [24], [5].

2.2 Totally degenerate CR mappings

In theorem 1.2, we will deal with not totally degenerate CR mappings in the
sense of [4]. We recall this nondegeneracy condition introduced by Baouendi
and Rothschild. Let(M,p0) and(M ′, p′

0) two germs of real analytic em-
bedded hypersurfaces inCN+1 andH aC∞ smooth CR mapping between
M andM ′ such thatH(p0) = p′

0. Suppose thatM (resp.M ′) is given in the
so-callednormalform =mw = ϕ(z, z̄,<ew) with ϕ(0) = dϕ(0) = 0 and
ϕ(z, 0,<ew) ≡ 0 (we add the prime forM ′). WriteH = (f1, . . . , fN , g)
in the(z′, w′) coordinates and consider(z, z̄, s) (s = <ew) as local coor-
dinates forM nearp0. For j = 1, . . . , N , letΣj(Z, Z̄, S) ∈ C[[Z, Z̄, S]]
the (formal) Taylor series associated tofj at 0. It is proved in [3] that there
exists a unique formal power seriesFj ∈ C[[Z1, . . . , ZN ,W ]] such that
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Σj(Z, Z̄, S) = Fj(Z, S + iϕ(Z, Z̄, S)) in C[[Z, Z̄, S]]. Then H istotally

degenerateat p0 if det
((

∂Fi
∂Zj

)
i,j=1,... ,N

)
(Z, 0) ≡ 0 in C[[Z]]. In [4], it

is proved that the last condition is independent of the choice of normal
coordinates.

3 Proof of Theorem 1.1

The proof of theorem 1.1 is based on the following proposition 1 whose proof
can be found in [5] (see remarks after lemma 4.5). It gives us a criterion
to know whether or not a real analytic hypersurface is holomorphically
nondegenerate.

Proposition 1 With the previous notations, the following conditions are
equivalent:
i) (M,p0) is holomorphically nondegenerate;

ii) there exists(β1, . . . , βN+1) ∈ (NN )N+1
such that

det
(
(
∂ρβi

∂zj
)i,j=1,... ,N+1

)
6≡ 0.

Before proving theorem 1.1, we need to recall some basic facts from field
theory which can be found in [20] [27] or [14]. We assume thatK and
k are two fields and thatK is a field extension ofk. A finite subsetS =
{s1, . . . , sp} (p ∈ N

∗) of K is calledalgebraically independent overk if
( P ∈ k[X1, . . . , Xp] and P (s1, . . . , sp) = 0 ⇒ P ≡ 0) is true. A subset
S of K is calledalgebraically independent overk if every finite subset of
S is algebraically independent in the preceding sense. A subsetS ⊆ K is
called atranscendence basis ofK/k if
i) S is algebraically independent overk
ii) K is an algebraic extension overk(S)(herek(S) denotes the smallest
field contained inK and containingk andS).

Proof of Theorem 1.1:

(iii) ⇒ (iv): SinceK(M)
(
Z1, . . . , ZN+1

)
is a finitely generated ex-

tension overK(M), if K(M)
(
Z1, . . . , ZN+1

)
is an algebraic extension

overK(M), then a standard result from field theory ([20] prop. 1.21 p.10)

asserts thatK(M)
(
Z1, . . . , ZN+1

)
is a finite extension overK(M), i.e.

dimK(M)K(M)
(
Z1, . . . , ZN+1

)
< ∞ (as aK(M)-vector space).

(iv) ⇒ (iii): In commutative algebra, it is well known that a finite extension
is algebraic ([20] lemma 1.19 p.9).
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It is clear that(ii) implies(iii). Let us show the converse. For this, it suffices
to note that from(iii), we know that all elements ofC(Z1, . . . , ZN+1) (con-
sidered as elements ofFN+1) are algebraic overK(M); since all elements
of FN+1 are algebraic overC(Z1, . . . , ZN+1), we deduce(ii) thanks to the
transitivity of the property of being algebraic ([27] p.61).
(i) ⇐⇒ (ii): According to [27] (p.99 corollary 2 and p.96 after definition
1), FN+1 is an algebraic extension overK(M) if and only if the family
(ρα)α∈NN contains a transcendence basis ofFN+1/C. Since all transcen-
dence basis have the same cardinal ([20] p.178 and [27] p.99) and since
(Z1, . . . , ZN+1) is a transcendence basis ofFN+1/C (recall that all el-
ements ofFN+1 are algebraic overC(Z1, . . . , ZN+1)), we obtain that
FN+1 is an algebraic extension overK(M) if and only if there exists

(α1, . . . , αN+1) ∈ (NN )N+1
with αi ∈ N

N for i = 1, . . . , N, such that
(ρα1 , . . . , ραN+1) is a transcendence basis ofFN+1/C. SinceC is of char-
acteristic zero, using corollary 23.16 p.216 and proposition 23.17 p.217 of
[20] (or theorem II p.134 of [14], volume 1), we obtain that the last assertion
is equivalent to the existence of aN +1-uple(α1, . . . , αN+1) ∈ (NN )N+1

such that:

det
(
(
∂ραi

∂Zj
)i,j=1,... ,N+1

)
(Z) 6≡ 0.

It suffices now to apply proposition 1 to obtain the desired result.

We conclude this section with some examples, but first of all we would
like to point out the fact that when(M,p0) is a germ of a holomorphically
nondegenerate real algebraic hypersurface,FN+1 is far away from being a
finite extension overK(M). In most of the following examples, the field
K(M) will be contained in the field of rational functions overC. The fact
thatFN+1 is not a finite extension overC(Z1, . . . , ZN+1) justifies the above
remark.

i) M := =mw = |z1|2k1 + |z1z2|2k2 , (z, w) ∈ C
3, ki ∈ N

∗, i = 1, 2.
Here, it is easy to seeM is not essentially finite at 0 in the sense of [2]
(see also [11] [10]). However, sinceP (z1) = 0 andQ(z2) = 0 where
P (T ) = T k1 − zk1

1 andQ(T ) = (zk1
1 )k2T k1k2 − ((z1z2)k2)k1 , according

to theorem 1.1,M is holomorphically nondegenerate at 0. Furthermore, to
obtain the numberδ(M, 0) previously defined, it suffices to use the following
algebraic formula ([27]) :

δ(M, 0) = [C(Z1, Z2) : C

(
Zk1

1 , (Z1Z2)k2
)
(Z1)]

×[C
(
Zk1

1 , (Z1Z2)k2
)
(Z1) : C(Zk1

1 , (Z1Z2)k2)],
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and the last number is for example given by the degree of the minimal
polynomial ofZ1 with coefficients inC(Zk1

1 , (Z1Z2)k2). We thus obtain
δ(M, 0) = k1k2.

ii) M := =mw = |z1|2 + |z2|2, (z1, z2, w) ∈ C
3. M is strictly pseu-

doconvex near 0 andesstype0(M) = δ(M, 0) = 1.

iii) M := =mw = |z1|4 + |z2|4 + (<ew)|z1|2, (z1, z2, w) ∈ C
3. In

normal form,M is also given by :̄w = w(1−i|z1|2)−2i(|z1|4+|z2|4)
1+i|z1|2 . It is clear

thatM is essentially finite at 0 (hence holomorphically nondegenerate at 0,
see [23]), but it can easily be shown thatesstype0(M) = 4 andδ(M, 0) = 2.

iv)M := =mw = (<ew)|z|6, (z, w) ∈ C
2. Here,esstype0(M) = ∞

sinceM is not of finite type in the sense of Kohn [15] (recall that the notions
of finite type in the sense of Kohn and essential finiteness are the same in
C

2). Nevertheless,M is also given byw̄ = w(1 + 2
∑∞

n=1(−i|z|6)n, and
consequentlyM is holomorphically nondegenerate at 0 andδ(M, 0) = 3.

v) An example of a rigid essentially finite algebraic hypersurface with
esstype0(M) 6= δ(M, 0).M := =mw = |z1|8+|z2|2+|z1z2|2, (z1, z2, w)
∈ C

3. One can check thatesstype0(M) = 4 whereasδ(M, 0) = 1.

vi) (the light cone [12]) LetM := (=mZ1)2+(=mZ2)2−(=mZ3)2 =
0 near the pointp0 = (0, i, i) in C

3. We can find local holomorphic coor-
dinates(z, w) such thatp0 is sent to 0 and such thatM is given nearp0

by w − w̄ = −2i +
(
(z1 − z̄1)2 + (z2 − z̄2 + 2i)2

) 1
2
([12]). Taking new

coordinates so thatM is in normal form, one can show thatM is given

by w̄ = Q(z, w, z̄) with Q(z, w, ξ) ∈ A5 andρ1(z, w) =
∂Q

∂ξ1
(z, w, 0) =

z1

(z12 + (z2 + 2i)2)
1
2

,ρ2(z, w)=Qξ2(z, w, 0)=−1+
z2 + 2i

(z12 + (z2 + 2i)2)
1
2

,

andρ21(z, w) = Qξ2ξ1(z, w, 0) =
z1(z2 + 2i)

(z12 + (z2 + 2i)2)
3
2

.

To see thatM is holomorphically nondegenerate atp0, it suffices to note the
fact that the following identitiesρ21Z1+(ρ1)2(1+ρ2) ≡ 0, ρ21Z2+2iρ21−
(ρ2 +1)2ρ1 ≡ 0 hold and then to apply theorem 1.1. The last equalities also
give the fact thatδ(M,p0) = 1.

4 Proof of Theorem 1.2

We first introduce some notations.
If M ′ is given locally by (4), it is easily seen that after a holomorphic
change of variables, one can assume thatM ′ is given by=mw1 = q(z1, z̄1)
whereq is a real polynomial with no pure terms. Thus, we can suppose
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that in equation (4),p is a real polynomial with no pluriharmonic terms.
We can then writep(z′, z̄′) =

∑
1≤|α|≤r aα(z′)z̄′α, wherer ∈ N

∗, aα is a
holomorphic polynomial andaα(0) = 0, for everyα such that1 ≤ |α| ≤ r.
Now, combining theorem 1.1 and the normal form ofM ′, it is easy to see that
M ′ is holomorphically nondegenerate at 0 if and only if the field of rational
functions overC is a finite algebraic extension overK(M ′), whereK(M ′)
denotes the smallest field contained inC(Z1, . . . , ZN ) and containingC
and the family(aα)1≤|α|≤r. We now turn to the proof of theorem 1.2. Let
H be a germ of aC∞ smooth CR mapping which is not totally degenerate
atp0. WriteH = (f, g) = (f1, . . . , fN , g) in the(z′, w′) coordinates. The
componentg is called the transversal component ofH. To prove theorem 1.2,
we will first prove that the functionsg andaα(f) extend holomorphically
to a neighborhood ofp0. We will then use the algebraic criterion obtained
in theorem 1.1 to obtain the desired result. Note that a similar procedure has
been used by M. Derridj in [9].

Proposition 2 With the previous notations and hypothesis, the functionsg
andaα(f) for 1 ≤ |α| ≤ r extend holomorphically to a (common) neigh-
borhood ofp0 in C

N+1.

We will suppose that(M,p0) is given by the real analytic parameterization
(1), and we will use(z, z̄, s) (s = <ew) as local coordinates. SinceH(M) ⊆
M ′, there exists a neighborhoodO sufficiently small ofp0 in M such that
the following identity holds onO :

ḡ − g = −2i
∑

1≤|α|≤r

aα(f)f̄α (5)

Let ψ be the entire function defined byψ(z, ξ) = 2i
∑

1≤|α|≤r aα(z)ξα,

(z, ξ) ∈ C
2N . Define also the following basis of CR vector fields forM

nearp0:

L̄j =
∂

∂z̄j
− 2i

ϕz̄j

1 + iϕs

∂

∂w̄
j = 1, . . . , N.

Put d = det((L̄j f̄k)j,k=1,... ,N ) and L̄β = L̄β1
1 , . . . , L̄

βN
N for each multi-

indexβ = (β1, . . . , βN ) ∈ N
N . To prove proposition 2, we will need the

following two lemmas. The first one can be found in [3].

Lemma 1 There exists a family(Rα)1≤|α|≤r of holomorphic polynomials
such that :
i) Rα ∈ C[T1, . . . , Tr(α)] wherer(α) = m(α)N + m(α) andm(α) is
defined bycard{β, 1 ≤ |β| ≤ |α|}
ii) The following identity holds onO:

d2|α|−1ψξα(f, f̄) = Rα

(
(L̄β f̄)1≤|β|≤|α|, (L̄β ḡ)1≤|β|≤|α|

)
.
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Lemma 2 There exists a neighborhoodO′ of p0 in M , a family of pos-
itive integers(nα)1≤|α|≤r and two families of holomorphic polynomials
(Sα)1≤|α|≤r and(Wα)1≤|α|≤r such that:
i) ∀α Sα ∈ C[T1, . . . , TN+Nq(α)+q(α)], whereq(α) = card{β, 1 ≤ |β| ≤
n(α)};
ii) ∀α Wα ∈ C[T1, . . . , TNq(α)];

iii) ∀α Wα

(
(L̄β f̄)1≤|β|≤n(α)

)
does not vanish onO′;

iv) aα(f) =
Sα

(
(L̄β f̄)0≤|β|≤n(α),(L̄β ḡ)1≤|β|≤n(α)

)

Wα

(
(L̄β f̄)1≤|β|≤n(α)

) on O′.

Proof of Lemma 2:In fact, we will show(iv) in a neighborhoodO′
α; it will

then suffices to take forO′ the neighborhood∩1≤|α|≤rO
′
α. We show this

lemma by induction and we begin with|α| = r. Forα such that|α| = r,
according to lemma 1 and sinceψξα(f, f̄) = 2i α! aα(f), we have onO :

2i d2r−1α! aα(f) = Rα

(
(L̄β f̄)1≤|β|≤r, (L̄

β ḡ)1≤|β|≤r

)
. (6)

Since the mapH is not totally degenerate atp0, according to lemmas 3.18
and 3.19 of [3], there exists a multi-indexγ such thatL̄γ(d)(p0) 6= 0.
Consequently, there exists a multi-indexγ′ such that̄Lγ′

(d2r−1)(p0) 6= 0.
Let O′

r = O′
|α| be a neighborhood ofp0 in M such thatL̄γ′

(d2r−1)(p) 6=
0, ∀p ∈ O′

r. So, for|α| = r , takingn(α) large enough and putting

Sα

(
(L̄β f̄)0≤|β|≤n(α), (L̄

β ḡ)1≤|β|≤n(α)

)
=

L̄γ′
(
Rα

(
(L̄β f̄)1≤|β|≤r, (L̄

β ḡ)1≤|β|≤r

))

Wα

(
(L̄β f̄)1≤|β|≤n(α)

)
= 2i α! L̄γ′

(d2r−1),

we obtain the desired result. Suppose the result established forp + 1 ≤
|γ| ≤ r, with 1 ≤ p ≤ r − 1. Letα such that|α| = p. Using lemma 1 for
α, we get onO

d2|α|−1ψξα(f, f̄) = Rα

(
(L̄β f̄)1≤|β|≤|α|, (L̄β ḡ)1≤|β|≤|α|

)
.

But we haveψξα(f, f̄) = 2i α! aα(f) +Cα

(
(aβ)p+1≤|β|≤r, f̄

)
, whereCα

is a holomorphic polynomial. We thus obtain onO:

d2|α|−12i α! aα(f) = Rα

(
(L̄β f̄)1≤|β|≤|α|, (L̄β ḡ)1≤|β|≤|α|

)

−d2|α|−1 Cα

(
(aβ(f))p+1≤|β|≤r, f̄

)
(7)
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We use the same procedure as the one used just before. Letγ be a multi-index
such that̄Lγ(d2|α|+1)(p0) 6= 0. Applying L̄γ to equation (7) and using the
induction hypothesis, we then have on the neighborhoodU = ∩r

|β|=p+1O
′
β :

L̄γ(d2|α|−1) 2i α! aα(f) = L̄γ

(
Rα

(
(L̄β f̄)1≤|β|≤|α|, (L̄β ḡ)1≤|β|≤|α|

))

−L̄γ
(
d2|α|−1Cα(u, f̄)

)
(8)

whereu =
(

Sβ

(
(L̄δ f̄)0≤|δ|≤n(β),(L̄δ ḡ)1≤|δ|≤n(β)

)

Wβ

(
(L̄δ f̄)1≤|δ|≤n(β)

)
)

p+1≤|β|≤r

.

It becomes now clear that takingn(α) large enough and a neighborhood of
p0 O

′
α ⊆ U such thatL̄γ(d2|α|−1)(p) 6= 0 for p ∈ O′

α, aα(f) will satisfy
(iv) with all the properties(i),(ii) and(iii).

Proof of Proposition 2:Since (M ′, p′
0) is holomorphically nondegener-

ate,M ′ is of finite type in the sense of Kohn ([15]) and Bloom-Graham
([6]). Indeed, if it was not the case, we would havep(z′, z̄′) ≡ 0 and
then clearlyM ′ := =mw′ = 0 would be holomorphically degenerate
at 0. Consequently,M ′ is of finite type atp′

0 andH is not totally degen-
erate. We then use proposition 3.28 of [4], to assert thatM is of finite
type (in the sense of Bloom-Graham) atp0. Recall that this last property
is equivalent to the non existence of a germ of a complex hypersurface in-
cluded inM throughp0, sinceM is real analytic([6]). Now, we can apply
Trépreau’s theorem [25] toH which is C∞ on M . Consequently, there
exists a neighborhoodΩ of 0 in C

N+1 such thatΩ ∩ M ⊆ O ∩ O′ and
such that if we putΩ− = { (z, w) ∈ Ω / =mw < ϕ(<ew, z, z̄) } and
Ω̄− = { (z, w) ∈ Ω / =mw ≤ ϕ(<ew, z, z̄) }, the following holds:
there exists a mapH = (F1, . . . ,FN ,G) holomorphic onΩ−, C∞(Ω̄−)
such thatH = H = (f, g) onM ∩Ω. Note that the side of extension ofH
has no importance in the sequel of the proof. Now, it follows easily from part
iv) of lemma 2 and the original Lewy-Pinchuk reflection principle (involv-
ing the real analyticity ofM and Morera’s theorem, see [22] [16] [21] for
more details) thataα(f) extends holomorphically to a neighborhood ofp0,
for everyα such that1 ≤ |α| ≤ r. Replacing in equation (5) the functions
aα(f) by their values given by lemma 2, a similar procedure such as the
one done just before gives the holomorphic extendability of the transversal
componentg nearp0, which is equivalent to its real analyticity (see [7]).

We now turn to the end of the proof of theorem 1.2. For this, we will
need the following lemma, whose proof can be found in [1] and which is a
consequence of a theorem of Malgrange.



Holomorphic nondegeneracy for real algebraic hypersurfaces 199

Lemma 3 LetG = G(z, w) be a holomorphic function defined in a neigh-
borhood of 0 inC

p+1 (p ∈ N) such thatG 6≡ 0. If f is a C∞ smooth
function in a neighborhood of 0 inRp and satisfies the following identity in
a neighborhood of 0 inRp

G(x, f(x)) ≡ 0,

then f is real analytic near 0.

End of the proof of Theorem 1.2:SinceM ′ is holomorphically nondegener-
ate atp′

0, according to part(ii) of theorem 1.1 and the remarks beginning this
section, the fact that the field of rational functions is an algebraic extension
overK(M) is equivalent to the following fact:
For every i = 1, . . . , N, there exists positive integerski and two

families of holomorphic polynomials
(
(Aq

i )q=0,... ,ki−1

)
i=1,... ,N

and(
(Bq

i )q=0,... ,ki−1

)
i=1,... ,N

, elements of C[T1, . . . , Tm] where m =

card{α, 1 ≤ |α| ≤ r} such that :

i) Bq
i

(
(aα(Z))1≤|α|≤r

)
6≡ 0,

ii) Zki +
∑ki−1

j=0

Aj
i

(
(aα(Z))1≤|α|≤r

)

Bj
i

(
(aα(Z))1≤|α|≤r

)Zj
i ≡ 0, ∀i = 1, . . . , N.

Consequently, there exists holomorphic polynomialsP j
i ∈ C[T1, . . . , Tm]

with0 ≤ j ≤ ki, i = 1, . . . , N such that
∑ki

j=0 P
j
i

((
(aα)1≤|α|≤r

)
(Z)

)
Zj

i

≡ 0, with P ki
i

(
(aα)|α|≤r)(Z)

)
6≡ 0 for all i = 1, . . . , N . Considering

(z, z̄, s) (s = <ew) as local coordinates forM , we obtain

ki∑
j=0

P j
i

((
aα(f)(z, z̄, s)

)
1≤|α|≤r

)
f j

i (z, z̄, s) = 0,

in a suitable neighborhood∆ of 0 in R
2N+1 (neighborhood where the func-

tionsaα(f) are real analytic for every1 ≤ |α| ≤ r). DefineΘα = aα(f).
ThenΘα is real analytic in∆; we complexifyΘα to obtain a holomorphic
function defined in a neighborhood of 0 inC2N+1, which will be still de-
noted byΘα. For(τ, σ) in a small neighborhood of 0 inC2N+1 × C, define
the following holomorphic functions:

Gi(τ, σ) =
ki∑

j=0

P j
i

((
Θα(τ)

)
1≤|α|≤r

)
σj , for i = 1, . . . , N.
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To prove thatfi for i = 1, . . . , N is real analytic it suffices to show, ac-
cording to lemma 3, the following conditions:Gi 6≡ 0 for all i = 1, . . . , N .
Suppose that there existsi0 such thatGi0 ≡ 0. We then would have

P
ki0
i0

((
aα(f)

)
1≤|α|≤r

)
≡ 0,

in a neighborhood ofp0 inM . The last equality is also equivalent toQi0(f) ≡
0, whereQi0 is a holomorphic polynomial not identically zero accord-
ing to our hypothesis. Consequently, ifΣ(Z, Z̄, S) = (Σ1(Z, Z̄, S), . . . ,
ΣN (Z, Z̄, S)) denotes the formal power series at 0 associated tof =
(f1, . . . , fN ), we would obtainQi0(Σ(Z, Z̄, S)) ≡ 0 in C[[Z, Z̄, S]].
But if Fj(Z,W ) ∈ C[[Z,W ]] denotes the unique formal power series asso-

ciated toΣj(Z, Z̄, S) such thatFj

(
Z, S+ iϕ(Z, Z̄, S)

)
= Σj(Z, Z̄, S) in

C[[Z, Z̄, S]], the last equation would lead toQi0

(
F (Z, S+iϕ(Z, Z̄, S)

)
≡

0. Replacing 0 toS andZ̄, we then would get

Qi0

(
F (Z, 0)

)
≡ 0,

which contradicts the fact thatH is not totally degenerate according to
[4](p.491). Thus,H = (f, g) is real analytic nearp0.

Remarks:1. After having announced our results, Joël Merker and Francine
Meylan in [17] gave independently a proof of theorem 1.2.
2. It is worth noticing that the proof of theorem 1.2 can give also the fol-
lowing result. If one assumes in the statement of theorem 1.2 thatM ′ is of
finite type in the sense of Kohn and Bloom-Graham atp′

0 (i.e. p not pluri-
harmonic) instead of the assumption of holomorphic nondegeneracy, then a
similar procedure as the one done for the proof of theorem 1.2 gives the fol-
lowing: for every polynomialQwhich is algebraic overK(M ′), there exists
a neighborhood ofp0 such thatQ(f) extends holomorphically to this neigh-
borhood. Note that this is much more than the extendability of the so-called
reflection function ([3] [17]), as shown by the following example inC

5. If
M ′ := =mw′ =

∑3
j=1 |∏j

i z
′
i|2kj , kj ∈ N

∗, (z′
1, z

′
2, z

′
3, z

′
4, w

′) ∈ C
5, then

the reflection function gives the extendability offk1
1 , (f1f2)k2 , (f1f2f3)k3

and the normal componentg whereas our method gives the extendability
of f1, f2, f3 andg. Note that here we do not have any information for the
componentf4.
3. The results of the paper were announced in the note [18]. Theorem 1.1 has
a obvious generalization to any algebraic generic Cauchy-Riemann mani-
fold. Moreover, a reflection principle such that theorem 1.2 also holds for
such manifolds. For further details, see [19].
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hypersurface ŕeelle de classeC2 dans Cn. Invent. Math., 83:583–592, 1986

26. S.M. Webster. On the mapping problem for algebraic real hypersurfaces. Invent. Math.,
43:53–68, 1977

27. O. Zariski, P. Samuel. Commutative algebra, volume 1. Van Nostrand, 1958


