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Abstract
We prove the first general finite jet determination result
in positive codimension for CR maps from real-analytic
minimal submanifolds 𝑀 ⊂ ℂ𝑁 into Nash (real) sub-
manifolds 𝑀′ ⊂ ℂ𝑁

′ . For a sheaf  of ∞-smooth CR
maps from 𝑀 into 𝑀′, we show that the non-existence
of so-called 2-approximate CR -deformations from 𝑀

into 𝑀′ implies the following strong finite jet deter-
mination property: There exists a map 𝓁∶ 𝑀 → ℤ+,
bounded on compact subsets of 𝑀, such that for
every point 𝑝 ∈ 𝑀, whenever 𝑓, g are two elements
of 𝑝 with 𝑗𝓁(𝑝)𝑝 𝑓 = 𝑗

𝓁(𝑝)
𝑝 g , then 𝑓 = g . Applying the

deformation point of view allows a unified treatment
of a number of classes of target manifolds, which
includes, among others, strictly pseudoconvex, Levi–
non-degenerate, but also some particularly important
Levi-degenerate targets, such as boundaries of classical
domains.
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1 INTRODUCTION

If one considers a germ of a holomorphic map 𝐻∶ (ℂ𝑁, 0) → ℂ𝑁
′ , then one can of course think

about it as being given by an 𝑁′-tuple of power series𝐻(𝑍) = (𝐻1(𝑍), … ,𝐻𝑁′(𝑍)) ∈ ℂ{𝑍}𝑁′ . The
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coefficients of those power series are completely free (besides the fact that their moduli are only
allowed to increase at most geometrically). If one looks at holomorphic maps sending real sub-
manifolds into one another, the simplest possible example 𝑁 = 𝑁′ = 1, and ℝ ⊂ ℂ, does not put
too many restrictions on the coefficients of any map 𝐻(𝑧) =

∑
𝑗 𝐻𝑗𝑧

𝑗 sending the real line into
itself either: There exists a neighbourhood 𝑈 ⊂ ℂ of the origin such that 𝐻(𝑈 ∩ ℝ) ⊂ ℝ if (and
only if)𝐻𝑗 = 𝐻𝑗 , for all 𝑗. However, as a consequence of Cartan’s work in [8, 9] if𝑁 = 𝑁′ = 2, and
one considers the submanifold𝑀 to be a piece of the unit sphere (or more generally, any strictly
pseudoconvex hypersurface), then the derivatives of order 2 at any fixed point 𝑝 ∈ 𝑀 of any local
biholomorphism𝐻 sending𝑀 into itself, uniquely determine𝐻. This is, historically speaking, the
first example of finite jet determination for holomorphicmaps between real submanifolds𝑀 ⊂ ℂ𝑁

and𝑀′ ⊂ ℂ𝑁
′ . Ourmain focus in this paper is the positive codimensional case𝑁′ > 𝑁; in order to

formulate and put our results in perspective, let us first recall some standard notation to be used
throughout the paper.
Given real-analytic submanifolds 𝑀 ⊂ ℂ𝑁 and 𝑀′ ⊂ ℂ𝑁

′ , with 𝑁,𝑁′ ⩾ 2, we denote by
∞
CR
(𝑀,𝑀′) and𝜔

CR
(𝑀,𝑀′) the sheaf of germs of ∞-smooth and real-analytic CR maps from

𝑀 into 𝑀′. Given a subsheaf  ⊂ ∞
CR
(𝑀,𝑀′), we say that ( ,𝑀,𝑀′) has the strong finite jet

determination property if for every compact 𝐾 ⊂ 𝑀, there exists an 𝓁 = 𝓁(𝐾) such that the 𝓁-jet
mapping 𝑗𝓁𝑝 is injective on 𝑝, for all 𝑝 ∈ 𝐾 (see, for example, [15] for the standard notion of 𝓁-jet
map.)
There is an abundant literature on the finite jet determination property in the setting 𝑁 = 𝑁′;

we refer the reader to Juhlin’s paper [18] and the references therein for real-analytic CR submani-
folds, where the problem is by now pretty well understood. For smooth CRmanifolds, an account
of recent progress can be found in Bertrand’s paper [7]. In contrast, for mappings of positive
codimension 𝑁′ − 𝑁 > 0, not much is known so far about the (strong) finite jet determination
property. This is mostly due to the fact there are a number of challenges that need to be overcome
compared to the equidimensional case, such as the unavailability of the jet parametrization
technique or the existence of several ‘degeneracy classes’ for CR maps. Quite restrictive results
were obtained in [12, 19] and it is only very recently that a way around this problem has been
found for the model case of sphere targets in [27]. We refer the reader to this paper for a
thorough discussion.
Sphere targets are interesting because they are in some sense the ‘flat’ model manifolds for

CR geometry of strictly pseudoconvex hypersurfaces. However, most (even strictly pseudoconvex)
manifolds cannot be embedded into spheres; for those, one needs more general target models. In
the present paper, we provide the first general finite jet determination result in positive codimen-
sion forCRmaps from real-analyticminimal submanifolds𝑀 ⊂ ℂ𝑁 intoNash (real) submanifolds
𝑀′ ⊂ ℂ𝑁

′ , that is, semi-algebraic real-analytic submanifolds (see [1]). This is done by considering,
for every subsheaf  ⊂ ∞

CR
(𝑀,𝑀′), what we call 2-approximate CR -deformations, introduced

properly in Definition 3.1. These objects are closely related to deformations recently appearing in
the study of regularity properties of CRmaps [20–23, 26]. Applying the deformation point of view
to the jet determination problem allows a unified treatment of a number of classes of target man-
ifolds, which includes, among others, strictly pseudoconvex, Levi–non-degenerate, but also some
particularly important Levi-degenerate targets, such as boundaries of classical domains. Ourmain
result can be stated as follows:

Theorem 1.1. Let𝑀 ⊂ ℂ𝑁 be a real-analytic CR submanifold,𝑀′ ⊂ ℂ𝑁
′ a Nash submanifold and

 a subsheaf of ∞
CR
(𝑀,𝑀′). Assume that𝑀 is minimal and there is no germ of a 2-approximate
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CR -deformation from 𝑀 into 𝑀′. Then (𝑀,𝑀′,) satisfies the strong finite jet determination
property.

Recall that 𝑀 is minimal if each of its connected component �̂� does not contain any proper
CR submanifold with the same CR dimension as that of �̂� (see [3]). Hence, in the setting of
Theorem 1.1, the finite jet determination problem reduces to checking the non-existence of 2-
approximate CR -deformations from𝑀 into𝑀′. In order to illustrate the wide range of applica-
tions of this approach, we now provide examples of subsheaves  and submanifolds 𝑀, 𝑀′ sat-
isfying the conditions of Theorem 1.1. The first important situation is when𝑀′ is CR and strictly
pseudoconvex (that is, locally contained in a strictly pseudoconvex hypersurface), a case in which
 is allowed to be the full sheaf∞

CR
(𝑀,𝑀′):

Corollary 1.2. Let 𝑀 ⊂ ℂ𝑁 be a real-analytic minimal CR submanifold and 𝑀′ ⊂ ℂ𝑁
′ a strictly

pseudoconvex Nash CR submanifold. Then (𝑀,𝑀′,∞
CR
(𝑀,𝑀′)) satisfies the strong finite jet deter-

mination property.

In particular, if the source is a compact real-analytic hypersurface, then, by [3, 11], the assump-
tions of Corollary 1.2 are satisfied, and the integer-valued map 𝓁 can be chosen to be constant
on𝑀.

Corollary 1.3. For every compact real-analytic hypersurface 𝑀 ⊂ ℂ𝑁 and every strictly pseu-
doconvex Nash real hypersurface 𝑀′ ⊂ ℂ𝑁

′ , there exists an integer 𝓁 = 𝓁(𝑀,𝑀′) such that if
𝑓, g ∶ (𝑀, 𝑝) → 𝑀′ are two germs of ∞-smooth CR maps at some point 𝑝 ∈ 𝑀 with 𝑗𝓁𝑝𝑓 = 𝑗

𝓁
𝑝g ,

it follows that 𝑓 = g .

Corollary 1.3 can be applied to prove the following boundary uniqueness result for proper holo-
morphic maps.

Corollary 1.4. Let Ω ⊂ ℂ𝑁 be a bounded domain with smooth real-analytic boundary and Ω′ ⊂
ℂ𝑁

′ a strictly pseudoconvex domain with smooth Nash boundary. Then there exists an integer 𝓁,
depending only on 𝜕Ω and 𝜕Ω′, such that if 𝐹,𝐺∶ Ω → Ω′ are two proper holomorphic mappings
extending smoothly up to the boundary near some point 𝑝 ∈ 𝜕Ω with 𝑗𝓁𝑝𝐹 = 𝑗

𝓁
𝑝𝐺, it follows that

𝐹 = 𝐺.

If one allows complex curves inside the target manifold, the finite jet determination property
clearly fails to hold for the full sheaf ∞

CR
(𝑀,𝑀′). Hence, for the next results, we will need to

restrict the sheaf  of maps under consideration, albeit in a ‘natural’ way: The assumptions are
going to be designed to exclude classes of maps which need to be excluded because the targets will
be allowed to contain complex subvarieties.
The first examples of this are Levi–non-degenerate hypersurfaces for sources and targets. In

particular, this includes hyperquadrics (of possibly positive signature) as targets. Also these are
‘flat’ manifolds from the CR geometry point of view, and have the distinct advantage that every
algebraic CR manifold actually allows for an embedding into a hyperquadric [28] (but not nec-
essarily into a sphere, as already pointed out above). Let us recall that for a real-analytic (con-
nected) Levi–non-degenerate hypersurface𝑀 ⊂ ℂ𝑁 (and similarly for𝑀′ ⊂ ℂ𝑁

′), the minimum
of the numbers of the positive and negative eigenvalues of its Levi form is the same at each point
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and is called the signature of𝑀. For such𝑀 and𝑀′ and for 𝑝 ∈ 𝑀, a CRmap𝐻∶ (ℂ𝑁, 𝑝) → ℂ𝑁
′

sending𝑀 into𝑀′ is called CR transversal (at 𝑝) if

𝑇1,0
𝐻(𝑝)

𝑀′ + 𝑑𝐻(𝑇1,0𝑝 (ℂ
𝑁)) = 𝑇1,0

𝐻(𝑝)
ℂ𝑁

′
.

The signature difference plays a crucial role in understanding the finite jet determination prop-
erty of CR transversal maps between Levi–non-degenerate hypersurfaces; this is already observed
in the simple case of mappings between hyperquadrics. If one tries to map

ℂ𝑁𝑧,𝑤 ⊃ ℍ
𝑁
𝓁 ∶ Im 𝑤 =

𝓁∑
𝑗=1

|𝑧𝑗|2 − 𝑁−1∑
𝑗=𝓁+1

|𝑧𝑗|2
into ℍ𝑁+2𝓁+1 , then, for any germ of a holomorphic function 𝜑, the map (𝑧, 𝑤) ↦

(𝜑(𝑧, 𝑤), 𝑧, 𝜑(𝑧, 𝑤), 𝑤) is a CR transversal immersion, but clearly those maps are not deter-
mined by any finite jet (at the origin). As an application of Theorem 1.1, we obtain the following
result that is optimal in terms of the signatures:

Corollary 1.5. Let 𝑀 ⊂ ℂ𝑁 be a real-analytic Levi–non-degenerate hypersurface of signature 𝓁
and𝑀′ ⊂ ℂ𝑁

′ be a Nash Levi–non-degenerate hypersurface of signature 𝓁′, both connected. Let 
denote the subsheaf of ∞

CR
(𝑀,𝑀′) consisting of CR transversal maps. If the signature difference

𝓁′ − 𝓁 ∈ {0,𝑁′ − 𝑁}, then (𝑀,𝑀′,) satisfies the strong finite jet determination property.

One further important class of targets we are considering are weakly pseudoconvex hypersur-
faces. We start with the following consequence of Theorem 1.1.

Corollary 1.6. Let 𝑀 ⊂ ℂ𝑁 be a real-analytic minimal CR submanifold and let 𝑀′ ⊂ ℂ𝑁
′ be a

weakly pseudoconvex Nash hypersurface. Let  be the subsheaf of∞
CR
(𝑀,𝑀′) consisting of the ∞-

smooth CR maps mapping no open subset of𝑀 into the Levi-degenerate set of𝑀′. Then (𝑀,𝑀′,)

satisfies the strong finite jet determination property.

For targets that are everywhere Levi-degenerate, such as homogeneous Levi-degenerate CRman-
ifolds, Corollary 1.6 does not lead to any conclusion, while Theorem 1.1 happens to provide some
of its most interesting applications in this setting. Such class of target manifolds carry a foliation
by complex manifolds 𝜂, called the Levi-foliation, and the natural homogeneous models are the
boundaries of bounded symmetric domains, see, for example, [29]. Our applications of Theorem 1.1
in this context utilize an invariant called 𝜈, associated to 𝑀′, which was introduced in [16] and
which we are going to discuss in Section 5; this section also includes further results for every-
where Levi-degenerate targets. We shall only mention below one consequence of such results for
boundaries of classical domains.
Irreducible bounded symmetric domains are classified in four series, called the classical

domains of types I–IV, as well as two exceptional cases, according to Cartan’s classification [10] ;
we recall that the type I domain 𝐷𝑚,𝑛

𝐼
consists of the𝑚 × 𝑛matrices𝑀 satisfying that 𝐼 − 𝑀∗𝑀 is

positive definite, type II and III domains, 𝐷𝑚
𝐼𝐼
and 𝐷𝑚

𝐼𝐼𝐼
, are anti-symmetric and symmetric𝑚 ×𝑚

matrices satisfying the same condition, and that the type IV domains,𝐷𝑚
𝐼𝑉
, are (biholomorphically

equivalent to) the tube over the light cone. We will denote the regular parts of their boundaries,
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respectively, by𝑀𝑚,𝑛
𝐼

,𝑀𝑚
𝐼𝐼
,𝑀𝑚

𝐼𝐼𝐼
and𝑀𝑚

𝐼𝑉
, see Section 5 for more details. Applying Theorem 1.1 to

such targets yields the following:

Corollary 1.7. Let𝑀 ⊂ ℂ𝑁 be a connected real-analytic, pseudoconvex,minimal hypersurface, with
generically 𝑛+ positive Levi eigenvalues. Let 𝑀′ be the regular part of the boundary of a classical
domain and denote by  the subsheaf of ∞

CR
(𝑀,𝑀′) of generically CR transversal maps. Then

(𝑀,𝑀′,) has the strong finite jet determination property if

i) 𝑀′ = 𝑀𝑚,𝑛
𝐼

,𝑚, 𝑛 ⩾ 2, and𝑚 + 𝑛 − 4 < 𝑛+ ⩽ 𝑚 + 𝑛 − 2;
ii) 𝑀′ = 𝑀𝑚

𝐼𝐼
,𝑚 ⩾ 4, and 2𝑚 − 8 < 𝑛+ ⩽ 2𝑚 − 4;

iii) 𝑀′ = 𝑀𝑚
𝐼𝐼𝐼
,𝑚 ⩾ 2, and 𝑛+ = 𝑚 − 1;

iv) 𝑀′ = 𝑀𝑚
𝐼𝑉
,𝑚 ⩾ 𝑁.

Wemention the following noteworthy application of Corollary 1.7 to proper holomorphic map-
pings.

Corollary 1.8. Let Ω ⊂ ℂ𝑁 be a pseudoconvex domain, and𝑀 ⊂ 𝜕Ω be a connected real-analytic
minimal hypersurface of ℂ𝑁 , with generically 𝑛+ positive Levi eigenvalues. Let Ω′ be one of the four
types of classical domains 𝐷𝑚,𝑛

𝐼
, 𝐷𝑚

𝐼𝐼
, 𝐷𝑚

𝐼𝐼𝐼
, 𝐷𝑚

𝐼𝑉
satisfying:

i) ifΩ′ = 𝐷𝑚,𝑛
𝐼

,𝑚, 𝑛 ⩾ 2, and𝑚 + 𝑛 − 4 < 𝑛+ ⩽ 𝑚 + 𝑛 − 2;
ii) ifΩ′ = 𝐷𝑚

𝐼𝐼
,𝑚 ⩾ 4, and 2𝑚 − 8 < 𝑛+ ⩽ 2𝑚 − 4;

iii) ifΩ′ = 𝐷𝑚
𝐼𝐼𝐼
,𝑚 ⩾ 2, and 𝑛+ = 𝑚 − 1;

iv) ifΩ′ = 𝐷𝑚
𝐼𝑉
,𝑚 ⩾ 𝑁.

There exists a locally boundedmap 𝓁∶ 𝑀 → ℤ+, such that given two proper holomorphic mappings
𝐻,𝐺∶ Ω → Ω′, extending smoothly up to some point 𝑝 ∈ 𝑀 with𝐻(𝑝) in the regular part of 𝜕Ω′, if
𝑗
𝓁(𝑝)
𝑝 𝐻 = 𝑗

𝓁(𝑝)
𝑝 𝐺, then it follows that𝐻 = 𝐺.

Corollary 1.8 follows immediately from Corollary 1.7 and the well-known fact that boundary
values of proper holomorphic maps in that setting are automatically CR transversal maps (see [3,
Proposition 9.10.5] or [16]).
It is interesting to note that the range of dimensions given in Corollary 1.7 is also sharp in

order for the finite jet determination property to hold; examples are given and discussed in
Section 5.
The paper is organized as follows. First, in Section 2, we discuss, for any real-analytic generic

minimal submanifold𝑀 ⊂ ℂ𝑁 , and any subsheaf  ⊂ 𝜔
CR
(𝑀,ℂ𝑁

′
), a universal parametrization

property we call property (*) and show how it implies the strong finite jet determination property
(for the sheaf ). In Section 3, we deal with the second independent part of the proof of Theo-
rem 1.1. It boils down to showing that, for any real-analytic generic submanifold 𝑀 ⊂ ℂ𝑁 (not
necessarily minimal), and any Nash submanifold𝑀′ ⊂ ℂ𝑁

′ and any subsheaf  ⊂ 𝜔
CR
(𝑀,𝑀′),

the non-existence of 2-approximate CR -deformations implies that property (*) holds. In Sec-
tions 4 and 5, we finalize the proofs of Theorem 1.1 as well as of all its corollaries, by showing how
each different geometric setting discussed in those results systematically exclude the existence of
2-approximate deformations. In Section 5, we focus on discussing how our results may be applied
for targets that are everywhere Levi-degenerate real hypersurfaces, and highlight the specific case
of boundaries of classical domains. The proof of property (*) heavily relies on some universality
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properties of polynomial relations satisfied by power series which we include at the end of the
paper in Section 6.

2 UNIVERSAL ALGEBRAIC PARAMETRIZATION ANDUNIQUE
JET DETERMINATION

In this section, we prove that if a given sheaf of maps from a real-analytic generic submanifold
𝑀 ⊂ ℂ𝑁 into ℂ𝑁′ satisfy a certain universal algebraic parametrization property, then such a sheaf
of maps must satisfy the strong finite jet determination property (Theorem 2.2). This is one of the
main two steps of the proof of Theorem 1.1. The key guideline in the proof of this result is to keep
track of the universal algebraic equations satisfied by the sheaf of maps on the so-called iterated
complexifications of 𝑀. This is achieved by combining the use of the iterated Segre mappings
technique introduced in [2] following the strategy developed in [27] (in the sphere case), and
several universal properties of polynomial equations satisfied by power series, proved at the end
of the paper in Section 6.

2.1 Iterated complexifications

Let𝑀 ⊂ ℂ𝑁 be a real-analytic generic submanifold, of CR dimension 𝑛 and codimension 𝑑, with
𝑝0 ∈ 𝑀. Shrinking𝑀 near 𝑝0 if necessary, we may choose some polydisc neighbourhood𝑈 of 𝑝0,
and a real-valued real-analytic map 𝑟 = (𝑟1, … , 𝑟𝑑) defined on 𝑈 such that𝑀 is given by

𝑀 = {𝑍 ∈ 𝑈 ∶ 𝑟(𝑍, �̄�) = 0}, (2.1)

with 𝜕𝑟1 ∧ …𝜕𝑟𝑑 ≠ 0 on 𝑈. Define the complexification of𝑀 by

 ∶= {(𝑍, 𝜁) ∈ 𝑈 × 𝑈∗ ∶ 𝑟(𝑍, 𝜁) = 0},

where

𝑈∗ = {𝑍∶ �̄� ∈ 𝑈},

which (for small enough 𝑈) is a complex submanifold of complex dimension 2𝑛 + 𝑑 of 𝑈 × 𝑈∗.
Furthermore, as in [30], we shall consider the iterated complexifications𝑗 , for 𝑗 ⩾ 1, as follows.
For 𝑗 = 2𝓁 − 1 odd, we set

2𝓁−1 ∶= {(𝑍, 𝜁1, 𝑍1, … , 𝑍𝓁−1, 𝜁𝓁) ∈ 𝑈 × 𝑈∗ × … × 𝑈∗∶

(𝑍, 𝜁1) ∈, (𝑍1, 𝜁1) ∈, (𝑍1, 𝜁2) ∈, … , (𝑍𝓁−1, 𝜁𝓁) ∈},

and for 𝑗 = 2𝓁 even we set

2𝓁 ∶= {(𝑍, 𝜁1, … , 𝑍𝓁−1, 𝜁𝓁 , 𝑍𝓁) ∈ 𝑈 × 𝑈∗ × … × 𝑈∶

(𝑍, 𝜁1) ∈, (𝑍1, 𝜁1) ∈, (𝑍1, 𝜁2) ∈, … , (𝑍𝓁 , 𝜁𝓁) ∈}.
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We note that𝑗 is a complex submanifold of 𝑈 × 𝑈∗ ×⋯ × 𝑈∗ ⊂ ℂ(𝑗+1)𝑁 for 𝑗 odd and of 𝑈 ×
𝑈∗ ×⋯ × 𝑈 ⊂ ℂ(𝑗+1)𝑁 for 𝑗 even. We shall only consider the iterated complexifications 𝑗 for
𝑗 ⩽ 2𝑁 + 1.
Next, we also define, for every integer 𝑘 ⩾ 1 the following real-analytic submanifold of2𝑘+1:

𝑘 = {(𝑍, 𝜁1, … , 𝜁𝑘, 𝑝, �̄�) ∈ 𝑈 ×⋯ × 𝑈∗∶ (𝑍, 𝜁1, … , 𝜁𝑘, 𝑝) ∈2𝑘, 𝑝 ∈ 𝑀}

=2𝑘+1 ∩
{
𝑍𝑘 = 𝜁𝑘+1

}
. (2.2)

2.2 Universal algebraic parametrization and jet determination

For a real-analytic generic submanifold𝑀 ⊂ ℂ𝑁 , recall that𝜔
CR
(𝑀,ℂ𝑁

′
) denotes the sheaf over

𝑀 of ℂ𝑁′ -valued real-analytic CR maps over𝑀. As is customary (see, for example, [3]), since𝑀
is generic, we can identify a section of𝜔

CR
(𝑀,ℂ𝑁

′
), that is, a real-analytic CR map ℎ defined on

some open subset𝑈 ⊂ 𝑀 valued inℂ𝑁′ , with the germ of a holomorphicmap𝐻∶ �̃� → ℂ𝑁
′ along

𝑈, for some open neighbourhood �̃� of 𝑈 in ℂ𝑁 .
Throughout the paper, for any holomorphic function 𝜓 defined on some open subset 𝑂 of ℂ𝑟,

we denote by �̄� the holomorphic function defined on 𝑂∗ by �̄�(𝜉) = 𝜓(�̄�).
The next notion introduces the precise type of parametrization property we will be studying in

this paper.

Definition 2.1. Let𝑀 ⊂ ℂ𝑁 be a real-analytic generic submanifold, a subsheaf of𝜔
𝐶𝑅
(𝑀,ℂ𝑁

′
),

and 𝑝0 ∈ 𝑀. We say that  satisfies property (∗)𝑝0 if there exist a sufficiently small neigh-
bourhood Ω0 of 𝑝0 in ℂ𝑁 , a positive integer 𝑟, a finite family of ℂ𝑁

′ -valued polynomial maps
 (1), … , (𝐿), universal in the sense that they are independent of 𝑝0,𝑀 and  , and a holomorphic
map 𝐴(𝑍, 𝜁1, 𝑍1), defined onΩ0 × Ω∗0 × Ω0, universal in the sense that it only depends on𝑀 and
𝑝0, such that for every 𝑞 ∈ 𝑀0 ∶= 𝑀 ∩ Ω0 and every 𝑓 ∈ 𝑞, there exists 𝓁 ∈ {1, …𝐿} such that


(𝓁)
𝑗

(
𝐴(𝑍, 𝜁1, 𝑍1),

(
𝜕𝜇𝑓(𝑍1), 𝜕𝜇𝑓(𝜁1)

)|𝜇|⩽𝑟, 𝑓𝑗(𝑍)) = 0, 𝑗 = 1,… ,𝑁′, and (2.3)

𝜕 (𝓁)
𝑗

𝜕𝑇

(
𝐴(𝑍, 𝜁1, 𝑍1),

(
𝜕𝜇𝑓(𝑍1), 𝜕𝜇𝑓(𝜁1)

)|𝜇|⩽𝑟, 𝑓𝑗(𝑍)) ≢ 0, 𝑗 = 1,… ,𝑁′, (2.4)

for (𝑍, 𝜁1, 𝑍1) ∈2 sufficiently close to (𝑞, �̄�, 𝑞), and where we write  (𝓁) = ( (𝓁)
1
, … , (𝓁)

𝑁′
), with

𝑇 denoting its last argument.
We further say that  satisfies property (∗) if  satisfies property (∗)𝑝0 for every 𝑝0 ∈ 𝑀.

Our goal now is to prove the following finite jet determination result.

Theorem 2.2. Let 𝑀 ⊂ ℂ𝑁 be a real-analytic generic submanifold, 𝑝0 ∈ 𝑀 and  be a subsheaf
of𝜔

𝐶𝑅
(𝑀,ℂ𝑁

′
) satisfying (∗)𝑝0 . If𝑀 is minimal at 𝑝0, there exists a neighbourhood𝑀0 of 𝑝0 in𝑀

and an integer𝐾 > 0, such that for every 𝑞 ∈ 𝑀0, if 𝑓, g are two elements of𝑞 satisfying 𝑗𝐾𝑞 𝑓 = 𝑗
𝐾
𝑞 g ,

then 𝑓 = g .
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In order to prove Theorem 2.2, we will show that maps satisfying property (∗)𝑝0 satisfy a more
useful (other) universal algebraic parametrization property, given in Proposition 2.7, from which
we will establish the desired finite jet determination result in Section 2.3.4.

2.3 Proof of Theorem 2.2

The proofwill be divided into several steps.Without loss of generality, wemay assume that𝑝0 = 0.

2.3.1 Parametrizing derivatives along iterated complexifications

We start with the following:

Proposition 2.3. Let𝑀 ⊂ ℂ𝑁 be a real-analytic generic submanifold through the origin and  be
a subsheaf of𝜔

𝐶𝑅
(𝑀,ℂ𝑁

′
) satisfying (∗)0. Then there exist a sufficiently small neighbourhoodΩ0 of

0 in ℂ𝑁 , and for every multiindex 𝛾 ∈ ℕ𝑁 , a finite family of ℂ𝑁′ -valued universal polynomial maps
 (𝛾,1), … (𝛾,𝜎𝛾) (independent of𝑀 and ) , and a holomorphic map 𝐴𝛾(𝑍, 𝜁1, 𝑍1), defined on Ω30,
depending only on 𝑀 and 𝛾, with the following property: For every 𝑞 ∈ 𝑀0 ∶= 𝑀 ∩ Ω0 and every
𝑓 ∈ 𝑞 , there exists 𝛿 ∈ {1, …𝜎𝛾} such that


(𝛾,𝛿)
𝑗

(
𝐴𝛾(𝑍, 𝜁

1, 𝑍1),
(
𝜕𝜇𝑓(𝑍1), 𝜕𝜇𝑓(𝜁1)

)|𝜇|⩽𝑟+|𝛾|, 𝜕𝛾𝑓𝑗(𝑍)) = 0, 𝑗 = 1,… ,𝑁′, (2.5)

𝜕
(𝛾,𝛿)
𝑗

𝜕𝑇

(
𝐴𝛾(𝑍, 𝜁

1, 𝑍1),
(
𝜕𝜇𝑓(𝑍1), 𝜕𝜇𝑓(𝜁1)

)|𝜇|⩽𝑟+|𝛾|, 𝜕𝛾𝑓𝑗(𝑍)) ≢ 0, 𝑗 = 1,… ,𝑁′, (2.6)

for (𝑍, 𝜁1, 𝑍1) ∈2 sufficiently close to (𝑞, �̄�, 𝑞).

Proof. Let Ω0 be given by Definition 2.1. ShrinkingΩ0 if necessary, we may assume that Ω0 ⊂ 𝑈,
where 𝑈 is given in Section 2.1 and choose holomorphic coordinates 𝑥 ∈ ℂ𝑁+2𝑛 for2 ∩ (Ω0 ×

Ω∗
0
× Ω0). For 𝑞 ∈ Ω0 ∩𝑀, we write 𝑥𝑞 for the coordinates of (𝑞, �̄�, 𝑞). Fix 𝑗 ∈ {1, … ,𝑁′} and set

g(𝑥) =
(
𝐴(𝑍, 𝜁1, 𝑍1),

(
𝜕𝜇𝑓(𝑍1), 𝜕𝜇𝑓(𝜁1)

)|𝜇|⩽𝑟)|||2
, ℎ(𝑥) = 𝑓𝑗(𝑍)

||2 .

Then every component of g(𝑥) andℎ(𝑥) belongs toℂ{𝑥 − 𝑥𝑞}. By assumption,
(𝓁)
𝑗
(g(𝑥), ℎ(𝑥)) = 0

and ( (𝓁)
𝑗
)𝑇(g(𝑥), ℎ(𝑥)) ≢ 0 for some 𝓁. An application of Lemma 6.3 yields finitely many poly-

nomials Υ1, … , Υ𝑒𝛾 , depending only on 
(𝓁)
𝑗

(and not on ℎ, g), such that there exists 𝑑 ∈ {1, … , 𝑒𝛾}
satisfying

Υ𝑑((𝜕
𝛼g(𝑥))|𝛼|⩽|𝛾|, 𝜕𝛾ℎ(𝑥)) = 0, 𝜕Υ𝑑

𝜕𝑇
((𝜕𝛼g(𝑥))|𝛼|⩽|𝛾|, 𝜕𝛾ℎ(𝑥)) ≢ 0. (2.7)

The conclusion of the lemma now follows from the observation that for every multi-index 𝛼,
we have that 𝜕𝛼𝑥g(𝑥) = 𝑃

𝛼(𝐴𝛼(𝑍, 𝜁
1, 𝑍1), (𝜕𝜇𝑓(𝑍1), 𝜕𝜇𝑓(𝜁1))|𝜇|⩽𝑟+|𝛼|)|2 for some universal poly-
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nomial 𝑃𝛼 and some holomorphic map 𝐴𝛼 depending only on 𝐴. We leave the details to the
reader. □

We now iterate the previous result along iterated complexifications of𝑀 to reach the following
statement.

Proposition 2.4. Let 𝑀 ⊂ ℂ𝑁 be a real-analytic generic submanifold through the origin and 

be a subsheaf of 𝜔
𝐶𝑅
(𝑀,ℂ𝑁

′
) satisfying (∗)0. Then for every integer 𝓁 ⩾ 1, there exists a neigh-

bourhood Ω𝓁 of 0 in ℂ𝑁 , a finite family of ℂ𝑁
′ -valued universal polynomial maps(𝓁,1), …(𝓁,𝑒𝓁)

(independent of𝑀 and ) and a holomorphic map 𝐴(𝓁)(𝑍, 𝜁1, 𝑍1, … , 𝑍𝓁 , 𝜁𝓁+1), defined on Ω2𝓁+2𝓁
and depending only on 𝑀, such that for every 𝑞 ∈ 𝑀𝓁 ∶= 𝑀 ∩ Ω𝓁 and every 𝑓 ∈ 𝑞 , there exists
𝜈 ∈ {1, … 𝑒𝓁}


(𝓁,𝜈)
𝑗

(
𝐴(𝓁)(𝑍, 𝜁1, … , 𝜁𝓁+1),

(
𝜕𝜇𝑓(𝑍𝓁), 𝜕𝜇𝑓(𝜁𝓁+1)

)|𝜇|⩽2𝓁𝑟, 𝑓𝑗(𝑍)) = 0, 𝑗 = 1,… ,𝑁′, (2.8)

𝜕(𝓁,𝜈)
𝑗

𝜕𝑇

(
𝐴(𝓁)(𝑍, 𝜁1, … , 𝜁𝓁+1),

(
𝜕𝜇𝑓(𝑍𝓁), 𝜕𝜇𝑓(𝜁𝓁+1)

)|𝜇|⩽2𝓁𝑟, 𝑓𝑗(𝑍)) ≢ 0, 𝑗 = 1,… ,𝑁′, (2.9)

for (𝑍, 𝜁1, 𝑍1, … , 𝑍𝓁 , 𝜁𝓁+1) ∈2𝓁+1 sufficiently close to (𝑞, �̄�, … , 𝑞, �̄�). In particular, we have


(𝓁,𝜈)
𝑗

(
𝐴(𝓁)(𝑍, 𝜁1, … , 𝜁𝓁 , 𝑝, �̄�),

(
𝜕𝜇𝑓(𝑝), 𝜕𝜇𝑓(�̄�)

)|𝜇|⩽2𝓁𝑟, 𝑓𝑗(𝑍)) = 0, 𝑗 = 1,… ,𝑁′, (2.10)

𝜕(𝓁,𝜈)
𝑗

𝜕𝑇

(
𝐴(𝓁)(𝑍, 𝜁1, … , 𝜁𝓁 , 𝑝, �̄�),

(
𝜕𝜇𝑓(𝑝), 𝜕𝜇𝑓(�̄�)

)|𝜇|⩽2𝓁𝑟, 𝑓𝑗(𝑍)) ≢ 0, 𝑗 = 1,… ,𝑁′, (2.11)

for all (𝑍, 𝜁1, 𝑍1, … , 𝜁𝓁 , 𝑝) ∈2𝓁 and 𝑝 ∈ 𝑀, sufficiently close to (𝑞, �̄�, 𝑞, … , �̄�, 𝑞) and 𝑞, respec-
tively.

Proof. We choose a neighbourhood Ω0 satisfying Ω∗0 = Ω0 and such that Proposition 2.3 holds.
We showhow the proposition is proven for𝓁 = 1.We first apply Proposition 2.3 for 𝛾 = 0 (which

in that case is just the defining property (∗)0) and obtain a (universal) family  (0,𝛿), where 𝛿 ∈
{1, … , 𝜎0}, such that, for every 𝑞 ∈ 𝑀 ∩ Ω0 and every 𝑓 ∈ 𝑞, we have, as a consequence of (2.5)
and (2.6), that for some 𝛿 ∈ {1, … , 𝜎0} and for all 𝑗 = 1,… ,𝑁′,

⎧⎪⎨⎪⎩

(0,𝛿)
𝑗

(
𝐴0(𝑍, 𝜁

1, 𝑍1),
(
𝜕𝜇𝑓(𝑍1), 𝜕𝜇𝑓(𝜁1)

)|𝜇|⩽𝑟, 𝑓𝑗(𝑍)) = 0,
𝜕

(0,𝛿)
𝑗

𝜕𝑇

(
𝐴0(𝑍, 𝜁

1, 𝑍1),
(
𝜕𝜇𝑓(𝑍1), 𝜕𝜇𝑓(𝜁1)

)|𝜇|⩽𝑟, 𝑓𝑗(𝑍)) ≢ 0,

(2.12)

for (𝑍, 𝜁1, 𝑍1) ∈2 sufficiently close to (𝑞, �̄�, 𝑞). Fix 𝑗 in what follows and 𝜇 ∈ ℕ𝑁 with |𝜇| ⩽
𝑟. Another application of Proposition 2.3 this time with 𝛾 = 𝜇 yields a family 

(𝜇,𝜂)
𝑖

where 𝜂 ∈
{1, … , 𝜎𝜇} such that after conjugating the identities (2.5) and (2.6) with 𝛾 replaced by 𝜇, we have
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for every 𝑖 = 1, … ,𝑁′ and some 𝜂,

⎧⎪⎪⎨⎪⎪⎩

(𝜇,𝜂)
𝑖

(
�̄�𝜇(𝜁

1, 𝑍1, 𝜁2),
(
𝜕𝛼𝑓(𝜁2), 𝜕𝛼𝑓(𝑍1)

)|𝛼|⩽𝑟+|𝜇|, 𝜕𝜇𝑓𝑖(𝜁1)) = 0,
𝜕

(𝜇,𝜂)
𝑖

𝜕𝑇

(
�̄�𝜇(𝜁

1, 𝑍1, 𝜁2),
(
𝜕𝛼𝑓(𝜁2), 𝜕𝛼𝑓(𝑍1)

)|𝛼|⩽𝑟+|𝜇|, 𝜕𝜇𝑓𝑖(𝜁1)) ≢ 0,

(2.13)

for (𝜁1, 𝑍1, 𝜁2) near (�̄�, 𝑞, �̄�) with (𝑍1, 𝜁1) ∈ and (𝑍1, 𝜁2) ∈. We choose Ω1 ⊂ Ω0 so that
3 ∩ (Ω1)

4 is covered by one holomorphic coordinate chart, denoted by 𝑥. We apply Lemma 6.5
to

⎧⎪⎪⎨⎪⎪⎩

𝑃 = 
(0,𝛿)
𝑗

, Θ =

(

(𝜇,𝜂)
𝑖

)
|𝜇|⩽𝑟

𝑖=1,…,𝑁′

, 𝜐(𝑥) =
(
𝜕𝜇𝑓𝑖(𝜁

1)|3

) |𝜇|⩽𝑟
𝑖=1,…,𝑁′

,

ℎ(𝑥) = 𝑓𝑗(𝑍)|3 , 𝑢(𝑥) =
(
𝐴0(𝑍, 𝜁

1, 𝑍1),
(
𝜕𝜇𝑓(𝑍1)

)|𝜇|⩽𝑟)||3 ,

𝑤(𝑥) =
((
�̄�𝛽(𝜁

1, 𝑍1, 𝜁2)
)|𝛽|⩽𝑟, (𝜕𝛼𝑓(𝜁2), 𝜕𝛼𝑓(𝑍1))|𝛼|⩽2𝑟)|||3

and get that there are finitely many polynomials, Ψ1,… ,Ψ𝐾 , where 𝐾 = 𝐾(𝑗), depending only on

(0,𝛿)
𝑗

and the  (𝜇,𝜂)
𝑖

for 1 ⩽ 𝜂 ⩽ 𝜎𝜇, |𝜇| ⩽ 𝑟 and 𝑖 = 1, … ,𝑁′ such that, for some 𝑘 ∈ {1, … , 𝐾}
⎧⎪⎨⎪⎩
Ψ𝑘

(
𝐴0(𝑍, 𝜁

1, 𝑍1),
(
�̄�𝛽(𝜁

1, 𝑍1, 𝜁2)
)|𝛽|⩽𝑟, (𝜕𝛼𝑓(𝜁2), 𝜕𝛼𝑓(𝑍1))|𝛼|⩽2𝑟, 𝑓𝑗(𝑍)) = 0,

𝜕Ψ𝑘
𝜕𝑇

(
𝐴0(𝑍, 𝜁

1, 𝑍1),
(
�̄�𝛽(𝜁

1, 𝑍1, 𝜁2)
)|𝛽|⩽𝑟, (𝜕𝛼𝑓(𝜁2), 𝜕𝛼𝑓(𝑍1))|𝛼|⩽2𝑟, 𝑓𝑗(𝑍)) ≢ 0,

(2.14)

for (𝑍, 𝜁1, 𝑍1, 𝜁2) ∈3 sufficiently close to (𝑞, �̄�, 𝑞, �̄�). This proves the proposition for 𝓁 = 1. For
arbitrary 𝓁, the general case follows along the same line of arguments as those explained for the
case 𝓁 = 1. The proof is complete. □

2.3.2 Iterated Segre maps

Let 𝑀 be as above. We may choose normal coordinates 𝑍 = (𝑧, 𝑤) ∈ ℂ𝑛 × ℂ𝑑 for 𝑀 near 0 (see,
for example, [3]), meaning that (the germ of)𝑀 (at 0) is given by

𝑤 = 𝑄(𝑧, �̄�, �̄�), (2.15)

where 𝑄 = (𝑄1, … , 𝑄𝑑) is a ℂ𝑑-valued holomorphic map defined in some fixed neighbourhood of
the origin satisfying

𝑄(𝑧, �̄�, �̄�(�̄�, 𝑧, 𝑤)) = 𝑤, 𝑄(𝑧, 0, �̄�) = 𝑄(0, �̄�, �̄�) = �̄�.

We now make use of the Segre maps associated to 𝑀, as introduced in [2, 3]. For 𝑝 ∈ 𝑈 (which
later will furthermore lie on 𝑀), let us recall how the Segre map 𝑣𝑘 of order 𝑘 ∈ ℤ+ is defined.
Following the notation of [5, 27], we first set 𝑣0(𝑝) ∶= 𝑝 and for 𝑘 ⩾ 0 we inductively define

𝑣𝑘+1(𝑡0, 𝑡1, … , 𝑡𝑘; 𝑝) = (𝑡0, 𝑄(𝑡0, 𝑣𝑘(𝑡1, … , 𝑡𝑘; 𝑝)). (2.16)
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The Segre maps are defined and holomorphic over 𝑈1 × … × 𝑈1 × 𝑈 provided 𝑈1 and 𝑈 are suf-
ficiently small neighbourhoods of the origin in ℂ𝑛 and ℂ𝑁 , respectively. As we will need only
finitely many of those Segre maps, we choose and fix neighbourhoods 𝑈1 and 𝑈 as above so that
all the maps 𝑣𝑘s we are going to need are well defined and holomorphic on 𝑈𝑘+1

1
× 𝑈. For every

integer 𝑘 ⩾ 1, the real-analytic map Ξ∶ 𝑈2𝑘
1
× (𝑀 ∩ 𝑈) →2𝑘+1 given by

Ξ(𝑡0, … , 𝑡2𝑘−1, 𝑝) ∶= (𝑣2𝑘(𝑡0, … , 𝑡2𝑘−1; 𝑝), 𝑣2𝑘−1(𝑡1, … , 𝑡2𝑘−1; 𝑝), … , 𝑣1(𝑡2𝑘−1; 𝑝), 𝑝, �̄�) (2.17)

parametrizes the submanifold 𝑘 given by (2.2) in a neighbourhood of the origin.
Recall now the following minimality criterion from [4]:

Theorem 2.5. Let𝑀 ⊂ ℂ𝑁 be a germ at the origin of a real-analytic generic minimal submanifold.
With the above notation, there exists an integer 𝑠 ⩽ 𝑁 such that the following holds:

max
{
rk

𝜕𝜐2𝑠

𝜕(𝑡0, 𝑡𝑠+1, 𝑡𝑠+2, … , 𝑡2𝑠−1)

(
0, 𝑥1, … , 𝑥𝑠−1, 𝑥𝑠, 𝑥𝑠−1, … , 𝑥1; 0

)
∶ 𝑥1, … , 𝑥𝑠 ∈ 𝑈1

}
= 𝑁,

(2.18)

𝜐2𝑠(0, 𝑥1, … , 𝑥𝑠−1, 𝑥𝑠, 𝑥𝑠−1, … , 𝑥1; 0) = 0. (2.19)

2.3.3 Lifting

Using the Segre mappings as parametrizations of the iterated complexifications, we obtain, as a
consequence of (2.17), (2.2) and Proposition 2.4, the following:

Proposition 2.6. Let 𝑀 ⊂ ℂ𝑁 be a real-analytic generic submanifold through the origin given in
normal coordinates as above and  be a subsheaf of 𝜔

𝐶𝑅
(𝑀,ℂ𝑁

′
) satisfying (∗)0. Let 𝑠 ∈ ℤ+ be

given by Theorem 2.5. Then there exists a finite family of ℂ𝑁′ -valued universal polynomial maps
(1), …(Δ) (independent of𝑀 and the subsheaf), a holomorphicmapΦ(𝑡0, … , 𝑡2𝑠−1, 𝜆, 𝜔), depend-
ing only on𝑀 and defined in a neighbourhood of the origin in ℂ(2𝑠)𝑛+2𝑁 such that if 𝑞 = (𝑧𝑞, 𝑤𝑞) ∈
𝑀 is sufficiently close to the origin and 𝑓 ∈ 𝑞 , there exists 𝜈 ∈ {1, … , Δ} such that for every 𝑗 =
1,… ,𝑁′,

⎧⎪⎪⎨⎪⎪⎩


(𝜈)
𝑗

(
Φ(𝑡0, … , 𝑡2𝑠−1, 𝑝, �̄�),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, (𝑓𝑗◦𝜐2𝑠(𝑡0, … , 𝑡2𝑠−1; 𝑝))) = 0,
𝜕(𝜈)

𝑗

𝜕𝑇

(
Φ(𝑡0, … , 𝑡2𝑠−1, 𝑝, �̄�),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, (𝑓𝑗◦𝜐2𝑠(𝑡0, … , 𝑡2𝑠−1; 𝑝))) ≢ 0,

(2.20)

for all (𝑡0, … , 𝑡2𝑠−1) ∈ ℂ2𝑠𝑛 and 𝑝 ∈ 𝑀 sufficiently close to (𝑧𝑞, �̄�𝑞, … , 𝑧𝑞, �̄�𝑞) and 𝑞, respectively.

Using similar arguments as those of [27, §3.3] together with Proposition 2.6, we obtain the fol-
lowing result which may be viewed as a universal algebraic parametrization property satisfied by
the sheaf  .

Proposition 2.7. Let𝑀 ⊂ ℂ𝑁 be a real-analytic generic minimal submanifold through the origin.
Then there exists a real-analytic map Ψ(𝜉, 𝑝, 𝑞, 𝑍) defined on some open polydisc 𝑉 ×𝑊3 ⊂ ℂ𝑎 ×
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ℂ3𝑁 for some integer 𝑎 ⩾ 1, depending only on𝑀, holomorphic with respect to (𝜉, 𝑍), with 0 ∈ 𝑊,
and a finite collection of universal ℂ𝑁′ -valued polynomial maps (1), … ,(𝑏) independent of 𝑀,
with the following property. If  is a subsheaf of𝜔

𝐶𝑅
(𝑀,ℂ𝑁

′
) satisfying (∗)0 then for every 𝑞 ∈ 𝑀 ∩

𝑊 and 𝑓 ∈ 𝑞 , there exists 𝜈 ∈ {1, … , 𝑏} such that for every 𝑗 = 1,… ,𝑁′,

⎧⎪⎪⎨⎪⎪⎩


(𝜈)
𝑗

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, 𝑓𝑗(𝑍)) = 0,
𝜕(𝜈)

𝑗

𝜕𝑇

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, 𝑓𝑗(𝑍)) ≢ 0,

(2.21)

for every 𝑝 ∈ 𝑀 and 𝑍 ∈ ℂ𝑁 sufficiently close to 𝑞, and every 𝜉 ∈ 𝑉.

Remark 2.8. Enlarging the collections of polynomials (1), … ,(𝑏) if necessary, we may assume
that for every map 𝑓 ∈ 𝑞, we can choose a polynomial (𝜈) satisfying (2.21) in Proposition 2.7
which further satisfies

deg𝑇
(𝜈)
𝑗
(𝑋, Λ, 𝑇) = deg𝑇

(𝜈)
𝑗
(Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, 𝑇), 𝑗 = 1,… ,𝑁′,
where 𝑝, 𝑞, 𝑍 and 𝜉 are as in the proposition and where𝑋 andΛ denote, respectively, the first and
second arguments in the polynomials(1), … ,(𝑏).

2.3.4 Completion of the proof of Theorem 2.2

Let (𝑘) = (𝑘)(𝑋, Λ, 𝑇), 𝑘 = 1,… , 𝑏, the polynomial maps and Ψ be given by Proposition 2.7.
Shrinking 𝑉 and 𝑊 if necessary, we may assume that Ψ is real-analytic in a neighbourhood of
𝑉 ×𝑊3. In what follows, for any open subset 𝑂 in real euclidean space, we denote by 𝜔(𝑂) the
ring of real-analytic functions in a neighbourhood of 𝑂.
For every 𝑘 ∈ {1, … , 𝑏} and 𝑗 ∈ {1, … ,𝑁′}, set 𝛿𝑘,𝑗 ∶= deg𝑇

(𝑘)
𝑗

and write


(𝑘)
𝑗
(𝑋, Λ, 𝑇) = Δ𝑘

𝑗
(𝑋, Λ)𝑇𝛿

𝑘,𝑗
+⋯

For (𝑋, Λ) outside the zero locus of Δ𝑘
𝑗
, denote by 𝜎𝑘,𝑗𝓁 = 𝜎

𝑘,𝑗

𝓁 (𝑋, Λ) for 𝓁 = 1,… , 𝛿𝑘,𝑗 , the 𝛿𝑘,𝑗

roots (counted with multiplicity) of 𝑘
𝑗
(𝑋, Λ, 𝑇), and denote by Λ̂ another variable (of the same

dimension as that of Λ). Now, for every 𝑘1, 𝑘2 ∈ {1, … , 𝑏} and every 𝑗 = 1,… ,𝑁′, set

Υ
𝑘1,𝑘2
𝑗

(𝑋, Λ, Λ̂, 𝑇) =

𝛿𝑘1,𝑗∏
𝓁1=1

𝛿𝑘2,𝑗∏
𝓁2=1

(
𝑇 −

(
𝜎
𝑘1,𝑗

𝓁1
(𝑋, Λ) − 𝜎

𝑘2,𝑗

𝓁2
(𝑋, Λ̂)

))
.

By Newton’s theorem on symmetric polynomials, there exist positive integers 𝑒1, 𝑒2 such that

Ω
𝑘1,𝑘2
𝑗

(𝑋, Λ, Λ̂, 𝑇) ∶= (Δ
𝑘1
𝑗
(𝑋, Λ))𝑒1(Δ

𝑘2
𝑗
(𝑋, Λ̂))𝑒2Υ

𝑘1,𝑘2
𝑗

(𝑋, Λ, Λ̂, 𝑇) ∈ ℂ[𝑋,Λ, Λ̂, 𝑇].
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Next, we write

Ω
𝑘1,𝑘2
𝑗

(𝑋, Λ, Λ̂, 𝑇) =

𝛿𝑘1,𝑗𝛿𝑘2,𝑗∑
𝜈=0

Ω
𝑘1,𝑘2
𝑗,𝜈

(𝑋, Λ, Λ̂)𝑇𝜈,

and set, for 𝛽 ∈ ℕ𝑁 , 𝜉 ∈ 𝑉, (𝑝, 𝑞) ∈ 𝑊2,

Θ
𝑘1,𝑘2
𝑗,𝜈,𝛽

(𝜉, 𝑝, 𝑞, Λ, Λ̂) ∶=
𝜕|𝛽|
𝜕𝑍𝛽

[
Ω
𝑘1,𝑘2
𝑗,𝜈

(Ψ(𝜉, 𝑝, 𝑞, 𝑍), Λ, Λ̂)
]|||𝑍=𝑞.

Note that each above function belongs to the ring 𝜔(𝑉 ×𝑊2)[Λ, Λ̂]. According to [14], the ring
𝜔(𝑉 ×𝑊2) is noetherian and therefore so is 𝜔(𝑉 ×𝑊2)[Λ, Λ̂].
For every 𝑘1, 𝑘2 as above, 𝑗 ∈ {1, … ,𝑁′} and 𝜈 ∈ {0, … , 𝛿𝑘1,𝑗𝛿𝑘2,𝑗}, let𝐸(𝑘1, 𝑘2, 𝑗, 𝜈) ∈ ℤ+ be such

that the ideal generated by the Θ𝑘1,𝑘2
𝑗,𝜈,𝛽

for all 𝛽 ∈ ℕ𝑁 coincides that of generated by the Θ𝑘1,𝑘2
𝑗,𝜈,𝛽

for|𝛽| ⩽ 𝐸(𝑘1, 𝑘2, 𝑗, 𝜈) (in the above mentioned ring). Set
𝐾 = max

{
𝐸(𝑘1, 𝑘2, 𝑗, 𝜈) ∶ 𝑘1, 𝑘2 ∈ {1, … , 𝑏}, 𝑗 = 1,… ,𝑁

′, 𝜈 ∈ {0, … , 𝛿𝑘1,𝑗𝛿𝑘2,𝑗}
}
.

We now claim that the conclusion of the theorem holds with the above choice of 𝐾 and with
𝑀0 = 𝑀 ∩𝑊. Indeed, pick 𝑞 ∈ 𝑀 ∩𝑊 and let 𝑓, g both belong to 𝑞. Assume that 𝑗𝐾𝑞 𝑓 = 𝑗

𝐾
𝑞 𝑓,

that is, that 𝑓(𝑍) − g(𝑍) = 𝑂(|𝑍 − 𝑞|𝐾+1). It follows from Proposition 2.7 that there exist 𝑘1, 𝑘2 ∈
{1, … , 𝑏} such that, for every 𝑗 = 1,… ,𝑁′,

⎧⎪⎪⎨⎪⎪⎩


(𝑘1)

𝑗

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, 𝑓𝑗(𝑍)) = 0,
𝜕

(𝑘1)

𝑗

𝜕𝑇

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, 𝑓𝑗(𝑍)) ≢ 0,

(2.22)

⎧⎪⎪⎨⎪⎪⎩


(𝑘2)

𝑗

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍), (𝜕𝜇ḡ(�̄�), 𝜕𝜇g(𝑝))|𝜇|⩽2𝑠𝑟, g𝑗(𝑍)) = 0,

𝜕
(𝑘2)

𝑗

𝜕𝑇

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍), (𝜕𝜇ḡ(�̄�), 𝜕𝜇g(𝑝))|𝜇|⩽2𝑠𝑟, g𝑗(𝑍)) ≢ 0,

(2.23)

for every𝑝 ∈ 𝑀 and𝑍 ∈ ℂ𝑁 sufficiently close to 𝑞, and every 𝜉 ∈ 𝑉. From the above construction,
we have for every 𝑗

Ω
𝑘1,𝑘2
𝑗

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, (𝜕𝜇ḡ(�̄�), 𝜕𝜇g(𝑝))|𝜇|⩽2𝑠𝑟, 𝑓𝑗(𝑍) − g𝑗(𝑍)
)
= 0,

(2.24)

for all 𝜉, 𝑝, 𝑍 as above. Because of Remark 2.8 and our construction, we can assume that for
every 𝑗

Ω
𝑘1,𝑘2
𝑗,𝜈

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, (𝜕𝜇ḡ(�̄�), 𝜕𝜇g(𝑝))|𝜇|⩽2𝑠𝑟) ≢ 0, for 𝜈 = 𝛿𝑘1,𝑗𝛿𝑘2,𝑗.

(2.25)
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Suppose, by contradiction that 𝑓 ≠ g , that is, that there exists some 𝑗 such that 𝑓𝑗 ≠ g𝑗 . For this
choice of 𝑗, denote by �̂� the smallest 𝜈 ∈ {0, … , 𝛿𝑘1,𝑗𝛿𝑘2,𝑗} such that

Ω
𝑘1,𝑘2
𝑗,𝜈

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, (𝜕𝜇ḡ(�̄�), 𝜕𝜇g(𝑝))|𝜇|⩽2𝑠𝑟) ≢ 0,

which exists in view of (2.25). Rewriting (2.24) and using that 𝑓𝑗 ≠ g𝑗 , we reach that

⎧⎪⎨⎪⎩
Ω
𝑘1,𝑘2
𝑗,�̂�

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, (𝜕𝜇ḡ(�̄�), 𝜕𝜇g(𝑝))|𝜇|⩽2𝑠𝑟) =
−
∑
𝜈>�̂�

Ω
𝑘1,𝑘2
𝑗,�̂�

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, (𝜕𝜇ḡ(�̄�), 𝜕𝜇g(𝑝))|𝜇|⩽2𝑠𝑟)(𝑓𝑗(𝑍) − g𝑗(𝑍)
)𝜈
.

(2.26)
Hence (2.26) implies that for all 𝜉, 𝑍, 𝑝 as above,

Ω
𝑘1,𝑘2
𝑗,�̂�

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, (𝜕𝜇ḡ(�̄�), 𝜕𝜇g(𝑝))|𝜇|⩽2𝑠𝑟) = 𝑂(|𝑍 − 𝑞|𝐾+1), (2.27)

that is, that for all 𝜉, 𝑝 as above

Θ
𝑘1,𝑘2
𝑗,�̂�,𝛽

(
𝜉, 𝑝, 𝑞,

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, (𝜕𝜇ḡ(�̄�), 𝜕𝜇g(𝑝))|𝜇|⩽2𝑠𝑟) = 0, ∀𝛽, with |𝛽| ⩽ 𝐾.
From our choice of 𝐾, it follows that

Θ
𝑘1,𝑘2
𝑗,�̂�,𝛽

(
𝜉, 𝑝, 𝑞,

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, (𝜕𝜇ḡ(�̄�), 𝜕𝜇g(𝑝))|𝜇|⩽2𝑠𝑟) = 0, ∀𝛽 ∈ ℕ𝑁,
and hence that for all 𝜉 ∈ 𝑉, 𝑝 ∈ 𝑀 and 𝑍 ∈ ℂ𝑁 sufficiently close to 𝑞

Ω
𝑘1,𝑘2
𝑗,�̂�

(
Ψ(𝜉, 𝑝, 𝑞, 𝑍),

(
𝜕𝜇𝑓(�̄�), 𝜕𝜇𝑓(𝑝)

)|𝜇|⩽2𝑠𝑟, (𝜕𝜇ḡ(�̄�), 𝜕𝜇g(𝑝))|𝜇|⩽2𝑠𝑟) = 0,
which contradicts the choice of �̂�. Hence 𝑓 = g and the theorem is proven.

3 PROOF OF THE UNIVERSAL ALGEBRAIC PARAMETRIZATION
PROPERTY

In this section, we prove the second main step of the proof of Theorem 1.1, which consists essen-
tially of proving that under the assumptions of Theorem 1.1, the universal algebraic parametriza-
tion (∗) studied in the previous section is satisfied, see Theorem 3.3.

3.1 2-approximate CR deformations

We first define the important notion used in Theorem 1.1 and essentially going back to [21].

Definition 3.1. Let𝑀 ⊂ ℂ𝑁 and𝑀′ ⊂ ℂ𝑁
′ be, respectively, a real-analytic CR submanifold and

a real-analytic submanifold,  a subsheaf of ∞
𝐶𝑅
(𝑀,𝑀′). We say that a germ of a ∞-smooth
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CRmap 𝐵∶ (𝑀 × ℂ𝑘, (𝑝, 0)) → ℂ𝑁
′ , for some point 𝑝 ∈ 𝑀 and some integer 𝑘 ⩾ 1, is a germ of a

2-approximate CR -deformation from𝑀 into𝑀′ if it satisfies the following properties :

(i) 𝐵|𝑡=0 ∈ 𝑝;
(ii) rk𝜕𝐵

𝜕𝑡
(𝑝, 0) = 𝑘;

(iii) for every germ of a real-analytic function 𝜌∶ (𝑀′, 𝐵(𝑝, 0)) → ℝ, vanishing on𝑀′, we have

𝜌(𝐵(𝜉, 𝑡), 𝐵(𝜉, 𝑡)) = 𝑂(|𝑡|3),
for 𝜉 ∈ 𝑀 near 𝑝 and 𝑡 ∈ ℂ𝑘 close to 0.

If a germ of a ∞-smooth CRmap𝐵∶ (𝑀 × ℂ𝑘, (𝑝, 0)) → ℂ𝑁
′ only satisfies (ii) and (iii), we simply

say that 𝐵 is a (germ of a) 2-approximation CR deformation from𝑀 into𝑀′.

Definition 3.1 has a nice geometric interpretation when the target𝑀′ is CR. First note that by
(i), 𝐵|𝑡=0 ∈ 𝑝 maps (𝑀, 𝑝) into𝑀′ ⊂ ℂ𝑁

′

𝑍′
. If we expand

𝐵(𝜉, 𝑡) = 𝐵0(𝜉) +
∑
𝛼∈ℕ𝑘

𝐵𝛼(𝜉)𝑡
𝛼, 𝐵𝛼 = (𝐵

1
𝛼, … , 𝐵

𝑁′

𝛼 ),

we see that for every 𝛼 ∈ ℕ𝑘 with |𝛼| = 1 the holomorphic vector field
𝑋𝛼 =

𝑁′∑
𝑗=1

𝐵
𝑗
𝛼(𝜉)

𝜕

𝜕𝑍′
𝑗

is tangent to 𝑀′ along (the germ at 𝐵0(𝑝) of) 𝐵0(𝑀). We can think of 𝑋𝛼 as a CR section of the
pullback bundle 𝐵∗

0
𝑇(1,0)𝑀′. Furthermore, the 𝑘-dimensional space 𝐸 ⊂ 𝐵∗

0
𝑇(1,0)𝑀′ spanned by

the first-order vector fields 𝑋𝛼 for |𝛼| = 1 near 𝑝 is Levi-null. This condition can be expressed in
two ways. First, directly from (iii) we see that for every real-analytic function 𝜌 vanishing on𝑀′

near 𝐵0(𝑝), the Levi form 𝜌 satisfies:

𝜌(𝑋𝛼, 𝑋𝛽) =

𝑁′∑
𝑗,𝓁=1

𝜕2𝜌(𝐵0(𝜉), 𝐵0(𝜉))

𝜕𝑍′
𝑗
�̄�′𝓁

𝑋
𝑗
𝛼(𝜉)𝑋

𝓁
𝛽
(𝜉) = 0,

𝑁′∑
𝑗=1

𝑋
𝑗
𝛼(𝜉)

𝜕𝜌

𝜕𝑍′
𝑗

(𝐵0(𝜉), 𝐵0(𝜉)) = 0,

(3.1)

for |𝛼|, |𝛽| = 1 and 𝜉 ∈ 𝑀 near 𝑝. Equivalently, if we define the Levi form of𝑀′ abstractly as

∶ (𝑇(1,0)𝑀)2 → ℂ𝑇𝑀⟋𝑇(1,0)𝑀′ ⊕ 𝑇(0,1)𝑀′, (𝑋𝑝, 𝑌𝑝) = [𝑋, �̄�]𝑝 mod 𝑇(1,0)𝑀′ ⊕ 𝑇(0,1)𝑀′,

then  pulls back to 𝐵∗
0
𝑇(1,0)𝑀′, and the condition is then expressed as (𝑋𝛼, 𝑋𝛽) = 0 for every

𝛼, 𝛽 as above. Hence, a 2-approximate CR -deformation from𝑀 into𝑀′ gives rise to a CR family
of Levi-null vectors along the image of𝑀 under𝐵0. In particular, if𝑀′ is a (weakly) pseudoconvex
real hypersurface, there is a neighbourhood 𝜔 of 𝑝 in𝑀 such that 𝐵0(𝜔) is contained in the Levi-
degenerate set of𝑀′. We thus have shown the following:
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Lemma 3.2. Let 𝑀 ⊂ ℂ𝑁 be a real-analytic CR submanifold, 𝑀′ ⊂ ℂ𝑁
′ a real-analytic pseudo-

convex hypersurface, and  be the subsheaf of 𝜔
CR
(𝑀,𝑀′) consisting of those real-analytic CR

maps mapping no open subset of 𝑀 into the Levi-degenerate set of 𝑀′. Then there is no germ of a
2-approximate CR -deformation from𝑀 into𝑀′.

3.2 Universal algebraic parametrization

The main result of Section 3 is that the non-existence of 2-approximate CR deformations is suffi-
cient for the property (∗) to hold for a given sheaf of maps  :

Theorem 3.3. Let𝑀 ⊂ ℂ𝑁 be a real-analytic generic submanifold,𝑀′ ⊂ ℂ𝑁
′ be a Nash subman-

ifold, and  be a subsheaf of 𝜔
𝐶𝑅
(𝑀,𝑀′). Assume that there is no germ of a 2-approximate CR

-deformation from𝑀 into𝑀′. Then  satisfies property (∗) from Definition 2.1.

The proof of Theorem 3.3 is partly built on some arguments used in [20, 27] where spe-
cial types of target manifolds were considered (spheres or strongly pseudoconvex manifolds)
in the finite jet determination and regularity problem for CR maps. We show here how the
ideas developed there can be generalized to deal with the more general targets considered in
Theorem 3.3.
Denote by 𝑑′ the codimension of 𝑀′ in ℂ𝑁′ ≃ ℝ2𝑁′ . Since 𝑀′ is a Nash submanifold, we

may find, see, for example, [1], a finite open (semi-algebraic) covering of 𝑀′ = ∪𝑚
𝑗=1
𝑀′
𝑗
such

that each 𝑀′
𝑗
is Nash diffeomorphic to ℝ2𝑁′−𝑑′ . Hence we may assume that there exist open

subsets Ω1,… ,Ω𝑚 of ℂ𝑁′ ≃ ℝ2𝑁′ and real-algebraic maps 𝜌𝑗 ∶ Ω𝑗 → ℝ𝑑
′ of rank 𝑑′, such that

𝑀′
𝑗
= {𝑍′ ∈ Ω𝑗 ∶ 𝜌𝑗(𝑍

′, �̄�′) = 0}. We fix such a choice of real-algebraic maps for the remainder of
the proof of Theorem 3.3.
Note that in what follows, we will consider the real-algebraic maps 𝜌𝑗 as real-algebraic maps

defined overΩ𝑗, but also complexify them and view them as complex algebraic maps defined over
some fixed open neighbourhood of Ωℂ

𝑗
⊂ ℂ2𝑁

′ of {(𝑍′, �̄�′) ∈ ℂ2𝑁′ ∶ 𝑍′ ∈ Ω𝑗} and keep the same
notation for the complexified map 𝜌𝑗(𝑍′, 𝜁′). As a consequence, for any open subset 𝑂 ⊂ ℝ𝑘, we
shall denote by alg(𝑂) the ring of real-algebraic functions over𝑂, and for any open subset ⊂ ℂ𝑟,
the ring of complex-algebraic (or algebraic holomorphic) functions overalg().

3.3 Degeneracy of local holomorphic maps

We shall prove Theorem 3.3 by showing that property (∗)𝑝 holds for every 𝑝 ∈ 𝑀. We therefore fix
in what follows a point 𝑝 ∈ 𝑀 which wemay assume to be the origin and use normal coordinates
and the notation for defining equations and coordinates for𝑀 near 0 from Section 2.3.2.
We are going to use the basis of real-analytic CR vector fields �̄�1, … , �̄�𝑛 defined in a (sufficiently

small) neighbourhood 𝑈 of 0 in ℂ𝑁 by

�̄�𝑗 =
𝜕

𝜕�̄�𝑗
+

𝑑∑
𝜈=1

�̄�𝜈�̄�𝑗
(�̄�, 𝑧, 𝑤)

𝜕

𝜕�̄�𝜈
, 𝑗 = 1,… , 𝑛.
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For 𝛼 = (𝛼1, … , 𝛼𝑛) ∈ ℕ𝑛, we write as usual �̄�𝛼 ∶= �̄�
𝛼1
1
, … , �̄�

𝛼𝑛
𝑛 . Setting 𝜁1 = (𝜒1, 𝜏1) ∈ ℂ𝑛 × ℂ𝑑,

the complexifications of these CR fields yield holomorphic vector fields

𝑗 ∶=
𝜕

𝜕𝜒1
𝑗

+

𝑑∑
𝜈=1

�̄�𝜈
𝜒1
𝑗

(𝜒1, 𝑧, 𝑤)
𝜕

𝜕𝜏1𝜈
, 𝑗 = 1,… , 𝑛, (3.2)

tangent to. We shall also consider the holomorphic vector fields

𝑗 ∶=
𝜕

𝜕𝑧1
𝑗

+

𝑑∑
𝜈=1

𝑄𝜈
𝑧1
𝑗

(𝑧1, 𝜒1, 𝜏1)
𝜕

𝜕𝑤1𝜈
, 𝑗 = 1,… , 𝑛, (3.3)

where similarly 𝑍1 = (𝑧1, 𝑤1). Note that each vector field 𝑗 is tangent to2.
For every 𝑞 ∈ 𝑀0 ∶= 𝑀 ∩ 𝑈, and for every germ of a real-analytic CR map 𝑓∶ (𝑀, 𝑞) → 𝑀′,

there exists 𝑗 ∈ {1, … ,𝑚} such that 𝑓∶ (𝑀, 𝑞) → 𝑀′
𝑗
. In what follows, we drop the subscript nota-

tion for 𝜌𝑗 and denote it by 𝜌. We also do the same for the associated open subsetΩ𝑗 that we write
simply Ω. We note that this will not have any consequence, since it can be shown that all invari-
ants associated to the map 𝑓 that we will consider below are independent of the choice of 𝑗, and,
most importantly, that for the whole collection of germs of maps under consideration, we always
have only finitelymany choices of open subsets𝑀𝜈s in which the images of the germs lie. Having
mentioned this, we now write 𝜌 = (𝜌(1), … , 𝜌(𝑑′)) and define:

𝜇𝑓 ∶= Rk
{
�̄�𝛼𝜌(𝑖)

𝑍′
(𝑓, 𝑓) ∶ |𝛼| ⩽ 𝑁′, 1 ⩽ 𝑖 ⩽ 𝑑′}, (3.4)

whereRk stands for the generic rank (of a germ of a real-analytic map at 𝑞). It is easy to show, and
also well-known, that 𝜇𝑓 does not depend of the choice of basis of CR vector fields. It can also be
shown that it is independent of the choice of the real-algebraic defining function 𝜌 of𝑀′ chosen
near 𝑓(𝑞) (see [19, 20]).
As in [20], the (generic) degeneracy of 𝑓 is defined by 𝜅𝑓 ∶= 𝑁′ − 𝜇𝑓 . If 𝜅𝑓 > 0we say that 𝑓 is

a holomorphically degeneratemap, and if not, a holomorphically non-degeneratemap.
The proof of Theorem 3.3 will be split into whether maps under consideration are holomorphi-

cally degenerate or not.

3.4 Proof of Theorem 3.3 for holomorphically non-degenerate maps

We consider a germ 𝑓 as above, at a point 𝑞 ∈ 𝑀0 = 𝑈 ∩𝑀, satisfying 𝜅𝑓 = 0. Hence, there exist
𝛼(1), … , 𝛼(𝑁

′) ∈ ℕ𝑛 with each |𝛼(𝓁)| ⩽ 𝑁′, and 𝑖1, … , 𝑖𝑁′ ∈ {1, … , 𝑑′} such that we have on (𝑀, 𝑞),
that is, on𝑀 near 𝑞:

det

(
�̄�𝛼

(𝓁)
𝜌
(𝑖𝓁)

𝑍′
𝑘

(𝑓, 𝑓)

)
1⩽𝑘,𝓁⩽𝑁′

≢ 0. (3.5)

Note furthermore that we have on (𝑀, 𝑞)

�̄�𝛼
(𝓁)
𝜌(𝑖𝓁)(𝑓, 𝑓) = 0, 1 ⩽ 𝓁 ⩽ 𝑁′. (3.6)



754 LAMEL and MIR

It is clear that (3.6) may be written as an identity near 𝑞 ∈ 𝑀 in the form

𝓁
((
�̄�𝛼𝑓

)|𝛼|⩽𝑁′ , 𝑓, 𝑓) = 0, 1 ⩽ 𝓁 ⩽ 𝑁′, (3.7)

for some universal map  = (1, … ,𝑁
′
) where each 𝓁 = 𝓁((Λ𝛼)|𝛼|⩽𝑁′ , 𝜁′, 𝑍′) ∈

alg(Ωℂ)[(Λ𝛼)|𝛼|⩽𝑁′] depends only on 𝜌 and the choice of the 𝛼(𝓁)s and 𝑖𝓁s. Complexifying
(3.6), and using (3.7), (3.5) and Lemma 6.1, we obtain the existence of finitely many ℂ𝑁′ -valued
polynomial maps 1, … ,𝑒 ∈ (ℂ[(Λ𝛼)|𝛼|⩽𝑁′ , 𝑇])𝑁′ , depending only on , such that for some
𝜈 ∈ {1, … , 𝑒}, for (𝑍, 𝜁1) ∈ near (𝑞, �̄�) and every 𝑗 = 1,… ,𝑁′, we have

⎧⎪⎨⎪⎩
𝜈
𝑗

((
𝛼𝑓(𝜁1)

)|𝛼|⩽𝑁′ , 𝑓𝑗(𝑍)) = 0,

𝜕𝜈
𝑗

𝜕𝑇

((
𝛼𝑓(𝜁1)

)|𝛼|⩽𝑁′ , 𝑓𝑗(𝑍)) ≢ 0.
(3.8)

Hence, since we have only finitely many choices for the map , we have proved that property
(∗)0 holds for every germ of a holomorphically degenerate map 𝑓 ∈ 𝑞 with 𝑞 ∈ 𝑀0. (Note that
we have not used anywhere above the assumption about non-existence of 2-approximate CR -
deformations.) The proof of Theorem 3.3, in this first case, is therefore complete.

3.5 Proof of Theorem 3.3 for holomorphically degenerate maps

For germs of holomorphically degenerate maps, their degeneracy belongs to {1, … ,𝑁′}. Hence, it
is enough to prove that property (∗)0 holds for maps of a fixed degeneracy 𝜅 > 0. Let𝑀0 and𝑈 be
as before, 𝑞 ∈ 𝑀0 and 𝑓 ∈ 𝑞 of degeneracy 𝜅𝑓 = 𝜅 ⩾ 1.
We choose𝛼(1), … , 𝛼(𝑁′−𝜅) ∈ ℕ𝑛 with |𝛼(𝓁)| ⩽ 𝑁′ − 𝜅 and 𝑖1, … , 𝑖𝑁′−𝜅 ∈ {1, … , 𝑑′} such that near

𝑞 ∈ 𝑀, we have:

Rk
{
�̄�𝛼

(𝓁)
𝜌
(𝑖𝓁)

𝑍′
(𝑓, 𝑓) ∶ 1 ⩽ 𝓁 ⩽ 𝑁′ − 𝜅

}
= 𝑁′ − 𝜅. (3.9)

In order to prove the proposition, we will supplement the equations

�̄�𝛼
(𝓁)
𝜌(𝑓, 𝑓) = 0, 1 ⩽ 𝓁 ⩽ 𝑁′ − 𝜅, (3.10)

which hold on𝑀 near 𝑞 with other ones following [20] (see also [6, 22] for the smooth case).
In the 𝑁′ × (𝑁′ − 𝜅)matrix (�̄�𝛼(𝓁)𝜌𝑖𝓁

𝑍′
𝑘

(𝑓, 𝑓)) 1⩽𝑘⩽𝑁′
1⩽𝓁⩽𝑁′−𝜅

, we choose a minor of size 𝑁′ − 𝜅 whose

(generic) rank (near 𝑞) equals 𝑁′ − 𝜅. Observe that even though such a choice depends on the
map 𝑓, there are only finitely many choices of such minors for the entire collection of maps 𝑓
under consideration. We fix in what follows the choice of such a minor and assume, without loss
of generality, that the (𝑁′ − 𝜅) × (𝑁′ − 𝜅) matrix (�̄�𝛼(𝓁)𝜌𝑖𝓁

𝑍′
𝑘

(𝑓, 𝑓))1⩽𝑘,𝓁⩽𝑁′−𝜅 is of (generic) rank

𝑁′ − 𝜅 (near 𝑞).
In what follows, we shall call a map admissible, if it depends only on 𝜌, 𝜅 and the above choice

of minor (and not on 𝑞 and 𝑓). For every 𝑞 ∈ 𝑀
0
, we denote by𝕄𝑞, respectively,𝕄

𝐶𝑅
𝑞 , the quotient

field of the ring of germs at 𝑞 of real-analytic, respectively real-analytic and CR, functions on𝑀.
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An element of 𝕄𝑞 is CR if it belongs to 𝕄𝐶𝑅𝑞 . The following lemma follows from inspecting the
arguments of [20, section 4].

Lemma 3.4. With the above notation, for every 𝑞 ∈ 𝑀0 and every 𝑓 ∈ 𝑞 , there exist (unique)
𝑉1,… , 𝑉𝜅 ∈ (𝕄𝐶𝑅𝑞 )𝑁

′ with the following properties:

(i) For every 𝑗 = 1,… , 𝜅,

𝑡𝑉𝑗 ⋅ 𝜌
𝑍′
(𝑓, 𝑓) =

𝑁′∑
𝑘=1

𝑉
𝑗

𝑘
𝜌
𝑍′
𝑘

(𝑓, 𝑓) = 0, in (𝕄𝑞)
𝑑′ .

(ii) There exist a universal polynomial , and, for every 𝑗 = 1,… , 𝜅, universal ℂ𝑁′−𝜅-valued poly-
nomial maps of their arguments 𝑗 (independent of 𝑞 ∈ 𝑀0 and 𝑓 ∈ 𝑞 , and depending only
on 𝜅 and the above-mentioned choice of minor) such that, for every 𝑞 ∈ 𝑀0 and for every map
𝑓 ∈ 𝑞 as above,((�̄�𝛼𝜌𝑍′(𝑓, 𝑓))|𝛼|⩽𝑁′) ≢ 0, and

(𝑉
𝑗
1
, … , 𝑉

𝑗

𝑁′−𝜅
) =

𝑗
((
�̄�𝛼𝜌𝑍′(𝑓, 𝑓)

)|𝛼|⩽𝑁′)

((
�̄�𝛼𝜌𝑍′(𝑓, 𝑓)

)|𝛼|⩽𝑁′) , 𝑉
𝑗
𝜈 = 𝛿𝜈,𝑗+𝑁′−𝜅, 𝜈 = 𝑁

′ − 𝜅 + 1,… ,𝑁′,

where 𝛿𝜈,𝑗+𝑁′−𝜅 denotes the usual Kronecker symbol.

Remark 3.5.

(a) Note furthermore that the construction given in [20] also shows that the vectors 𝑉1,… , 𝑉𝜅
in the above lemma form a basis over 𝕄𝑞 of the vector space consisting of those vectors 𝑋 ∈
(𝕄𝑞)

𝑁′ satisfying 𝑋 ⋅ �̄�𝛼𝜌𝑍′(𝑓, 𝑓) = 0 for all 𝛼 ∈ ℕ𝑛 with |𝛼| ⩽ 𝑁′.
(b) In what follows, we shall consider each vector 𝑉𝑗 , 𝑗 = 1,… , 𝜅, as column vectors and 𝜌𝑍′ as a

𝑁′ × 𝑑′ matrix.

Writing𝕍 = (𝑉1, … , 𝑉𝜅), for every 𝑞 ∈ 𝑀0, each𝑓 ∈ 𝑞 (as above) satisfies the following system
in𝕄𝑞:

⎧⎪⎪⎨⎪⎪⎩

𝜌(𝑓, 𝑓) = 0,

𝑡𝕍 ⋅ 𝜌�̄�′ (𝑓, 𝑓) = 0
𝑡𝕍 ⋅ 𝜌𝑍′(𝑓, 𝑓) = 0

�̄�𝜈𝕍 = 0, 𝜈 = 1,… , 𝑛.

(3.11)

It follows from Lemma 3.4(ii) that we may write

𝕍 = 
((
�̄�𝛼𝑓

)|𝛼|⩽𝑁′ , 𝑓, 𝑓) (3.12)

for some universal admissible map  = ((Λ𝛼)|𝛼|⩽𝑁′ , 𝜁′, 𝑍′) whose components belong to the
quotient field of alg(Ωℂ)[(Λ𝛼)|𝛼|⩽𝑁′]. Here, we view 𝕍 and  as 𝑁′ × 𝜅 matrices, and we will
denote the entries of by (𝑖𝑗)1⩽𝑖⩽𝑁′

1⩽𝑗⩽𝜅

.
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As a consequence, the system (3.11) may be rewritten as a system of equations of the form

Υ
(
𝕍,

(
�̄�𝛼𝑓

)|𝛼|⩽𝑁′+1𝑓, 𝑓) = 0, (3.13)

satisfied in 𝕄𝑞, by every 𝑓 ∈ 𝑞 as above, for 𝑞 ∈ 𝑀0. Here, Υ = Υ(𝑇, (Λ𝛼)|𝛼|⩽𝑁′+1, 𝜁′, 𝑍′) is a
universal admissible map with components in the ringalg(Ωℂ)[𝑇, (Λ𝛼)|𝛼|⩽𝑁′+1]. We now claim
the following:

Claim 3.6. Under the assumptions of Theorem 3.3, for every 𝑞 ∈ 𝑀0 and every 𝑓 ∈ 𝑞 as above,

Rk
{
�̄�𝛽Υ𝑍′

(
𝕍,

(
�̄�𝛼𝑓

)|𝛼|⩽𝑁′+1, 𝑓, 𝑓) ∶ |𝛽| ⩽ 𝑁′} = 𝑁′,
where the rank is taken with respect to the field𝕄𝑞.

Claim 3.6 is proven in the case where𝑀′ is strictly pseudoconvex in [20]. The proof of Claim 3.6
in the present more general setting is deferred to Section 3.6. We shall now complete the proof of
Theorem 3.3 assuming the claim.
For every 𝛽 ∈ ℕ𝑛 with |𝛽| ⩽ 𝑁′, thanks to the chain rule, we may write

�̄�𝛽
(
Υ
(
𝕍,

(
�̄�𝛼𝑓

)|𝛼|⩽𝑁′+1, 𝑓, 𝑓)) = Υ(𝛽)
((
�̄�𝛾𝕍

)
|𝛾|⩽𝑁′ ,

(
�̄�𝛼𝑓

)|𝛼|⩽2𝑁′+1, 𝑓, 𝑓
)
,

for some universal admissible map Υ(𝛽) = Υ(𝛽)((𝑇𝛾)|𝛾|⩽𝑁′ , (Λ𝛼)|𝛼|⩽2𝑁′+1, 𝜁′, 𝑍′) with components
inalg(Ωℂ)[(𝑇𝛾)|𝛾|⩽𝑁′ , (Λ𝛼)|𝛼|⩽2𝑁′+1].
For every 𝑞 ∈ 𝑀0 and every 𝑓 ∈ 𝑞, we may extract, according to Claim 3.6, 𝑁′ components

from the map (Υ(𝛽))|𝛽|⩽𝑁′ , that we denote in what follows by Υ̂, such that

Rk

{
Υ̂𝑍′

((
�̄�𝛾𝕍

)
|𝛾|⩽𝑁′ ,

(
�̄�𝛼𝑓

)|𝛼|⩽2𝑁′+1, 𝑓, 𝑓
)}

= 𝑁′. (3.14)

Of course, such a choice depends on each map 𝑓 ∈ 𝑞; however, note again that there are only
finitely many such possible choices. Furthermore, it follows from (3.13) that the identity

Υ̂

((
�̄�𝛾𝕍

)
|𝛾|⩽𝑁′ ,

(
�̄�𝛼𝑓

)|𝛼|⩽2𝑁′+1, 𝑓, 𝑓
)
= 0 (3.15)

holds in𝕄𝑞.
Complexifying (3.15), we have the following identity:

Υ̂

((
𝛾𝕍(𝜁1)

)
|𝛾|⩽𝑁′ ,

(
𝛼𝑓(𝜁1)

)|𝛼|⩽2𝑁′+1, 𝑓(𝜁1), 𝑓(𝑍)
)
= 0 (3.16)

for (𝑍, 𝜁1) ∈ near (𝑞, �̄�) and where the above identity is understood in the field of fractions of
germs at (𝑞, �̄�) of holomorphic functions on. Complexifying and conjugating (3.12) yields

𝕍(𝜁1) = 
((

 𝛼𝑓(𝑍1)
)|𝛼|⩽𝑁′ , 𝑓(𝑍1), 𝑓(𝜁1)), (3.17)
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for (𝑍1, 𝜁1) ∈ near (𝑞, �̄�). Differentiating (3.17), we see that we may write

⎧⎪⎨⎪⎩
(
𝛾𝕍(𝜁1)

)
|𝛾|⩽𝑁′ = 1

(
Θ(𝑍, 𝜁1, 𝑍1),

(
𝜕𝛼𝑓(𝑍1)

)|𝛼|⩽2𝑁′ , (𝜕𝛼𝑓(𝜁1))|𝛼|⩽𝑁′ , 𝑓(𝑍1), 𝑓(𝜁1)),(
𝛼𝑓(𝜁1)

)|𝛼|⩽2𝑁′+1 = 2

(
Θ(𝑍, 𝜁1, 𝑍1),

(
𝜕𝛼𝑓(𝜁1)

)|𝛼|⩽2𝑁′+1)
(3.18)

for some universal admissible map (1,2) =  =  (𝑋, (Γ𝛼)|𝛼|⩽2𝑁′ , (Λ𝛼)|𝛼|⩽2𝑁′+1, 𝑍′, 𝜁′),
depending, in addition, on the second choice of minor, and whose components belong to the
quotient field ofalg(Ωℂ)[𝑋, (Γ𝛼)|𝛼|⩽2𝑁′ , (Λ𝛼)|𝛼|⩽2𝑁′+1] and some universal holomorphic map Θ
defined on 𝑈3 and depending only on 𝑀. Substituting (3.18) into (3.16), clearing denominators
and using Lemma 6.1 as well as our specific choice of Υ̂ provides the required conclusion of The-
orem 3.3.

3.6 Proof of Claim 3.6

WenowproveClaim3.6 by contradiction.Hence let us assume that for some 𝑞 ∈ 𝑀0 and some𝑓 ∈
𝑞, we have Rk {�̄�𝛽Υ𝑍′(𝕍, (�̄�𝛼𝑓)|𝛼|⩽𝑁′+1, 𝑓, 𝑓) ∶ |𝛽| ⩽ 𝑁′} = 𝑁′ − 𝜂 for some 𝜂 > 0. We note that
from the construction ofΥ given in (3.11), it follows that 0 < 𝜂 ⩽ 𝜅. Repeating the same arguments
borrowed from [20] to derive Lemma 3.4, we get the following:

Lemma 3.7. With the above notation, for 𝑞 and 𝑓 as chosen above, there exist 𝑊1,… ,𝑊𝜂 ∈

(𝕄𝐶𝑅𝑞 )
𝑁′ , of (generic) rank 𝜂 such that, for every 𝑗 = 1,… , 𝜂,

𝑡𝑊𝑗 ⋅ Υ𝑍′
(
𝕍,

(
�̄�𝛼𝑓

)|𝛼|⩽𝑁′+1, 𝑓, 𝑓) =
𝑁′∑
𝓁=1

𝑊
𝑗

𝓁Υ𝑍′𝓁

(
𝕍,

(
�̄�𝛼𝑓

)|𝛼|⩽𝑁′+1, 𝑓, 𝑓) = 0, in 𝕄𝑞.

Since 𝜂 ⩾ 1, applying the above lemma to one single vector 𝑊 ∶= 𝑊1 and using how Υ is
defined through (3.11), we obtain in𝕄𝑞, for every 1 ⩽ 𝓁 ⩽ 𝜅,

⎧⎪⎪⎨⎪⎪⎩

𝑡𝑊 ⋅ 𝜌𝑍′(𝑓, 𝑓) = 0,
𝑡𝑊 ⋅ 𝜌𝑍′�̄�′ (𝑓, 𝑓) ⋅ 𝑉𝓁 = 0,
𝑡𝑊 ⋅ 𝑉𝓁

𝑍′
⋅ 𝜌𝑍′(𝑓, 𝑓) +

𝑡𝑊 ⋅ 𝜌𝑍′𝑍′ (𝑓, 𝑓) ⋅ 𝑉
𝓁 = 0,

𝑡𝑊 ⋅ (�̄�𝜈𝑉
𝓁)𝑍′ = 0, 𝜈 = 1,… , 𝑛,

(3.19)

as identities in𝕄𝑞. In (3.19), 𝜌𝑍′�̄�′ (𝑓, 𝑓) (respectively, 𝜌𝑍′𝑍′ (𝑓, 𝑓)) is the𝑁′ × 𝑁′ hermitian (respec-
tively, symmetric) matrix with entries (𝜌𝑍𝑖�̄�′𝑗 (𝑓, 𝑓))𝑖,𝑗 (respectively (𝜌𝑍𝑖𝑍′𝑗 (𝑓, 𝑓))𝑖,𝑗),𝑉

𝓁
𝑍′
is the𝑁′ ×

𝑁′ matrix with entries ((𝑉𝓁
𝑗
)𝑍′
𝑖
)𝑖,𝑗 and (�̄�𝜈𝑉𝓁)𝑍′ is the 𝑁′ × 𝑁′ matrix with entries ((�̄�𝜈𝑉𝓁

𝑗
)𝑍′
𝑖
)𝑖,𝑗

where

(
𝑉𝓁
𝑗

)
𝑍′
𝑖

∶=
𝜕𝑗𝓁

𝜕𝑍′
𝑖

((
�̄�𝛼𝑓

)|𝛼|⩽𝑁′ , 𝑓, 𝑓), and
(
�̄�𝜈𝑉

𝓁
𝑗

)
𝑍′
𝑖

∶= �̄�𝜈

(
𝑉𝓁
𝑗

)
𝑍′
𝑖

.
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Since𝑊 is CR, it follows from the first equation in (3.19) and Remark 3.5 that

𝑊 =

𝜅∑
𝓁=1

𝜆𝓁𝑉
𝓁 (3.20)

for some 𝜆𝓁 ∈ 𝕄𝑞. In fact, as a consequence of Cramer’s rule and the fact that each𝑉𝓁 is CR, each
𝜆𝓁 must be CR as well. Hence, using (3.20), (3.19) and the fact that 𝑊 and the 𝜆𝓁 ’s are CR, we
obtain

⎧⎪⎪⎨⎪⎪⎩

𝑡𝑊 ⋅ 𝜌𝑍′(𝑓, 𝑓) = 0,
𝑡𝑊 ⋅ 𝜌𝑍′�̄�′ (𝑓, 𝑓) ⋅𝑊 = 0,

𝑡𝑊 ⋅
(∑𝜅

𝓁=1 𝜆𝓁𝑉
𝓁
𝑍′

)
⋅ 𝜌𝑍′(𝑓, 𝑓) +

𝑡𝑊 ⋅ 𝜌𝑍′𝑍′ (𝑓, 𝑓) ⋅𝑊 = 0,

�̄�𝜈
(
𝑡𝑊 ⋅

(∑𝜅
𝓁=1 𝜆𝓁(𝑉

𝓁)𝑍′
))

= 0, 𝜈 = 1,… , 𝑛.

(3.21)

If we set Δ ∶=𝑡𝑊 ⋅ (
∑𝜅

𝓁=1 𝜆𝓁𝑉
𝓁
𝑍′
), it follows from the last equation in (3.21) that Δ is a (row) vec-

tor in ℂ𝑁′ with components in 𝕄𝐶𝑅𝑞 . For 𝜏 ∈ ℂ, we further set 𝐷(𝜏) = 𝑓 +𝑡𝑊 𝜏 + 1

2
𝜏2Δ and note

that 𝐷(𝜏) ∈ (𝕄𝐶𝑅𝑞 [𝜏])
𝑁′ . Since each component of 𝜌 is real-valued, it follows from the three first

equations of (3.21) that, in the ring𝕄𝑞[[𝜏, �̄�]], we have

𝜌(𝐷(𝜏), 𝐷(𝜏)) = 𝑂(|𝜏|3). (3.22)

Pick a point 𝑞0 ∈ 𝑀 (arbitrarily close to 𝑞) so that𝑊 andΔ are real-analytic near 𝑞0 and𝑊(𝑞0) ≠ 0.
It follows from (3.22) that𝐷 is a (germ at (𝑞0, 0)) of a non-trivial 2-approximate CR -deformation
from𝑀 into𝑀′, a contradiction. The claim is proven.

4 PROOFS OF THEOREM 1.1, COROLLARIES 1.2, 1.5, 1.6 AND
REMARKS

4.1 Proof of Theorem 1.1

We need the following result which follows from inspecting [24].

Proposition 4.1. Let𝑀 ⊂ ℂ𝑁 be a real-analytic CR submanifold,𝑀′ ⊂ ℂ𝑁
′ a Nash submanifold,

and  a subsheaf of∞
CR
(𝑀,𝑀′). Assume that𝑀 is minimal and there is no germ of a non-trivial

2-approximate CR -deformation from𝑀 into𝑀′. Then  ⊂ 𝜔
𝐶𝑅
(𝑀,𝑀′).

Proof. By contradiction, let us assume that there exists a germ of a ∞-smooth CR 𝑓∶ (𝑀, 𝑝) →
𝑀′, with 𝑓 ∈ 𝑝, that is not real-analytic at 𝑝. Then according to [24, Theorem 1.8], there exist a
point 𝑞 ∈ 𝑀 (arbitrarily close to𝑝) and a germof a real-analytic CRmapΦ∶ (𝑀 × ℂ𝑘𝜏 , (𝑞, ℎ(𝑞))) →

ℂ𝑁
′−𝑘, where 𝑓 = (g , ℎ) ∈ ℂ𝑁′−𝑘 × ℂ𝑘, 1 ⩽ 𝑘 < 𝑁′, such that Φ(𝜉, ℎ(𝜉)) = g(𝜉) for 𝜉 near 𝑞 and

such that (𝑀 × ℂ𝑘, (𝑞, ℎ(𝑞))) ∋ (𝜉, 𝜏) ↦ (Φ(𝜉, 𝜏), 𝜏) ∈ 𝑀′. Hence the germ at (𝑞, 0) of the ∞-
smooth CR map 𝐵(𝜉, 𝑡) = (Φ(𝜉, 𝑡 + ℎ(𝜉)), 𝑡 + ℎ(𝜉)) defines a 2-approximate CR -deformation
of𝑀 into𝑀′, a contradiction. □
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When 𝑀 is generic, Theorem 1.1 follows from combining Proposition 4.1, Theorem 3.3 and
Theorem 2.2. When 𝑀 is not generic, then the conclusion follows easily from the generic
case since any such 𝑀 is locally biholomorphically equivalent to a �̃� × {0} ⊂ ℂ𝑁−𝑟 × ℂ𝑟 for
some (real-analytic) generic submanifold �̃� of ℂ𝑁−𝑟 (see, for example, [3]). The proof is
complete.

4.2 Proof of Corollaries 1.2 and 1.6

Corollaries 1.2 and 1.6 follow from Theorem 1.1 and Lemma 3.2.

4.3 Proof of Corollary 1.5

Corollary 1.5 follows as an immediate consequence of Theorem 1.1 and the following result, which
is a consequence of [21, Proposition 6.4].

Proposition 4.2. Let 𝑀 ⊂ ℂ𝑁 and 𝑀′ ⊂ ℂ𝑁
′ be connected real-analytic Levi–non-degenerate

hypersurfaces, of signature 𝓁 and 𝓁′, respectively, with 𝑁,𝑁′ ⩾ 2. Let  denote the subsheaf of
∞
CR
(𝑀,𝑀′) consisting of CR transversal maps. If there exists a 2-approximate CR -deformation

from𝑀 into𝑀′, then𝑀 and𝑀′ have different signatures and cosignatures.

4.4 Remarks

In our statement of Theorem 1.1, we have assumed that the target manifold 𝑀′ is Nash. As the
reader might have observed, our proof also applies to the more general setting of a real-algebraic
submanifold𝑀′ that can be covered by finitely many open subsets𝑀′

1
, … ,𝑀′

𝑚 satisfying, for each
1 ⩽ 𝑗 ⩽ 𝑚,𝑀′

𝑗
= {𝑍′ ∈ Ω𝑗 ∶ 𝜌𝑗(𝑍

′, �̄�′) = 0} for some ℝ𝑑′ -valued real-algebraic map 𝜌𝑗 of rank 𝑑′
over Ω𝑗 .
The methods previously developed to study finite jet determination can also be used to

derive another result, of independent interest, regarding the extendability properties of germs
of CR maps. More precisely, the following result follows by combining Theorem 3.3 and
Proposition 2.7.

Proposition 4.3. Let𝑀 ⊂ ℂ𝑁 be a real-analytic generic submanifold,𝑀′ ⊂ ℂ𝑁
′ a Nash subman-

ifold, and  a subsheaf of ∞
CR
(𝑀,𝑀′). Assume that 𝑀 is minimal and there is no germ of a 2-

approximate CR -deformation from𝑀 into𝑀′. Then for every point 𝑝0 ∈ 𝑀, there exists a neigh-
bourhood 𝑉 of 𝑝0 in ℂ𝑁 such that for every 𝑞 ∈ 𝑉, every 𝑓 ∈ 𝑞 extends as a meromorphic corre-
spondence over 𝑉.

It is unknown, in general, whether every 𝑓 as in Proposition 4.3 extends as ameromorphicmap
over 𝑉. However, in the case where𝑀′ is the sphere, such a conclusion is known to be true (see
[27]).
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5 HYPERSURFACES FOLIATED BY COMPLEX SUBMANIFOLDS
AND PROOF OF COROLLARY 1.7

In this section, we want to discuss in further details applications of Theorem 1.1 to the case where
the target manifold 𝑀′ is a weakly pseudoconvex real hypersurface, that is, in addition, every-
where Levi-degenerate. The considerations below are valid with 𝑀′ being real-analytic (instead
of Nash).
It is a classical fact that near uniformly pseudoconvex points (that is, points where the rank of

the Levi form is locally constant) such hypersurfaces carry a foliation 𝜂 (the so-called Levi folia-
tion) by complex manifolds 𝜂𝑝 induced by the distribution of the Levi kernels𝑞 ⊂ 𝑇

(1,0)
𝑞 𝑀′, that

is, defined through 𝑇𝑞𝜂𝑝 =𝑞, for 𝑞 ∈ 𝜂𝑝 (see [13]).
Given any foliation 𝜂 of𝑀′ by complex manifolds, Greilhuber and the first author introduced

in [16] an invariant 𝜈 on 𝑀′ measuring the (CR) dimension of images of possible maps which
would allow for a deformation in the direction of the leaves, given by

𝜈𝑝′ ∶= max
0≠𝑉𝑝′∈𝑇𝑝′𝜂

dimℂ ker
(
�̄�𝑝′ → ℙ𝑇ℂ𝑁′∕𝑇𝜂(�̄�𝑝′𝑉)

)
− dimℂ 𝜂. (5.1)

This definition is independent of any particular choices of extensions (in the appropriate bundles),
that is, the map

𝑅∶ 𝑇(0,1)
𝑝′

𝑀′ × 𝑇𝑝′𝜂 →
𝑇𝑝′ℂ

𝑁′

⟋𝑇𝑝′𝜂
𝑅(�̄�𝑝′ , 𝑉𝑝′) = ℙ𝑇𝑝′ℂ𝑁

′∕𝑇𝑝′𝜂

(
�̄�𝑝′𝑉

)
is a well-defined linear map (see [16] for details). The relevance of the invariant 𝜈 to study
approximate CR deformations is as follows. Given, in addition, a real-analytic CR submanifold
𝑀 ⊂ ℂ𝑁 , the existence of a 2-approximate CR deformation 𝐵 = 𝐵(𝜉, 𝑡) from𝑀 into𝑀′ (deform-
ing 𝐵0(𝜉) ∶= 𝐵(𝜉, 0) as in Definition 3.1), near a point 𝑝 ∈ 𝑀, would necessarily lead to a ‘large’
invariant 𝜈𝐵0(𝑝), if one can show that the (1,0)-vector fields 𝐵𝑡𝑗 (𝜉, 0) ∈ 𝑇𝐵0(𝜉)𝜂, 1 ⩽ 𝑗 ⩽ 𝑘, since
these are CR in the directions along 𝐵0(𝑀). For the convenience of the reader, we translate some
of the results in [16] into the language we are using here, and give short proofs. As soon as we
talk about a uniformly pseudoconvex hypersurface, we will consider it as endowed with the Levi
foliation 𝜂.
Given a CR map 𝐻∶ 𝑀 → 𝑀′, its CR rank at the point 𝑝 ∈ 𝑀 is defined as the rank of the

(complex-linear) map 𝐻′|
𝑇
(1,0)
𝑝 𝑀

∶ 𝑇(1,0)𝑝 𝑀 → 𝑇(1,0)
𝐻(𝑝)

𝑀′ and is denoted CR−rk𝑝 𝐻. We also define
the CR rank of the germ of𝐻 at 𝑝 to be themaximum rank achieved over sufficiently small neigh-
bourhoods of 𝑝 in𝑀.

Lemma 5.1. Assume that𝑀 and𝑀′ are as above, and that, in addition,𝑀′ is a uniformly pseudo-
convex hypersurface. Let 𝐵∶ (𝑀 × ℂ, (𝑝, 0)) → ℂ𝑁

′ be a (germ of a) 2-approximate CR deformation
from 𝑀 into 𝑀′ and write 𝐵(𝜉, 𝑡) = 𝐵0(𝜉) + 𝐵1(𝜉)𝑡 + 𝐵2(𝜉)𝑡2 + 𝑂(𝑡2). Then for every 𝜉 ∈ 𝑀 near
𝑝, 𝐵1(𝜉) ∈ 𝑇𝐵0(𝜉)𝜂, and any CR vector of the form �̄�

′
𝐵0(𝜉)

= 𝐵′
0
(𝜉)�̄�𝜉 satisfies �̄�′𝐵0(𝜉)𝐵1(𝜉) = 0. In par-

ticular we have that for every 𝜉

𝜈𝐵0(𝜉) ⩾ CR−rk𝜉 𝐵0 − dimℂ 𝐵
′
0(𝜉)

(
𝑇(1,0)
𝜉

𝑀
)
∩ 𝑇𝐵0(𝜉)𝜂 = dimℂ

𝐵′0(𝜉)
(
𝑇(1,0)
𝜉

𝑀
)
⟋𝑇𝐵0(𝜉)𝜂

.
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Proof. Wehave already observed that 𝐵1(𝜉) is Levi-null for every 𝜉, and since𝑀′ is pseudoconvex,
this implies that 𝐵1(𝜉) is in the Levi-kernel, that is, 𝐵1(𝜉) ∈ 𝑇𝐵0(𝜉)𝜂.
As for the second part of the Lemma, let �̄�′

𝐵0(𝜉)
= 𝐵′

0
(𝜉)�̄�𝜉 and assume without loss of gener-

ality that �̄�′
𝐵0(𝜉)

≠ 0. We choose a non-singular parametrized real surface 𝛾∶ ℂ𝜁 ⊃ {|𝜁| < 𝜀} → 𝑀,

𝜁 ↦ 𝛾(𝜁, 𝜁) such that 𝛾(0) = 𝜉 and �̄�𝜉 = 𝛾∗
𝜕

𝜕𝜁

||||𝜁=0. Note that the image of �̂� = 𝐵0◦𝛾 is also a

non-singular real surface, satisfying �̂�(0) = 𝐵0(𝜉) and �̂�∗
𝜕

𝜕𝜁

||||𝜁=0 = �̄�′𝐵0(𝜉). By assumption, the map
�̂�1 = 𝐵1◦𝛾 is smooth and takes values in 𝑇𝜂; we can therefore write �̂�1 = �̃�1◦𝐵0◦𝛾 for a smooth
section �̃�1 of 𝑇𝜂.
It follows that

�̄�′
𝐵0(𝜉)

𝐵1(𝜉) =
𝜕

𝜕𝜁

||||𝜁=0�̃�1(𝐵0(𝛾(𝜁, 𝜁))) = 𝜕

𝜕𝜁

||||𝜁=0𝐵1(𝛾(𝜁, 𝜁)) = 0,
because 𝐵1 is CR on𝑀. This proves the first part of the lemma. The second part is a direct appli-
cation of the first part. □

We therefore obtain the following result about maps into uniformly pseudoconvex hypersur-
faces whose invariant 𝜈 is everywhere zero:

Proposition 5.2. Let𝑀,𝑀′ be as in Lemma 5.1, and assume that𝑀 is minimal and that 𝜈 ≡ 0 all
over𝑀′. Let  be a subsheaf of∞

CR
(𝑀,𝑀′). If, for every 𝑝 ∈ 𝑀, every ℎ ∈ 𝑝 does not map (𝑀, 𝑝)

completely into the leaf 𝜂ℎ(𝑝) of the Levi foliation of𝑀′, then there is no germ of 2-approximate -
deformation from𝑀 into𝑀′. In particular, this assumption is satisfied if the CR rank of everyℎ ∈ 𝑝
exceeds the (complex) fiber dimension of 𝜂.

Proof. By Lemma 5.1, in order to exclude 2-approximate -deformations, we only have to check
that, for every 𝑝 ∈ 𝑀 and every ℎ ∈ 𝑝, there exists 𝜉 ∈ 𝑀 close to 𝑝 such that ℎ′(𝜉)(𝑇(1,0)

𝜉
𝑀) ⊄

𝑇ℎ(𝜉)𝜂. So assume that this is not the case, that is, for a full neighbourhood 𝑈 of 𝑝 in𝑀, we have
that ℎ′(𝜉)(𝑇(1,0)

𝜉
𝑀) ⊂ 𝑇ℎ(𝜉)𝜂. Identifying 𝑇(1,0)𝑀 with 𝑇𝑐𝑀, we hence have ℎ′(𝜉)(𝑇𝑐

𝜉
𝑀) ⊂ 𝑇ℎ(𝜉)𝜂

for each 𝜉 ∈ 𝑈. Hence, every polygonal path 𝛾 ⊂ 𝑈 starting at 𝑝 tangent to 𝑇𝑐𝑀 must be mapped
under ℎ to the leaf 𝜂ℎ(𝑝). By minimality (see [3]), every point in a neighbourhood 𝑈 ⊂ 𝑈 of 𝑝 in
𝑀 can be obtained as the endpoint of such a path, and therefore, we have ℎ(𝑈) ⊂ 𝜂ℎ(𝑝). The proof
of the proposition is complete. □

We are now going to assume that the Levi form of 𝑀′ has 𝑛′+ positive eigenvalues (since we
are assuming 𝑀′ to be uniformly pseudoconvex, everywhere), that is, 𝑁′ = 𝑛′+ + 𝑛0 + 1 with 𝑛0
denoting the dimension of each fiber of the null bundle . Similarly, we assume fromnowon that
𝑀 is a real pseudoconvex hypersurface andwrite𝑛+(𝜉) for the number of positive Levi eigenvalues
of𝑀 at any point 𝜉 ∈ 𝑀.

Lemma 5.3. Let 𝑀,𝑀′ be real-analytic pseudoconvex hypersurfaces in ℂ𝑁 and ℂ𝑁′ , respectively,
with𝑀′ ⊂ ℂ𝑁

′ uniformly pseudoconvex. If 𝐵∶ (ℂ𝑁 × ℂ, (𝑝, 0)) → ℂ𝑁
′ is a 2-approximate CR defor-

mation from 𝑀 into 𝑀′ such that 𝐵0 is CR transversal at 𝜉 ∈ 𝑀 near 𝑝, then max{𝜈𝐵0(𝜉), 𝑛
′
+} ⩾

𝑛+(𝜉).
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Proof. By the transversality assumption, the Levi form of𝑀 can be computed from the Levi form
′ of𝑀′ by𝜉(𝑋, 𝑌) = 𝑐′𝜉′ (𝐵

′
0
(𝜉)𝑋, 𝐵′

0
(𝜉)𝑌) for some 𝑐 > 0 and all vectors𝑋,𝑌 ∈ 𝑇1,0

𝜉
𝑀 (see, for

example, [3]). Since𝜉 has𝑛+(𝜉) eigenvalues, the range of𝐵′0(𝜉)modulo𝑇𝐵0(𝜉)𝜂 is of dimension at
least 𝑛+(𝜉), and hence by Lemma 5.1, we must have 𝜈𝐵0(𝜉) ⩾ 𝑛+(𝜉). The other inequality 𝑛

′
+ ⩾ 𝑛+

easily follows from the same identity. □

A particularly important class of target manifolds 𝑀′ we are now considering are the bound-
aries of the classical domains. In that situation, the invariant 𝜈 has been computed in [16], and
we recall its values. To start with, we recall that the classical domains of type I-IV are the sets of
matrices given by

𝐷𝑚,𝑛
𝐼

= {𝑍 ∈ ℂ𝑚×𝑛 ∶ 𝕀𝑚 − 𝑍𝑍
∗ > 0},

𝐷𝑚𝐼𝐼 =
{
𝑍 ∈ ℂ𝑚×𝑚 ∶ 𝑍𝑇 = −𝑍, 𝕀𝑚 − 𝑍

∗𝑍 > 0
}
,

𝐷𝑚𝐼𝐼𝐼 =
{
𝑍 ∈ ℂ𝑚×𝑚 ∶ 𝑍𝑇 = 𝑍, 𝕀𝑚 − 𝑍

∗𝑍 > 0
}
,

𝐷𝑚𝐼𝑉 =
{
𝑧 ∈ ℂ𝑚 ∶ 𝑧∗𝑧 < 1, 1 + |𝑧𝑇𝑧|2 − 2𝑧∗𝑧 > 0}.

We will denote the regular part of their boundaries by 𝑀𝑚,𝑛
𝐼

, 𝑀𝑚
𝐼𝐼
, 𝑀𝑚

𝐼𝐼𝐼
and 𝑀𝑚

𝐼𝑉
. We recall that

the domains of types I–III contain matrices whose singular values are strictly less than 1, and the
regular part of their boundaries contain those which have exactly one (or two) of their singular
values equal to one. The type IV domain is biholomorphic to the tube over the light cone. The
regular parts of the boundaries are homogeneous real hypersurfaces, and in particular, 𝜈 and 𝑛′+
remain constant throughout; the following table gives the values of these invariants (the com-
putation can be found in [16]). We also include, for easy reference, the corresponding (complex)
dimensions of the Levi foliation.

𝝂 𝒏′
+

𝐝𝐢𝐦𝑻𝜼

𝑀𝑚,𝑛
𝐼

𝑚 + 𝑛 − 4 𝑚 + 𝑛 − 2 (𝑚 − 1)(𝑛 − 1)

𝑀𝑚
𝐼𝐼

2𝑚 − 8 2𝑚 − 4 (𝑚 − 2)(𝑚 − 3)∕2

𝑀𝑚
𝐼𝐼𝐼

𝑚 − 2 𝑚 − 1 𝑚(𝑚 − 1)∕2

𝑀𝑚
𝐼𝑉

0 𝑚 − 2 1

A direct consequence of Lemma 5.3 and the above table is the following proposition; note in
particular that we get only information for one particular source signature in the case of the type
III domains.

Proposition 5.4. Let 𝑀 ⊂ ℂ𝑁 be a connected, real-analytic, pseudoconvex hypersurface and set
𝑛+ ∶= max {𝑛+(𝜉) ∶ 𝜉 ∈ 𝑀}. Let 𝑀′ ⊂ ℂ𝑁

′ be a real-analytic hypersurface and denote by  the
subsheaf of ∞

CR
(𝑀,𝑀′) of generically CR transversal maps. Then there is no 2-approximate CR

-deformation if:

I) 𝑀′ = 𝑀𝑚,𝑛
𝐼

,𝑚, 𝑛 ⩾ 2, and𝑚 + 𝑛 − 4 < 𝑛+ ⩽ 𝑚 + 𝑛 − 2;
II) 𝑀′ = 𝑀𝑚

𝐼𝐼
,𝑚 ⩾ 4, and 2𝑚 − 8 < 𝑛+ ⩽ 2𝑚 − 4;

III) 𝑀′ = 𝑀𝑚
𝐼𝐼𝐼
,𝑚 ⩾ 2, and 𝑛+ = 𝑚 − 1;

IV) 𝑀′ = 𝑀𝑚
𝐼𝑉
,𝑚 ⩾ 2, 0 < 𝑛+ ⩽ 𝑚 − 2.
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We can now give the proof of Corollary 1.7.

Proof of Corollary 1.7. We first note 𝑛+(𝜉) = 𝑛+ for 𝜉 on a dense open subset of𝑀. We also note
that all four types of boundaries of classical domains considered here are Nash real hypersurfaces
(as can be seen from [16, 29]). Parts (i), (ii) and (iii) of Corollary 1.7 then follow from applying
Theorem 1.1 and Proposition 5.4. Regarding part (iv), the reader may check that the minimality of
𝑀 together with 𝑚 ⩾ 𝑁 implies that 0 < 𝑛+ ⩽ 𝑚 − 2 which allows to conclude the same way as
above. □

Let us also mention an immediate application of Theorem 1.1, Proposition 5.2 and the above
table, for targets of type IV and in which the source need not be of hypersurface type.

Corollary 5.5. Let𝑀 ⊂ ℂ𝑁 be a real-analytic minimal real-analytic CR submanifold and  be the
subsheaf of∞

CR
(𝑀,𝑀𝑚

𝐼𝑉
) whose stalk 𝑝 at any point 𝑝 ∈ 𝑀 consists of those germs whose generic

rank is ⩾ 3. Then (𝑀,𝑀𝑚
𝐼𝑉
,) has the strong finite jet determination property.

Note that in the above corollary, the notion of generic rank for a germ 𝑓 ∈ 𝑝 is well defined
as a consequence of the minimality assumption on𝑀.
We now discuss examples to show that the range of values for 𝑛+ in Corollary 1.7 is in some

sense optimal; these are adapted to the present finite jet determination setting from the examples
given, for example, in [16], which we refer to for the detailed arguments.

Example 5.6. Consider the setΣ𝐼 of rank 1matrices of norm 1 inℂ(𝑚−1)×(𝑛−1), that is, the intersec-
tion of the (euclidean) unit sphere with the complex submanifold 1 of rank 1 matrices, which is
of dimension𝑚 + 𝑛 − 3, and therefore can locally be identified withℂ𝑚+𝑛−3. Furthermore, Σ𝐼 is a
strictly pseudoconvex hypersurface of 1. Pick any matrix 𝐴 ∈ Σ𝐼 . For any holomorphic function
𝜑 on 1 near 𝐴, vanishing at 𝐴, the (local) holomorphic map

1 ∋ 𝑍 ↦

(
𝑍 0

0 𝜑(𝑍)

)

maps (Σ𝐼, 𝐴) (transversally) into𝑀
𝑚,𝑛
𝐼

. This shows that finite jet determination does not hold for
CR transversal maps between Σ𝐼 into𝑀

𝑚,𝑛
𝐼

. Note that in this example, 𝑛+ = 𝑚 + 𝑛 − 4.

Example 5.7. A similar construction can be made for the set Σ𝐼𝐼 of anti-symmetric rank two
matrices of norm 1 and of size (𝑚 − 2) × (𝑚 − 2). The set 2 of anti-symmetric rank two matrices
and of size (𝑚 − 2) × (𝑚 − 2) is a (2𝑚 − 7)-dimensional complex submanifold, and therefore can
be locally identified with ℂ2𝑚−7. Furthermore, Σ𝐼𝐼 is a strictly pseudoconvex hypersurface of 2.
Pick anymatrix𝐴 ∈ Σ𝐼𝐼 . For any holomorphic function 𝜑 on2 near𝐴, vanishing at𝐴, the (local)
holomorphic map

2 ∋ 𝑍 ↦
⎛⎜⎜⎝
𝑍 0 0

0 0 𝜑(𝑍)

0 −𝜑(𝑍) 0

⎞⎟⎟⎠
maps (Σ𝐼𝐼, 𝐴) (transversally) into𝑀𝑚

𝐼𝐼
and therefore, finite jet determination does not hold for CR

transversal maps between Σ𝐼𝐼 and𝑀𝑚
𝐼𝐼
. Note that in this example, 𝑛+ = 2𝑚 − 8.
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Example 5.8. A similar construction can bemade for the set Σ𝐼𝐼𝐼 of symmetric rank onematrices
of size (𝑚 − 1) × (𝑚 − 1). The set 3 of symmetric rank one matrices of size (𝑚 − 1) × (𝑚 − 1) is
an (𝑚 − 1)-dimensional complex submanifold, locally equivalent to ℂ𝑚−1. Σ𝐼𝐼𝐼 is a strictly pseu-
doconvex hypersurface of 3. As above, pick any𝐴 ∈ Σ𝐼𝐼𝐼 and any holomorphic function 𝜑 on 3
near 𝐴, vanishing at 𝐴, then the (local) holomorphic map

3 ∋ 𝑍 ↦

(
𝑍 0

0 𝜑(𝑍)

)

maps (Σ𝐼𝐼𝐼 , 𝐴) (transversally) into 𝑀𝑚
𝐼𝐼𝐼

and thus finite jet determination does not hold for CR
transversal maps between Σ𝐼𝐼𝐼 and𝑀𝑚

𝐼𝐼𝐼
. Note that in this case 𝑛+ = 𝑚 − 2.

Of course, Lemma 5.3 gives additional information even if the source has a non-trivial Levi
foliation, aswell. In the following table, we summarize the range of dimensions forwhich finite jet
determination holds for CR transversal maps from the boundary of a classical domain to another
one. Targets are denoted with primes. We do not discuss the actual existence of such maps here,
hence, part of the entries might be void. Because the type IV target is covered by Proposition 5.2,
we omit it from the list of targets.

𝑴𝒎′,𝒏′

𝑰
𝑴𝒎′

𝑰𝑰
𝑴𝒎′

𝑰𝑰𝑰

𝑀𝑚,𝑛
𝐼

𝑚 + 𝑛 ⩽ 𝑚′ + 𝑛′ ⩽ 𝑚 + 𝑛 + 1 𝑚 + 𝑛 + 2 ⩽ 2𝑚′ ⩽ 𝑚 + 𝑛 + 5 𝑚′ = 𝑚 + 𝑛 − 1

𝑀𝑚
𝐼𝐼

𝑚′ + 𝑛′ + 1 ⩽ 2𝑚 ⩽ 𝑚′ + 𝑛′ + 2 𝑚 ⩽ 𝑚′ ⩽ 𝑚 + 1 𝑚′ = 2𝑚 − 3

𝑀𝑚
𝐼𝐼𝐼

𝑚 + 1 ⩽ 𝑚′ + 𝑛′ ⩽ 𝑚 + 2 𝑚 + 3 ⩽ 2𝑚′ ⩽ 𝑚 + 6 𝑚′ = 𝑚

𝑀𝑚
𝐼𝑉

𝑚 ⩽ 𝑚′ + 𝑛′ ⩽ 𝑚 + 1 𝑚 + 2 ⩽ 2𝑚′ ⩽ 𝑚 + 5 𝑚′ = 𝑚 − 1

We note that the entries in the diagonal are again optimal: indeed, the preceding examples can
be adapted to consider sources which are (regular parts of) boundaries of bounded symmetric
domains. To be more specific, the maps

𝑀𝑚,𝑛
𝐼

∋ 𝑍 ↦

(
𝑍 0

0 𝜑(𝑍)

)
∈ 𝑀𝑚+1,𝑛+1

𝐼

𝑀𝑚
𝐼𝐼 ∋ 𝑍 ↦

⎛⎜⎜⎝
𝑍 0 0

0 0 𝜑(𝑍)

0 −𝜑(𝑍) 0

⎞⎟⎟⎠ ∈ 𝑀
𝑚+2
𝐼𝐼

𝑀𝑚
𝐼𝐼𝐼 ∋ 𝑍 ↦

(
𝑍 0

0 𝜑(𝑍)

)
∈ 𝑀𝑚+1

𝐼𝐼𝐼

show that finite jet determination is no longer possible for higher rank targets.

6 UNIVERSALITY PROPERTIES OF POLYNOMIAL EQUATIONS
SATISFIED BY POWER SERIES

This section is devoted to some universality properties of polynomial equations satisfied by con-
vergent power series. Even though the tools we are using are standard in commutative algebra,
we have not been able to find the precise results needed for this paper in the literature.
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In what follows, we denote by ℂ((𝑥)) the field of fractions of ℂ{𝑥}, where 𝑥 = (𝑥1, … , 𝑥𝑛).

Lemma 6.1. Let 𝑃(𝑋, 𝑇) = (𝑃1(𝑋, 𝑇), … , 𝑃𝓁(𝑋, 𝑇)) be a complex-algebraic map defined on some
connected open setΩ ⊂ ℂ𝑚

𝑋
× ℂ𝓁

𝑇
. Then there exists a finite collection of ℂ𝓁-valued polynomial maps

Δ(1), … , Δ(𝑒) ∈ ℂ[𝑋, 𝑆], with 𝑆 ∈ ℂ, depending only on 𝑃 with the following property: For every
g(𝑥) ∈ (ℂ{𝑥})𝑚 and ℎ(𝑥) ∈ (ℂ{𝑥})𝓁 , 𝑥 ∈ ℂ𝑛, satisfying (g(0), ℎ(0)) ∈ Ω and

𝑃(g(𝑥), ℎ(𝑥)) = 0, det

(
𝜕𝑃

𝜕𝑇
(g(𝑥), ℎ(𝑥))

)
≢ 0, (6.1)

there exists 𝑏 ∈ {1, … , 𝑒} such that

Δ(𝑏)
𝑗

(
g(𝑥), ℎ𝑗(𝑥)

)
= 0,

𝜕Δ(𝑏)
𝑗

𝜕𝑆

(
g(𝑥), ℎ𝑗(𝑥)

)
≢ 0, 𝑗 = 1,… ,𝓁, (6.2)

where Δ(𝑏) = (Δ(𝑏)
1
, … , Δ(𝑏)𝓁 ).

Proof. Since 𝑃must satisfy det ( 𝜕𝑃
𝜕𝑇
(𝑋, 𝑇)) ≢ 0, it follows from standard commutative algebra (see

[17] or [25, §3]) that for every 𝑗 = 1,… ,𝓁, there exist a (non-zero) polynomial 𝑅𝑗(𝑋, 𝑌, 𝑆), 𝑌 =
(𝑌1, … , 𝑌𝓁), such that for (𝑋, 𝑇) ∈ Ω, we have

𝑅𝑗(𝑋, 𝑃(𝑋, 𝑇), 𝑇𝑗) = 0. (6.3)

For every fixed 𝑗, we write

𝑅𝑗(𝑋, 𝑌, 𝑆) =
∑
𝜈

𝑅𝑗,𝜈(𝑋, 𝑌)𝑆
𝜈.

Hence for every g(𝑥), ℎ(𝑥) as in the lemma, we have

𝑅𝑗(g(𝑥), 𝑃(g(𝑥), ℎ(𝑥)), ℎ𝑗(𝑥)) = 𝑅𝑗(g(𝑥), 0, ℎ𝑗(𝑥)) = 0.

We claim that the finite family of polynomials (𝜕𝛼
𝑋
𝜕
𝛽
𝑌
𝜕𝛿
𝑆
𝑅𝑗)(𝑋, 0, 𝑆) with |𝛼| + |𝛽| ⩽ deg𝑅𝑗 and

𝛿 < deg𝑆 𝑅𝑗 satisfies the conclusion of the lemma.
If there exists 𝜈 ⩾ 1 such that 𝑅𝑗,𝜈(g(𝑥), 0) ≢ 0, the desired polynomial Δ

(𝑏)
𝑗

may be chosen to
be among the polynomials (𝜕𝛿

𝑆
𝑅𝑗)(𝑋, 0, 𝑆) for some 0 ⩽ 𝛿 < deg𝑆 𝑅𝑗 .

On the hand, assume that for all 𝜈 we have 𝑅𝑗,𝜈(g(𝑥), 0) = 0, that is, that 𝑅𝑗(g(𝑥), 0, 𝑆) = 0.
Differentiating (6.3) with respect to 𝑇, evaluating at (𝑋, 𝑇) = (g(𝑥), ℎ(𝑥)) and using (6.1) and that
𝑅𝑗(g(𝑥), 0, 𝑆) = 0, we get that

𝜕𝑅𝑗

𝜕𝑌

(
g(𝑥), 0, ℎ𝑗(𝑥)

)
= 0. (6.4)

Again, if there exists 𝜈 ⩾ 1 such that 𝜕𝑅𝑗,𝜈
𝜕𝑌
(g(𝑥), 0) ≢ 0, thenwe are done as before. If this is not the

case, that is, if
𝜕𝑅𝑗

𝜕𝑌
(g(𝑥), 0, 𝑆) = 0, differentiating (6.3) with respect to 𝑋 and evaluating as before,
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we get

𝜕𝑅𝑗

𝜕𝑋

(
g(𝑥), 0, ℎ𝑗(𝑥)

)
= 0.

Using the same dichotomy as before, either we reach the desired conclusion or we get

𝜕𝑅𝑗

𝜕𝑋
(g(𝑥), 0, 𝑆) =

𝜕𝑅𝑗

𝜕𝑌
(g(𝑥), 0, 𝑆) = 0.

Repeating the previous procedure, and because there exists 𝛼 ∈ ℕ𝑚 and 𝛽 ∈ ℕ𝓁 with |𝛼| + |𝛽| ⩽
deg𝑅𝑗 such that

𝜕|𝛼|+|𝛽|𝑅𝑗
𝜕𝑋𝛼𝜕𝑌𝛽

(g(𝑥), 0, 𝑆) ≢ 0 (as 𝑅𝑗 is a non-zero polynomial), we get that there exists
𝛼 and 𝛽 as above such that

𝜕|𝛼|+|𝛽|𝑅𝑗
𝜕𝑋𝛼𝜕𝑌𝛽

(g(𝑥), 0, ℎ𝑗(𝑥)) = 0

with

𝜕|𝛼|+|𝛽|𝑅𝑗
𝜕𝑋𝛼𝜕𝑌𝛽

(g(𝑥), 0, 𝑆) ≢ 0.

The proof of the lemma is complete. □

For the next results, it will be useful to have the following preliminary fact.

Lemma6.2. Let𝑃(𝑋, 𝑇) ∈ ℂ[𝑋, 𝑇], where (𝑋, 𝑇) = (𝑋1, … , 𝑋𝑚, 𝑇), andwrite𝑃′(𝑋, 𝑇) =
𝜕𝑃

𝜕𝑇
(𝑋, 𝑇).

Then there exist finitely many polynomials (𝑅𝓁(𝑋, 𝑇))1⩽𝓁⩽𝑎 and (𝑈𝑗(𝑋, 𝑇))1⩽𝑗⩽𝑏 (depending only
on 𝑃) such that for every g(𝑥) ∈ (ℂ((𝑥)))𝑚, 𝑥 ∈ ℂ𝑛, satisfying 𝑃′(g(𝑥), 𝑇) ≢ 0, the following
holds:

(i) The greatest common divisor of 𝑃(g(𝑥), 𝑇) and 𝑃′(g(𝑥), 𝑇) in ℂ((𝑥))[𝑇] is equal to 𝑅𝓁(g(𝑥), 𝑇)
for some integer 𝓁 ∈ {1, … , 𝑎}.

(ii) There exists 𝑗 ∈ {1, … , 𝑏} such that 𝑃(g(𝑥), 𝑇) = 𝑐(𝑥) 𝑅𝓁(g(𝑥), 𝑇)𝑈𝑗(g(𝑥), 𝑇) for some non-zero
𝑐 ∈ ℂ((𝑥)). Furthermore, let 𝐷𝑗(𝑋) be the discriminant of 𝑈𝑗(𝑋, 𝑇). Then the discriminant in
ℂ((𝑥)) of𝑈𝑗(g(𝑥), 𝑇) is 𝐷𝑗(g(𝑥)) and is non-zero.

Proof. Lemma 6.2 follows from Euclid’s algorithm. The details are as follows.
For the proof of (i), we pick g(𝑥) ∈ (ℂ{𝑥})𝑚 satisfying 𝑃′(g(𝑥), 𝑇) ≢ 0 and we may assume that

deg𝑇𝑃(𝑋, 𝑇) = deg𝑇 𝑃(g(𝑥), 𝑇). Indeed, if it is not the case, we may replace 𝑃 by a truncation of
it of some order to reach the desired assumption. Furthermore, truncation of 𝑃 to some order
involves substituting 𝑃 with only finitely many polynomials depending only on 𝑃 and therefore
does not affect the conclusion of the lemma.
From the Euclidean division algorithm in the ring ℂ(𝑋)[𝑇], we have unique polynomials

𝑄, 𝑆0 ∈ ℂ(𝑋)[𝑇] such that

𝑃(𝑋, 𝑇) = 𝑄(𝑋, 𝑇)𝑃′(𝑋, 𝑇) + 𝑆0(𝑋, 𝑇), (6.5)
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where deg𝑇 𝑆0 < deg𝑇 𝑃′. Clearing denominators, we may find a unique non-zero polynomial
Δ0(𝑋) ∈ ℂ[𝑋] of minimal degree, monic in its highest degree monomial (using lexicographic
ordering), depending only on 𝑃, such that

Δ0(𝑋)𝑃(𝑋, 𝑇) = 𝑄(𝑋, 𝑇)𝑃
′(𝑋, 𝑇) + 𝑆0(𝑋, 𝑇), (6.6)

with 𝑄, 𝑆0 ∈ ℂ[𝑋, 𝑇].
If Δ0(g(𝑥)) ≢ 0, then the greatest common divisor of 𝑃(g(𝑥), 𝑇) and 𝑃′(g(𝑥), 𝑇) in ℂ((𝑥))[𝑇] is

the same as that of 𝑃′(g(𝑥), 𝑇) and 𝑆0(g(𝑥), 𝑇), where we note that 𝑆0 depends uniquely on 𝑃.
If Δ0(g(𝑥)) ≡ 0, because Δ0 is monic in its highest order monomial, we can choose

𝛼 ∈ ℕ𝑚 of minimal length, |𝛼| ⩽ degΔ0, such that (𝜕𝛼
𝑋
Δ0)(g(𝑥)) ≢ 0. Because 𝑃′(g(𝑥), 𝑇) ≢

0 and deg𝑇𝑃
′(𝑋, 𝑇) = deg𝑇 𝑃

′(g(𝑥), 𝑇), it follows from (6.6) that (𝜕𝛽
𝑋
𝑄)(g(𝑥), 𝑇) = 0 and

(𝜕
𝛽
𝑋
𝑆0)(g(𝑥), 𝑇) = 0 for |𝛽| < |𝛼|. Hence it follows from (6.6) that

(𝜕𝛼𝑋Δ0)(g(𝑥))𝑃(g(𝑥), 𝑇) = (𝜕
𝛼
𝑋𝑄)(g(𝑥), 𝑇)𝑃

′(g(𝑥), 𝑇) + (𝜕𝛼𝑋𝑆0)(g(𝑥), 𝑇), (6.7)

and therefore the greatest common divisor of 𝑃(g(𝑥), 𝑇) and 𝑃′(g(𝑥), 𝑇) in ℂ((𝑥))[𝑇] is the same
as that of 𝑃′(g(𝑥), 𝑇) and (𝜕𝛼𝑆0)(g(𝑥), 𝑇), for some |𝛼| ⩽ degΔ0. The polynomials (𝜕𝛼𝑆0)(g(𝑥), 𝑇),|𝛼| ⩽ degΔ, form a finite family of polynomials depending only on 𝑃, each of them of degree in
𝑇 strictly less than 𝑃′, and proceeding inductively with Euclid’s algorithm, we clearly reach the
conclusion of the Lemma. The proof of (i) is complete.
For the proof of (ii), we will proceed in a similar manner. We first note that, enlarging the

family of polynomials (𝑅𝓁) if necessary, we may assume that for every g(𝑥) as in the lemma, there
exists 𝓁 ∈ {1, … , 𝑎} such that (i) holds and deg𝑇 𝑅𝓁(g(𝑥), 𝑇) = deg𝑇 𝑅𝓁(𝑋, 𝑇). Fix g(𝑥) as above
and a corresponding polynomial 𝑅𝓁(𝑋, 𝑇). Euclidean division in the ring ℂ(𝑋)[𝑇] yields unique
polynomials 𝐴 and 𝐵 depending only on 𝑃 such that

𝑃(𝑋, 𝑇) = 𝑅𝓁(𝑋, 𝑇)𝐴(𝑋, 𝑇) + 𝐵(𝑋, 𝑇), (6.8)

with deg𝑇 𝐵 < deg𝑇𝑅𝓁 . As before, clearing denominators in (6.8), we may write

Δ(𝑋) 𝑃(𝑋, 𝑇) = 𝑅𝓁(𝑋, 𝑇)𝐴(𝑋, 𝑇) + 𝐵(𝑋, 𝑇), (6.9)

for some non-zero polynomial of minimum degree Δ(𝑋) ∈ ℂ[𝑋] (and unique as a monic poly-
nomial in its highest degree) and where 𝐴(𝑋, 𝑇), 𝐵(𝑋, 𝑇) ∈ ℂ[𝑋, 𝑇]. Now, a procedure as the
one used in (i) shows that for some suitable choice of multi-index 𝛼 ∈ ℕ𝑚 with |𝛼| ⩽ degΔ, we
have

(𝜕𝛼𝑋Δ)(g(𝑥)) 𝑃(g(𝑥), 𝑇) = 𝑅𝓁(g(𝑥), 𝑇) (𝜕
𝛼
𝑋𝐴)(g(𝑥), 𝑇) + (𝜕

𝛼
𝑋𝐵)(g(𝑥), 𝑇), (6.10)

with (𝜕𝛼
𝑋
Δ)(g(𝑥)) ≢ 0. Since 𝑅𝓁(g(𝑥), 𝑇) divides 𝑃(g(𝑥), 𝑇) in ℂ((𝑥))[𝑇] and deg𝑇 𝑅𝓁(g(𝑥), 𝑇) =

deg𝑇 𝑅𝓁(𝑋, 𝑇), it must hold that (𝜕𝛼𝑋𝐵)(g(𝑥), 𝑇) = 0. To finish the proof of (ii), note that we may
assume, enlarging the family (𝑈𝑗) if necessary, that deg𝑇 𝑈𝑗(g(𝑥), 𝑇) = deg𝑇 𝑈𝑗(𝑋, 𝑇). Now the
second statement in (ii) follows from standard properties about discriminants of polynomials. The
proof of the lemma is complete. □
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The next lemma states that a polynomial relation between power series gives rise to universal
polynomial relations between their derivatives.

Lemma 6.3. Let 𝑃(𝑋, 𝑇) ∈ ℂ[𝑋, 𝑇], where (𝑋, 𝑇) = (𝑋1, … , 𝑋𝑚, 𝑇) and 𝑛 ∈ ℤ+. Then for every
𝛾 ∈ ℕ𝑛, there exist finitely many polynomials Υ1, … , Υ𝑒𝛾 , depending only on 𝑃, such that for every
g(𝑥) ∈ (ℂ{𝑥})𝑚 and ℎ(𝑥) ∈ ℂ{𝑥}, 𝑥 ∈ ℂ𝑛, satisfying

𝑃(g(𝑥), ℎ(𝑥)) = 0, 𝜕𝑃

𝜕𝑇
(g(𝑥), ℎ(𝑥)) ≢ 0, (6.11)

there exists 𝑑 ∈ {1, … , 𝑒𝛾} such that

Υ𝑑((𝜕
𝛼g(𝑥))|𝛼|⩽|𝛾|, 𝜕𝛾ℎ(𝑥)) = 0, 𝜕Υ𝑑

𝜕𝑇
((𝜕𝛼g(𝑥))|𝛼|⩽|𝛾|, 𝜕𝛾ℎ(𝑥)) ≢ 0. (6.12)

Proof. It is enough to prove the lemma for |𝛾| = 1, since the general case follows inductively.
Let (𝑅𝓁) and (𝑈𝑗) be the finite collection of polynomials obtained by applying Lemma 6.2 to

𝑃. For g(𝑥) satisfying (6.11) we choose 𝓁 and 𝑗 such that the conclusions of Lemma 6.2 hold, and
write 𝑈 for 𝑈𝑗 . Using (6.11), it can be easily checked that

𝑈(g(𝑥), ℎ(𝑥)) = 0, 𝜕𝑈

𝜕𝑇
(g(𝑥), ℎ(𝑥)) ≢ 0. (6.13)

Note that𝑈 may have been chosen so that 𝑠 ∶= deg𝑇 𝑈(𝑋, 𝑇) = deg𝑇 𝑈(g(𝑥), 𝑇) (see the proof of
Lemma 6.2). Write

𝑈(𝑋, 𝑇) = 𝑈𝑠(𝑋)𝑇
𝑠 +⋯ +𝑈0(𝑋)

with 𝑈𝑠(g(𝑥)) ≢ 0. Differentiating the equality in (6.13), we obtain, from the chain rule,

𝜕𝛾ℎ(𝑥)
𝜕𝑈

𝜕𝑇
(g(𝑥), ℎ(𝑥)) + 𝑈((𝜕𝛼g(𝑥))|𝛼|⩽1, ℎ(𝑥)) = 0, (6.14)

for some universal polynomial 𝑈 = 𝑈(𝑋,𝑌, 𝑇) depending only on 𝑈, and hence on 𝑃. For 𝑋 ∈
ℂ𝑚 outside the zero set of 𝑈𝑠, let 𝜎1(𝑋), … , 𝜎𝑠(𝑋) denote the 𝑠 roots of 𝑈(𝑋, 𝑇) (counted with
multiplicity). Set

𝑉(𝑋,𝑌, 𝑇) ∶=

𝑠∏
𝑖=1

(
𝑇
𝜕𝑈

𝜕𝑇
(𝑋, 𝜎𝑖(𝑋)) + 𝑈(𝑋,𝑌, 𝜎𝑖(𝑋))

)
.

By Newton’s theorem on symmetric polynomials, we may write

𝑉(𝑋,𝑌, 𝑇) = 𝑊

(
𝑋,𝑌,

(
𝑈𝑘(𝑋)

𝑈𝑠(𝑋)

)
0⩽𝑘⩽𝑠−1

, 𝑇

)

for some universal polynomial 𝑊 depending only on 𝑈. Hence for a sufficiently high power
𝛿 ∈ ℤ+, 𝑉(𝑋,𝑌, 𝑇) = 𝑈𝑠(𝑋)𝛿𝑉(𝑋, 𝑌, 𝑇) is a polynomial depending only on 𝑈 (and hence on 𝑃)
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which, in view of (6.14) and (6.13), satisfies

𝑉((𝜕𝛼g(𝑥))|𝛼|⩽1, 𝜕𝛾ℎ(𝑥)) = 0.
Furthermore, by construction, the coefficient of highest degree in 𝑇 (that is, in front of 𝑇𝑠)
of 𝑉 is equal to (𝑈𝑠(𝑋))𝜈 𝐷(𝑋) for some power 𝜈 where 𝐷(𝑋) is the discriminant of 𝑈(𝑋, 𝑇).
Since 𝑈𝑠(g(𝑥)) ≢ 0 and 𝐷(g(𝑥)) ≢ 0 (as a consequence of Lemma 6.2 (ii)), it follows that
𝑉((𝜕𝛼g(𝑥))|𝛼|⩽1, 𝑇) ≢ 0. Hence, wemay choose the desired polynomialΥ𝑑 among the polynomials
𝜕𝑐𝑉

𝜕𝑇𝑐
, 𝑐 ∈ {0, … , 𝑠 − 1}. The proof of the lemma is complete. □

The next lemma allows us to universally choose good polynomial relations from a given one if
we have some additional information about the solution.

Lemma 6.4. Given 𝑃(𝑋, 𝑇), 𝑄(𝑋, 𝑇) ∈ ℂ[𝑋, 𝑇], where (𝑋, 𝑇) = (𝑋1, … , 𝑋𝑚, 𝑇) and 𝑛 ∈ ℤ+, there
exists finitely many polynomials 𝑅1(𝑋, 𝑇), … , 𝑅𝐽(𝑋, 𝑇), depending only on 𝑃 and 𝑄, such that for
every g(𝑥) ∈ (ℂ{𝑥})𝑚 and ℎ(𝑥) ∈ ℂ{𝑥}, 𝑥 ∈ ℂ𝑛, satisfying

𝑄(g(𝑥), ℎ(𝑥)) = 0, 𝑄(g(𝑥), 𝑇) ≢ 0, 𝑃(g(𝑥), ℎ(𝑥)) ≢ 0, (6.15)

there exists 𝑗 ∈ {1, … , 𝐽} such that 𝑅𝑗(g(𝑥), ℎ(𝑥)) = 0, 𝑅𝑗(g(𝑥), 𝑇) ≢ 0, and the resultant of
𝑃(g(𝑥), 𝑇) and 𝑅𝑗(g(𝑥), 𝑇) is non-zero (in ℂ{𝑥}).

Proof. If the resultant of 𝑄(g(𝑥), 𝑇) and 𝑃(g(𝑥), 𝑇) is non-zero in ℂ((𝑥)), there is nothing
to prove. Let us assume therefore that this is not the case. This means that the greatest
common divisor of the (non-zero) polynomials 𝑄(g(𝑥), 𝑇) and 𝑃(g(𝑥), 𝑇) in ℂ((𝑥))[𝑇] is of
degree ⩾ 1. Following the proof of Lemma 6.2(i), that is, a suitable use of Euclid’s algorithm,
one may find finitely many polynomials 𝐴1,… ,𝐴𝑎 and 𝐵1, … , 𝐵𝑏, depending only on 𝑃 and
𝑄, such that for some 𝛼 ∈ {1, … , 𝑎}, 𝐴𝛼(g(𝑥), 𝑇) = GCD(𝑄(g(𝑥), 𝑇), 𝑃(g(𝑥), 𝑇)) and such that
𝑄(g(𝑥), 𝑇) = 𝛿(𝑥)𝐴𝛼(g(𝑥), 𝑇) 𝐵𝛽(g(𝑥), 𝑇) for some 𝛽 and some non-zero 𝛿(𝑥) ∈ ℂ((𝑥)). Note that
deg𝑇𝐵𝛽(g(𝑥), 𝑇) < deg𝑇 𝑄(g(𝑥), 𝑇). Because of (6.15), it must hold that 𝐵𝛽(g(𝑥), 𝑓(𝑥)) = 0. If the
resultant of 𝑃(g(𝑥), 𝑇) and 𝐵𝛽(g(𝑥), 𝑇) in ℂ((𝑥)) is non-zero, we are done. If not, we repeat the
previous procedure with 𝑄(g(𝑥), 𝑇) replaced by 𝐵𝛽(g(𝑥), 𝑇), which is a non-zero polynomial of
degree strictly smaller than that of 𝑄(g(𝑥), 𝑇). Hence, such a substitution procedure must termi-
nate and it provides the desired result. The proof of the lemma is complete. □

Lemma 6.4 is used for the following result.

Lemma 6.5. Let 𝑃(𝑋, 𝑇, 𝑆) ∈ ℂ[𝑋, 𝑇, 𝑆], Θ1(𝑌, 𝑇1) ∈ ℂ[𝑌, 𝑇1], … ,Θ𝑟(𝑌, 𝑇𝑟) ∈ ℂ[𝑌, 𝑇𝑟] where
(𝑌, 𝑆) = (𝑌1, … , 𝑌𝓁 , 𝑆), (𝑋, 𝑇, 𝑆) = (𝑋1, … , 𝑋𝑚, 𝑇1, … , 𝑇𝑟, 𝑆), and let 𝑛 ∈ ℤ+. Then there exist
finitely many polynomials Ψ1,… ,Ψ𝐾 ∈ ℂ[𝑋, 𝑌, 𝑆], depending only on 𝑃 and the Θ𝑗 ’s, such that for
every 𝑢(𝑥) ∈ (ℂ{𝑥})𝑚, 𝑤(𝑥) ∈ (ℂ{𝑥})𝓁 , 𝜐(𝑥) ∈ (ℂ{𝑥})𝑟, ℎ(𝑥) ∈ ℂ{𝑥}, 𝑥 ∈ ℂ𝑛, satisfying

𝑃(𝑢(𝑥), 𝜐(𝑥), ℎ(𝑥)) = 0,
𝜕𝑃

𝜕𝑆
(𝑢(𝑥), 𝜐(𝑥), ℎ(𝑥)) ≢ 0, (6.16)

Θ𝑗(𝑤(𝑥), 𝜐𝑗(𝑥)) = 0,
𝜕Θ𝑗

𝜕𝑇𝑗
(𝑤(𝑥), 𝜐𝑗(𝑥)) ≢ 0, 𝑗 = 1,… , 𝑟, (6.17)



770 LAMEL and MIR

one has for some 𝑘 ∈ {1, … , 𝐾}

Ψ𝑘(𝑢(𝑥), 𝑤(𝑥), ℎ(𝑥)) = 0,
𝜕Ψ𝑘
𝜕𝑆

(𝑢(𝑥), 𝑤(𝑥), ℎ(𝑥)) ≢ 0. (6.18)

Proof. It is enough to prove the lemma in the case 𝑟 = 1, as the general case follows froma repeated
use of the case 𝑟 = 1. Hence, in what follows, 𝑟 = 1, and therefore we write Θ for Θ1.
We write 𝑃(𝑋, 𝑇, 𝑆) = 𝑃𝜇(𝑋, 𝑇)𝑆𝜇 +⋯ , 𝑃0(𝑋, 𝑇). Pick 𝑢, 𝜐, 𝑤, ℎ as in the lemma. We may

assume without loss of generality that 𝑃𝜇(𝑢(𝑥), 𝜐(𝑥)) ≢ 0. Otherwise, we repeat the proof
given below for 𝑃𝜇 for some other polynomial 𝑃𝑖 as there must exist 𝑖 ∈ {1, … , 𝜇} such that
𝑃𝑖(𝑢(𝑥), 𝜐(𝑥)) ≢ 0.
We apply Lemma 6.4 to 𝑃𝜇 = 𝑃𝜇(𝑋, 𝑇) = 𝑃(𝑋, 𝑌, 𝑇) and Θ = Θ(𝑌, 𝑇) = Θ(𝑋,𝑌, 𝑇) (since

Θ(𝑤(𝑥), 𝑇) ≢ 0). There exist finitely many polynomials 𝑅1, … , 𝑅𝐽 ∈ ℂ[𝑋, 𝑌, 𝑇], depending only
on 𝑃 and Θ, such that 𝑅𝑗(𝑢(𝑥), 𝑤(𝑥), 𝜐(𝑥)) = 0 for some 𝑗 and the resultant (in 𝑇) of 𝑃𝜇(𝑢(𝑥), 𝑇)
and 𝑅𝑗(𝑢(𝑥), 𝑤(𝑥), 𝑇) is non-zero. Furthermore, inspecting the proof of Lemma 6.4, 𝑅𝑗 may be
chosen so that deg𝑇𝑅𝑗(𝑋, 𝑌, 𝑇) = deg𝑇𝑅𝑗(𝑢(𝑥), 𝑤(𝑥), 𝑇).
We now write 𝑅𝑗(𝑋, 𝑌, 𝑇) = 𝑅𝑗𝜈(𝑋, 𝑌)𝑇𝜈 +⋯ + 𝑅

𝑗
0
(𝑋, 𝑌), where 𝑅𝑗𝜈(𝑋, 𝑌) ≢ 0. For (𝑋, 𝑌) out-

side the zero locus of 𝑅𝑗𝜈, denote by 𝜎1(𝑋, 𝑌), … , 𝜎𝜈(𝑋, 𝑌) the 𝜈 roots of 𝑅𝑗 (counted with multi-
plicity) and consider

𝑊(𝑋,𝑌, 𝑆) ∶=

𝜈∏
𝑖=1

𝑃(𝑋, 𝜎𝑖(𝑋, 𝑌), 𝑆) =

𝜈∏
𝑖=1

(
𝑃𝜇(𝑋, 𝜎𝑖(𝑋, 𝑌))𝑆

𝜇 +⋯ + 𝑃0(𝑋, 𝜎𝑖(𝑋, 𝑌))
)
.

For some appropriate power 𝛾, (𝑅𝑗𝜈(𝑋, 𝑌))𝛾 ⋅𝑊(𝑋,𝑌, 𝑆) = Res𝑇(𝑃(𝑋, 𝑇, 𝑆), 𝑅𝑗(𝑋, 𝑌, 𝑇)), where
the latter is the polynomial resultant, with respect to 𝑇, of 𝑃 and 𝑅𝑗 . The polynomial coefficient
𝐶(𝑋, 𝑌) in front of 𝑆𝜇𝜈 in the polynomial Res𝑇(𝑃, 𝑅𝑗) is equal, by construction, to (𝑅

𝑗
𝜈(𝑋, 𝑌))

𝛾 ⋅
Res𝑇(𝑃𝜇, 𝑅

𝑗) for some power 𝛾. It then follows that 𝐶(𝑢(𝑥), 𝑤(𝑥)) ≢ 0 and, therefore, necessarily
for one of the polynomials 𝜕𝑐

𝑆
(Res𝑇(𝑃, 𝑅

𝑗)), 0 ⩽ 𝑐 < deg𝑆(Res𝑇(𝑃, 𝑅𝑗)) the conclusion must hold.
The proof of the lemma is complete. □
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