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UNIQUE JET DETERMINATION AND EXTENSION OF GERMS

OF CR MAPS INTO SPHERES

NORDINE MIR AND DMITRI ZAITSEV

Abstract. We provide a new way of simultaneously parametrizing arbitrary
local CR maps from real-analytic generic manifolds M ⊂ CN into spheres

S2N
′−1 ⊂ CN′

of any dimension. The parametrization is obtained as a com-
position of universal rational maps with a holomorphic map depending only
on M . As applications, we obtain rigidity results of different flavours such as
unique jet determination and global extension of local CR maps.

1. Introduction

In 1907, Poincaré [42] discovered the first remarkable geometric properties of
local biholomorphic mappings sending real hypersurfaces in multidimensional com-
plex space into each other. His work, together with the later work of Cartan [14],
Tanaka [45] and Chern-Moser [15] unveiled the striking strong rigidity properties
that such maps possess. Among such properties, of particular interest to us in this
paper are those of uniqueness and extension.

It follows from [14, 15, 45] that local real-analytic CR diffeomorphims, i.e. local
biholomorphic mappings, between Levi-non degenerate real-analytic hypersurfaces
in CN are uniquely determined by their 2-jets at any fixed point of the source
hypersurface. Subsequent work over the last decades has been devoted to under-
stand to what extent such a uniqueness property were true in further generality. In
[3, 6, 8, 23, 31], optimal conditions for the finite jet determination property to hold
for CR automorphisms between general real-analytic hypersurfaces, or CR subman-
ifolds of higher codimension, have been found. For Levi-degenerate CR manifolds, a
number of results have been obtained exploring the relationship between the jet or-
der required to get uniqueness and the geometry of the manifolds, see [23,32,36,38]
and the references therein. In another direction, the above mentioned uniqueness
result due to Tanaka, Cartan and Chern-Moser for CR diffeomorphisms has recently
been shown to hold for sufficiently smooth CR manifolds, see [11–13,19, 33].

The present paper proposes a universal parametrization tool (Proposition 3.7)
with applications including the finite jet determination and global extension prob-
lems for local holomorphic mappings sending real-analytic CR submanifolds em-
bedded in complex spaces of different dimension. In contrast to the biholomorphic
setting, these are largely unexplored territories besides the case of local CR maps
between spheres C

N ⊃ S2N−1 → S2N
′−1 ⊂ CN ′

, where N,N ′ ≥ 2. Indeed, by
the work of Forstnerič [25], such maps extend automatically as (global) rational
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2150 NORDINE MIR AND DMITRI ZAITSEV

maps with a uniform bound on their degree; as a consequence, unique determina-
tion by a finite jet (at any fixed point) necessarily holds for such maps. However,
the above strategy becomes no longer available when tackling CR embeddings from
real-analytic hypersurfaces into spheres, as the mappings under consideration need
not be rational. And despite having been subject of many related studies (see e.g.
[20–22]), it is still an open question to decide whether finite jet determination holds
in the latter setting. In this paper, we will answer this by the affirmative by proving
the following more general result:

Theorem 1.1. Let M ⊂ C
N be a real-analytic minimal CR submanifold. Then

for every point p ∈ M , there exists an integer k = k(p) such that if f, g : (M,p) →
S2N

′−1 are two germs of C∞-smooth CR maps with jkpf = jkpg, then f = g. Fur-
thermore, the map M � p �→ k(p) may be chosen to be bounded on compact subsets
of M .

Recall here that M is called minimal (in the sense of [46]) if M does not contain
any proper CR submanifold of the same CR dimension as that of M . Since com-
pact real-analytic real hypersurfaces are always minimal (see [18]), we immediately
obtain the following:

Corollary 1.2. For every compact real-analytic hypersurface M ⊂ CN , there exists
an integer � = �(M) such that if f, g : (M,p) → S

2N ′−1 are two germs of C∞-smooth
CR maps at some point p ∈ M with j�pf = j�pg, it follows that f = g.

Corollary 1.2 can be applied to get the following boundary uniqueness theorem
for proper holomorphic mappings into balls of higher dimension.

Corollary 1.3. Let Ω ⊂ CN be a bounded domain with smooth real-analytic bound-
ary and B

N ′ ⊂ C
N ′

be the unit ball. Then there exists an integer �, depending only
on ∂Ω, such that if F,G : Ω → BN ′

are two proper holomorphic mappings extending
smoothly up to the boundary near some point p ∈ ∂Ω with j�pF = j�pG, it follows
that F = G.

We will establish Theorem 1.1 (as well as Corollaries 1.2 and 1.3) for local holo-
morphisms, since all C∞-smooth CR maps under consideration automatically ex-
tend holomorphically to a neighborhood of p in C

N according to [40, 41].
As mentioned above, we apply the same universal parametrization tool (Propo-

sition 3.7) to study the independent question about global extension of germs of
CR maps. We shall prove:

Theorem 1.4. Let M ⊂ CN be a real-analytic generic minimal submanifold. Then
for every point p0 ∈ M , there exists a neighborhood Ω of p0 in CN such that for
every q ∈ Ω ∩M , any germ f : (M, q) → S2N

′−1 of a C∞-smooth CR map extends
meromorphically to Ω. Furthermore, if M is a real hypersurface, the meromorphic
extension over Ω is in fact holomorphic.

Using standard analytic continuation arguments (see §4), Theorem 1.4 provides
the following global extension result.

Corollary 1.5. Let M ⊂ CN be a real-analytic hypersurface that is both connected
and simply-connected and contains no complex-analytic hypersurface of CN . Then
for every point p0 ∈ M , any germ of a C∞-smooth CR map f : (M,p0) → S2N

′−1

extends holomorphically to a neighborhood of M in CN . If, moreover, M does not
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UNIQUE JET DETERMINATION AND EXTENSION OF CR MAPS 2151

contain any positive dimensional complex-analytic subvariety, the same conclusion
holds for merely CN ′−N+1-smooth CR maps.

There is a substantial literature related to Corollary 1.5. Poincaré [42] was the
first to prove that any local biholomorphic map sending a piece of the sphere in
C

2 into itself extends as a global holomorphic map between the corresponding unit
balls. Poincaré’s global extension phenomenon was later extended by Tanaka [45]
and Alexander [1] for spheres in arbitrary dimension. Further generalizations of
this extension property for local biholomorphisms have been investigated: exten-
sion along paths of local maps between strongly pseudoconvex real-analytic hyper-
surfaces was considered in [44, 47]; for algebraic real hypersurfaces, or even CR
manifolds of higher codimension, general extension results as algebraic maps have
been established in [2, 29, 48]. In contrast, Theorem 1.4 and Corollary 1.5 address
the global extension problem for local holomorphisms of positive codimension, on
which much less is known. In that regard, the reader should note that Theorem 1.4
is equivalent to an extension result along any path starting from p0. Hence, in the
case where M is a strictly pseudoconvex real hypersurface, Theorem 1.4 recovers
a result from [43]. Note that in the case where M is also a sphere, Corollary 1.5
follows from the rationality result given in [25] and [16]. We should mention that
for maps between spheres, hyperquadrics, or boundaries of bounded symmetric do-
mains, global holomorphic extension of local holomorphic maps may follow from
more general results known as “rigidity” theorems. The reader is referred to the
papers [7, 24, 27, 28, 34, 35, 49] and the survey paper [30] for more on this specific
topic.

The main novelty of the present work consists of providing a unified framework
that allows us to study, at the same time and despite being very different in nature,
the finite jet determination and global extension problems for local holomorphic
maps. After collecting some preliminary results and notation in §2, we explain the
details of our approach in §3; we prove that germs of CR maps as in Theorem 1.1
can be universally meromorphically parametrized by their jets at a generic point. In
fact, one needs a very precise statement indicating the (real-analytic) dependence
on the base point where the germ is defined, see Proposition 3.7. Such a result not
only allows us to understand the structure of germs of CR maps whose base point
changes, but is also crucial in order to choose a jet order k(p) (as in Theorem 1.1)
that remains bounded on compact subsets of M . The proofs of Theorems 1.1 and
1.4 and Corollary 1.5 are finalized in §4.

2. Notation and preliminaries

Throughout the paper, all neighborhoods are assumed to be open and connected
and we denote, for any power series u(x) with complex coefficients (centered at
the origin), by ū(x) the power series obtained by taking complex conjugates of the
coefficients of u.

Let M ⊂ C
N be real-analytic generic submanifold through the origin, of CR

dimension n and codimension d, so that N = n + d. We may assume that M =
{Z ∈ U : ρ(Z, Z̄) = 0} where ρ = (ρ1, . . . , ρd) is a real-analytic vector-valued
defining function for M defined on some neighborhood U ⊂ CN of 0 satisfying
∂ρ1∧. . .∧∂ρd �= 0 over U . Choosing U so that U = U , we define the complexification
of M by

M := {(Z, ζ) ∈ U × U : ρ(Z, ζ) = 0}
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2152 NORDINE MIR AND DMITRI ZAITSEV

as well as M = {(ζ, Z) ∈ U × U : (Z, ζ) ∈ M}. As in [50], we shall also consider
the iterated complexifications Mj , for j ≥ 1, as follows. For j = 2�− 1 odd, we set

M2�−1 := {(Z, ζ1, Z1, . . . , Z�−1, ζ�)

∈ U × . . .× U : (Z, ζ1) ∈ M, (ζ1, Z1) ∈ M, (Z1, ζ2) ∈ M, . . . , (Z�−1, ζ�) ∈ M}

and for j = 2� even we set

M2� := {(Z, ζ1, . . . , Z�−1, ζ�, Z�)

∈ U × . . .× U : (Z, ζ1) ∈ M, (ζ1, Z1) ∈ M, (Z1, ζ2) ∈ M, . . . , (ζ�, Z�) ∈ M}.

Recall that we can choose normal coordinates Z = (z, w) ∈ Cn ×Cd for M near 0,
so that (the germ of) M (at 0) is given by

(2.1) w = Q(z, z̄, w̄),

where Q = (Q1, . . . , Qd) is a C
d-valued holomorphic map defined in some fixed

neighborhood of the origin (see e.g. [4]). Since M is a real submanifold, the map
Q satisfies, in addition, the following identity:

(2.2) Q(z, z̄, Q̄(z̄, , z, w)) = w.

Writing ζ = (χ, τ ) ∈ C
n × C

d, let us define the following tangent vector fields to
M, obtained from complexification of the (0, 1) vector fields on M :

(2.3) Lj :=
∂

∂χj
+

d∑
ν=1

Q̄d
χj
(χ, z, w)

∂

∂τν
, j = 1, . . . , n.

We will make use of the Segre maps associated to M , as introduced in [2,4]. Shrink-
ing U if necessary, for p ∈ U (which later will furthermore lie on M), let us recall
how are defined the Segre maps of order κ ∈ Z+. Following the notion of [9], we
first set v0(p) := p and

(2.4) vκ+1(t0, t1, . . . , tκ; p) = (t0, Q(t0, vκ(t1, . . . , tκ; p)).

Note that the Segre maps are defined and holomorphic over U1 × . . . × U1 × U
provided U1 and U are sufficiently small neighborhoods of the origin in Cn and
CN respectively. Since we will need only finitely many of those Segre maps, we
choose and fix neighborhoods U1 and U as above so that all these maps vκ’s are
well defined and holomorphic on Uκ+1

1 × U .
For every integer κ ≥ 1, the real-analytic map Ξ: U2κ

1 × (M ∩ U1) → M2κ+1

given by

Ξ(t0, . . . , t2κ−1, p)(2.5)

:= (v2κ(t0, . . . , t2κ−1; p), v2κ−1(t1, . . . , t2κ−1; p), . . . , v1(t2κ−1; p), p, p̄)

parametrizes the (germ at the origin of the) submanifold

(2.6) N κ = {(Z, ζ1, . . . , ζκ, p, p̄) : (Z, ζ1, . . . , ζκ, p) ∈ M2κ, p ∈ M} ⊂ M2κ+1.

We recall the following finite type/minimality criterion from [5]:
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Theorem 2.1. Let M be a germ of a real-analytic generic minimal submanifold
at the origin. With the above notation, there exists an integer s ≤ N such that the
following holds:

max
{
rk

∂v2s

∂(t0, ts+1, ts+2, . . . , t2s−1)
(0, x1, . . . ,xs−1, xs, xs−1, . . . , x1; 0)(2.7)

: x1, . . . , xs ∈ U1

}
= N

(2.8) v2s(0, x1, . . . , xs−1, xs, xs−1, . . . , x1; 0) = 0.

We shall also need another result from [5] which can be seen as a version of the
implicit function theorem with singularities (see [5, Proposition 4.1.18]).

Proposition 2.2. Let u(x, t, y) be a C
k-valued holomorphic map defined in a neigh-

borhood of the origin Cr1 × Cr2 × Ck. Assume that

u(x, 0, 0) = 0, Δ(x) := det

(
∂u

∂y
(x, 0, 0)

)
�≡ 0.

Then there exists a Ck-valued holomorphic map Θ defined in a neighborhood of 0
in Cr1+r2+k, vanishing at 0, such that

u

(
x, t,Δ(x)Θ

(
x,

t

Δ(x)2
,

σ

Δ(x)2

))
= σ

for all (x, t, σ) ∈ C
r1+r2+k such that Δ(x) �= 0 and x and

∣∣∣ t
Δ(x)2

∣∣∣ + ∣∣∣ σ
Δ(x)2

∣∣∣ suffi-

ciently small.

3. Universal meromorphic parametrization of CR maps

The goal of this section is to prove a very precise universal meromorphic para-
metrization property for germs of CR maps from generic real-analytic CR subman-
ifolds into spheres. The exact statement is provided by Proposition 3.7. We will
divide the proof of such a proposition into two steps. The first step involves the
use of reflection type methods combined with ideas from [51] and [39]. It aims at
obtaining a universal meromorphic identity for germs of CR maps on the iterated
complexication M2 (Proposition 3.1). Then, in the second step which is more in
the spirit of [5,9], we iterate such an identity on the iterated complexifications Mκ

for large enough κ, and use the minimality criterion Theorem 2.1 together with
Proposition 2.2 to lift the meromorphic identity from the iterated complexication
to the ambient space CN . This step requires careful analysis as our goal will be to
reach a (meromorphic) parametrization property for germs of CR maps indicating
the dependence on the base point where each germ is defined.

3.1. Reflection. We use the notation previously introduced in §2. We have the
following result.

Proposition 3.1. Let M ⊂ CN be a germ of a generic real-analytic submanifold
at the origin. Then, shrinking the neighborhood U if necessary, there exists a C

r-
valued holomorphic map A(Z, ζ1, Z1), for some integer r ≥ 1, depending only on
M , defined on U × U × U , and two finite collections of (universal) holomorphic
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2154 NORDINE MIR AND DMITRI ZAITSEV

polynomial maps P1, . . . , PJ , D1, . . . , DJ , such that for every germ of a holomorphic
map f : (CN , 0) → C

N ′
with f(M) ⊂ S

2N ′−1, there exists 1 ≤ j0 ≤ J , such that

(3.1) f(Z) =
Pj0(A(Z, ζ1, Z1), (∂μf̄(ζ1), ∂μf(Z1))|μ|≤N ′)

Dj0(A(Z, ζ1, Z1), (∂μf̄(ζ1), ∂μf(Z1))|μ|≤N ′)

and Dj0(A(Z, ζ1, Z1), (∂μf̄(ζ1), ∂μf(Z1))|μ|≤N ′) �≡ 0 for all (Z, ζ1, Z1) ∈ M2 suf-
ficiently close to the origin.

Proof. We start with the basic equation

(3.2)
N ′∑
i=1

|fi|2 = 1,

that holds on M sufficiently close to the origin. We complexify it to obtain on M:

(3.3)
N ′∑
i=1

fi(Z)f̄i(ζ) = 1

Applying combinations of vector fields from (2.3), Lα = Lα1
1 . . .Lαn

n with α =
(α1, . . . , αn) and |α| ≤ N ′ to (3.3), we obtain that for (Z, ζ) ∈ M sufficiently close
to the origin:

(3.4)

N ′∑
i=1

fi(Z)Lαf̄i(ζ) = 0.

For every α as above, we view Lαf̄(ζ) as a vector in C
N ′

(depending on (Z, ζ) ∈
M). For 0 ≤ r ≤ N ′, denote by er ≤ N ′ the generic rank (over a sufficiently small
neighborhood of 0 in M) of the collection of vectors Lαf̄(ζ) for |α| ≤ r. We clearly
have that the sequence er, 0 ≤ r ≤ N ′ strictly increases until it stabilizes (see e.g.
[37]). Let r0 ∈ {1, . . . , N ′} be defined by er0−1 < er0 = er0+1 and set k0 := er0 .
Even though k0 depends on the map f , note that we have only finitely many choices
for such an integer.

In what follows, we assume that the so-called generic degeneracy m := N ′−k0 >
0 (see [39]), the simpler case k0 = N ′ will be discussed at the end of the proof. In
order to add some further equations to the system (3.4), we shall use arguments
from [10, 39].

It follows from [10] or [39, Proposition 4.4] that there exists meromorphic maps

V j : U → CN ′
, V j = (V j

1 , . . . , V
j
N ′), j = 1, . . . ,m, satisfying

(3.5)
N ′∑
i=1

V j
i (Z)f̄i(ζ) = 0

for (Z, ζ) ∈ M∩ (U ×U), and such that the matrix (V 1, . . . , V m) is of generic rank
m. In fact, more can be said about how those maps V j ’s may be constructed. We
explain this following the lines of [39, Proposition 4.4].

We choose k0 multi-indices α(1), . . . , α(k0) of length≤ k0, with α(1) = 0, such that

the generic rank of the matrix
(
Lα(�)

f̄j(ζ)
)

1≤j≤N′
1≤�≤k0

equals k0. Picking a generically
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invertible minor of size k0 in this matrix, say the first minor on the top left of the
matrix, we may write the desired map V j = (V j

1 , . . . , V
j
N ′) in the form,

V j
i (Z) =

Pij

((
Lα(�)

f̄(ζ)
)
1≤�≤k0

)

det

((
Lα(�) f̄j(ζ)

)
1≤j≤k0
1≤�≤k0

) , (Z, ζ) ∈ M,

for some universal polynomials Pij . Furthermore, as in [39, Proposition 4.4], we
have

(3.6) V j
i (Z) = δi,k0+j , i ≥ k0 + 1, 1 ≤ j ≤ m,

where δi,k0+j denotes the usual Kronecker symbol. In particular, the generic rank
of the matrix (V 1, . . . , V m) is equal to m. Since there are finitely many choices
for the above mentioned minors, as well as for the multi-indices α�’s, we therefore
come to the conclusion that we may write for each j = 1, . . . ,m,

(3.7) V j(Z) =
Pj

((
Lαf̄(ζ)

)
|α|≤N ′

)
D

((
Lαf̄(ζ)

)
|α|≤N ′

) , (Z, ζ) ∈ M,

where Pj and D belong to a finite family of universal polynomial maps (with real

coefficients) and D
((

Lαf̄(ζ)
)
|α|≤N ′

)
�≡ 0 for (Z, ζ) ∈ M. Now we note that for

j = 1, . . . ,m, (3.7) may be rewritten as follows

(3.8) V
j
(ζ) =

Pj

((
T αf(Z1)

)
|α|≤N ′

)
D

(
(T αf(Z1))|α|≤N ′

) , (ζ, Z1) ∈ M,

where we write Z1 = (z1, w1) ∈ C
n × C

d and

(3.9) Tr :=
∂

∂z1r
+

d∑
ν=1

Qd
zr (z

1, χ, τ )
∂

∂w1
ν

, r = 1, . . . , n.

Conjugating (3.5) and adding it to the system of (3.3) and (3.4), we obtain the
following system of equations on M (with meromorphic coefficients):

(3.10)

⎧⎪⎨
⎪⎩
∑N ′

i=1 fi(Z)Lα(1)

f̄i(ζ) = 1,∑N ′

i=1 fi(Z)Lα(�)

f̄i(ζ) = 0, 2 ≤ � ≤ k0,∑N ′

i=1 V
j

i (ζ)fi(Z) = 0, j = 1, . . . ,m.

We now claim the following:

Claim 1. The matrix B(Z, ζ) formed with the column vectors

Lα(1)

f̄(ζ), . . . ,Lα(k0)

f̄(ζ), V
1
(ζ), . . . , V

m
(ζ)

has generic rank N ′ (over M).

Let us prove the claim following the arguments of [39, Theorem 5.2]. Using (3.5)
and (3.6), we have for (Z, ζ) ∈ M near the origin

(3.11) f̄k0+j(ζ) = −
k0∑
i=1

V j
i (Z)f̄i(ζ), 1 ≤ j ≤ m,
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2156 NORDINE MIR AND DMITRI ZAITSEV

and hence

(3.12) Lα(�)

f̄k0+j(ζ) = −
k0∑
i=1

V j
i (Z)Lα(�)

f̄i(ζ), 1 ≤ j ≤ m, 1 ≤ � ≤ k0.

For every 1 ≤ ν ≤ N ′, denote by Rν the ν-th row of the matrix B. Substituting,

for every such k0 + 1 ≤ ν ≤ N ′, Rν by Rν +
∑k0

i=1 V
ν−k0
i (Z)Ri, we obtain, in view

of (3.12) a matrix of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lα(1)

f̄1(ζ) . . . Lα(k0)

f̄1(ζ)
...

...

Lα(1)

f̄k0
(ζ) . . . Lα(k0)

f̄k0
(ζ)

V
1

1(ζ) . . . V
m

1 (ζ)
... . . .

...

V
1

k0
(ζ) . . . V

m

k0
(ζ)

0 C(Z, ζ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where C(Z, ζ) is them×mmatrix given by
(
V k(Z) · V ν

(ζ)
)
k,ν

and V k(Z)·V ν
(ζ) =∑N ′

i=1 V
k(Z)V

ν
(ζ). Hence C(Z, ζ) is simply the complexification of the Gram

matrix
(
V k · V ν∣∣

M

)
k,ν

, which is generically invertible since the vectors V k
∣∣
M
,

k = 1, . . . ,m, are generically linearly independent (near 0). The proof of the claim
is complete.

Thanks to the claim, we may now finish the proof of the proposition and solve
the linear system of equations (3.10) (in the f ’s) using Cramer’s rule and obtain
that for (Z, ζ) ∈ M

(3.13) f(Z) =
P̃
((

Lαf̄(ζ)
)
|α|≤N ′ , V (ζ)

)
D̃

((
Lαf̄(ζ)

)
|α|≤N ′ , V (ζ)

)
where P̃ and D̃ are, respectively, universal polynomial CN ′

-valued and C-valued
maps, depending on the map f , but belonging to a finite collection of universal
polynomial maps. Now substituting (3.8) into (3.13) yields that we may write

(3.14) f(Z) =
P̂
((

Lαf̄(ζ)
)
|α|≤N ′ ,

(
T αf(Z1)

)
|α|≤N ′

)
D̂

((
Lαf̄(ζ)

)
|α|≤N ′ , (T αf(Z1))|α|≤N ′

)
for (Z1, ζ, Z) ∈ M2 sufficiently close to the origin and where P̂ and D̂ belonging to
some finite collection of universal polynomial maps. Using the form of the vector
fields Lj ’s and Tr’s given by (2.3) and (3.9), we get the desired statement of the
proposition.

To complete the proof of the proposition, we must tackle the case where k0 = N ′.
In that case, we can directly apply Cramer’s rule to the system of equations given
by (3.3) and (3.4) and reach a similar conclusion as the one obtained when k0 < N ′.
We leave the details to the reader. The proof of the proposition is complete. �
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Remark 3.2.

(a) We note that the map A in the right hand side of (3.1) is defined in the
fixed neighborhood U × U × U of 0 where U is given as in §2.

(b) In Proposition 3.1 as well as in further propositions below, we obtain the
existence of universal polynomial maps satisfying certain properties. Uni-
versality means that the polynomial maps are independent of the given
manifold M (and of any chosen point and neighborhood there) as well as
independent of all the germs of CR maps under consideration.

3.2. Iteration. Our next goal is to get a similar identity as the one in (3.1), but
on the iterated complexification of any order instead.

Differentiating (3.1) and using the chain rule, one easily gets the following state-
ment:

Proposition 3.3. Let M and U be as above, A and Pj , Dj, 1 ≤ j ≤ J be given
by Proposition 3.1. Then for every multi-index γ ∈ NN , there exists a holomorphic
map A(γ)(Z, ζ1, Z1), depending only on M , defined on U × U × U , and for every

1 ≤ j ≤ J , a (universal) holomorphic polynomial map P
(γ)
j , depending only on Pj,

Dj and γ, such that for every germ of a holomorphic map f : (CN , 0) → C
N ′

with

f(M) ⊂ S2N
′−1, there exists 1 ≤ j0 ≤ J , such that for every γ ∈ NN ,

(3.15) (∂γf)(Z) =
P

(γ)
j0

(
A(γ)(Z, ζ1, Z1), (∂μf̄(ζ1), ∂μf(Z1))|μ|≤N ′+|γ|

)
(
Dj0

(
A(Z, ζ1, Z1), (∂μf̄(ζ1), ∂μf(Z1))|μ|≤N ′

))2|γ| ,

for all (Z, ζ1, Z1) ∈ M2 sufficiently close to the origin.

Now iterating Proposition 3.3 along the iterated complexification yields the fol-
lowing statement.

Proposition 3.4. Let M and U be as above and let Pj , Dj, 1 ≤ j ≤ J , be given
by Proposition 3.1. Fix an integer � ≥ 1. Then there exists a holomorphic map
A�(Z, ζ

1, Z1, . . . , Z�, ζ�+1), depending only on M , defined on U2�+2, and for every
0 ≤ j ≤ J , (universal) holomorphic polynomial maps Pj,� and Dj,�, depending only

on Pj, Dj and �, such that for every germ of a holomorphic map f : (CN , 0) → C
N ′

with f(M) ⊂ S2N
′−1, there exists 1 ≤ j0 ≤ J ,

(3.16) f(Z) =
Pj0,�

(
A�(Z, ζ

1, Z1, . . . , Z�, ζ�+1), (∂μf̄(ζ�+1), ∂μf(Z�))|μ|≤2�N ′
)

Dj0,�

(
A�(Z, ζ1, Z1, . . . , Z�, ζ�+1), (∂μf̄(ζ�+1), ∂μf(Z�))|μ|≤2�N ′

) ,
for all (Z, ζ1, Z1, . . . , Z�, ζ�+1) ∈ M2�+1 sufficiently close to the origin, and the
denominator in (3.16) does not vanish identically on M2�+1. In particular, we
have the following representation:

(3.17) f(Z) =
Pj0,�

(
A�(Z, ζ

1, Z1, . . . , Z�−1, ζ�, p, p̄), (∂μf̄(p̄), ∂μf(p))|μ|≤2�N ′
)

Dj0,�

(
A�(Z, ζ1, Z1, . . . , Z�−1, ζ�, p, p̄), (∂μf̄(p̄), ∂μf(p))|μ|≤2�N ′

) ,
for all (Z, ζ1, Z1, . . . , Z�−1, ζ�, p) ∈ N � (given by (2.6)) sufficiently close to the
origin, and the denominator in (3.17) does not vanish identically (on N �).

Proof. The proof consists of a systematic use of Proposition 3.3.
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Let f be as in the proposition. Applying Proposition 3.1, we have for some
1 ≤ j0 ≤ J ,

(3.18) f(Z) =
Pj0(A(Z, ζ1, Z1), (∂μf̄(ζ1), ∂μf(Z1))|μ|≤N ′)

Dj0(A(Z, ζ1, Z1), (∂μf̄(ζ1), ∂μf(Z1))|μ|≤N ′)
,

with a non-vanishing denominator on M2. Now applying Proposition 3.3 and
taking the complex conjugate of (3.15), we have for every multi-index μ ∈ NN , and
for every (Z1, ζ2) ∈ M and (ζ1, Z1) ∈ M sufficiently close to the origin,

(3.19) (∂μf̄)(ζ1) =
P

(γ)
j0

(
A(γ)(ζ1, Z1, ζ2), (∂νf(Z1), ∂ν f̄(ζ2))|ν|≤N ′+|μ|

)
(
Dj0

(
Ā(ζ1, Z1, ζ2), (∂νf(Z1), ∂ν f̄(ζ2))|ν|≤N ′

))2|μ| .

Substituting (3.19) into (3.18) immediately gives the (3.16) for � = 1. The general
case of (3.16) for arbitrary � follows from the same type of arguments.

The last statement of the proposition follows from the fact that the submanifold
N � is a uniqueness set for holomorphic functions on M2�+1. The proof of the
proposition is complete now. �

Using the iterated Segre maps as recalled in §2, we now reach the following.

Proposition 3.5. Let M ⊂ CN be a generic real-analytic minimal submanifold
through the origin and let s ∈ Z+ be as Theorem 2.1. Then there exists a holomor-
phic map Φ(t0, . . . , t2s−1, λ, ω), depending only on M , defined on some fixed neigh-
borhood of 0 ∈ C

2sn×C
N
λ ×C

N
ω , and two finite collections of (universal) holomorphic

polynomial maps P̃1, . . . , P̃J , D̃1, . . . , D̃J , such that for every germ of a holomor-
phic map f : (CN , 0) → C

N ′
with f(M) ⊂ S

2N ′−1, there exists j0 ∈ {1, . . . , J} such
that
(3.20)

(f ◦ v2s)(t0, . . . , t2s−1; p) =
P̃j0

(
Φ(t0, . . . , t2s−1, p, p̄), (∂μf̄(p̄), ∂μf(p))|μ|≤2sN ′

)
D̃j0

(
Φ(t0, . . . , t2s−1, p, p̄), (∂μf̄(p̄), ∂μf(p))|μ|≤2sN ′

) ,
for all (t0, . . . , t2s−1) ∈ C2sn and p ∈ M sufficiently close to 0, with the denominator
in (3.20) not vanishing identically.

Proof. Setting Φ(t0, . . . , t2s−1, p, p̄) = (As ◦Ξ)(t0, . . . , t2s−1, p) with As and Ξ given
respectively by Proposition 3.4 and (2.5), we see that the result follows from Propo-
sition 3.4. �

3.3. Lifting. The next step consists of the lifting procedure. In order to carry it
out, we need a more precise version of Proposition 3.5 since we will be considering
germs of CR maps at points q ∈ M sufficiently close to the origin. To this end,
we’ll be more precise in the choice of our neighborhoods. Let s ∈ Z+ be the integer
given as before. We assume that M is given by (2.1) for |Z| < C0 for some fixed
C0 > 0. We also assume that the iterated Segre map v2s(t0, . . . , t2s−1; p) is defined
for |tj | < C1, |p| < C1, j = 0, . . . , 2s − 1, with 0 < C1 ≤ C0. Now inspecting the
proofs in §3.1 and §3.2, we have the following:

Proposition 3.6. Let M ⊂ CN be a generic real-analytic minimal submanifold
through the origin. Then for C1 > 0 sufficiently small, there exists a holomorphic
map Φ(t0, . . . , t2s−1, λ, ω), depending only on M , defined for tj ∈ Cn, λ ∈ CN ,
ω ∈ CN , |tj | < C1, |λ| < C1, |ω| < C1, j = 0, . . . , 2s− 1, and two finite collections
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of (universal) holomorphic polynomial maps P̃1, . . . , P̃J , D̃1, . . . , D̃J , such that if

q = (zq, wq) ∈ M with |q| < C1 and f : (CN , q) → CN ′
is a germ of a holomorphic

map with f(M) ⊂ S2N
′−1, there exists j0 ∈ {1, . . . , J} such that

(3.21)

(f ◦ v2s)(t0, . . . , t2s−1; p) =
P̃j0

(
Φ(t0, . . . , t2s−1, p, p̄), (∂μf̄(p̄), ∂μf(p))|μ|≤2sN ′

)
D̃j0

(
Φ(t0, . . . , t2s−1, p, p̄), (∂μf̄(p̄), ∂μf(p))|μ|≤2sN ′

) ,
for all (t0, . . . , t2s−1) ∈ C

2sn and p ∈ M sufficiently close to (zq, z̄q, . . . , zq, z̄q) and
q respectively, with the denominator in (3.21) not vanishing identically.

We now want to lift (3.21) to get a universal meromorphic parametrization prop-
erty for CR maps as given by Proposition 3.7. The proof consists of a careful
application of Proposition 2.2 following in spirit some steps from [5, 9].

In what follows, we assume that s is odd, the even case, being very similar, is
left to the reader.

We introduce the following variables

x = (x1, . . . , xs) ∈ C
ns, u = (u0, . . . , us−1) ∈ C

sn,

(η, σ) ∈ C
n × C

d, θ ∈ C
n, ω ∈ C

N ,

and define holomorphic maps L : (C2(s+1)n, 0) → (C2sn, 0) and ϑ : (C2(s+1)n+N+d, 0)
→ (CN , 0) as follows:

L(x, u, η, θ) := (u0 + η, x1 + θ, x2 + η, . . . , xs + θ, us−1 + xs−1 + η, . . . , u1 + x1 + θ),

ϑ(x, u, η, σ, θ, ω) = v2s (L(x, u, η, θ);ω + (η, σ))− (η, σ).

We choose 0 < C2 < C1 such that ϑ is a holomorphic map for

(3.22) |x| < C2, |u| < C2, |η| < C2, |σ| < C2, |ω| < C2, |(η, σ)| < C2, |θ| < C2.

We also define

Ψ(x, u, η, σ, θ, ω) := Φ
(
L(x, u, η, θ);ω + (η, σ), ω + (η, σ)

)
,

where Φ is given by Proposition 3.6. Choosing C2 > 0 sufficiently small, we may
assume that Ψ is real-analytic on the open set given by (3.22) and holomorphic
with respect to x, u, θ.

In view of (2.8), we have

(3.23) ϑ(x, 0, 0, 0, 0) = 0,

and in view of (2.7), we also have

(3.24) max
{
rk

∂ϑ

∂u
(x, 0, 0, 0, 0) : |x| < C2

}
= N.

We write u = (ξ, y) ∈ Csn−N × CN such that

(3.25) Δ(x) = det

(
∂ϑ

∂y
(x, 0, 0, 0, 0)

)
�≡ 0.

By Proposition 2.2, there exists a CN -valued holomorphic map Υ(x, ξ, η, σ, θ, ω)
defined for

(3.26) |x|, |ξ|, |η|, |σ|, |θ|, |ω| < C3,
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for some 0 < C3 < C2, such that

(3.27) ϑ

(
x, ξ,Δ(x)Υ

(
x,

ξ

Δ(x)2
,
(η, σ)

Δ(x)2
θ

Δ(x)2
,

ω

Δ(x)2
,

Z0

Δ(x)2

)
, η, σ, θ, ω

)
= Z0

for all (x, ξ, η, σ, θ, ω, Z0) belonging to the open subset W where (3.26) holds,
Δ(x) �= 0 and

(3.28)

∣∣∣∣ ξ

Δ(x)2

∣∣∣∣ ,
∣∣∣∣ (η, σ)Δ(x)2

∣∣∣∣ ,
∣∣∣∣ θ

Δ(x)2

∣∣∣∣ ,
∣∣∣∣ ω

Δ(x)2

∣∣∣∣ ,
∣∣∣∣ Z0

Δ(x)2

∣∣∣∣ < C4

for some constant 0 < C4 < C3 (chosen in such a way that the term on the left
of (3.27) is holomorphic on W). Reducing C3 and C4 further if necessary, we may
assume that the map

T (x, ξ, η, σ, θ, ω, Z0)

(3.29)

:= Ψ

(
x, ξ,Δ(x)Υ

(
x,

ξ

Δ(x)2
,
(η, σ)

Δ(x)2
θ

Δ(x)2
,

ω

Δ(x)2
,

Z0

Δ(x)2

)
, η, σ, θ, ω

)

is real-analytic on W and holomorphic with respect to (x, ξ, θ, Z0).
Pick an arbitrary relatively compact open subset S of {x ∈ Csn : |x| < C3, Δ(x)

�= 0} and set δ := inf{Δ(x) : x ∈ S} > 0. Reducing C4 if necessary, we may assume
that δ2C4 < C3.

Let Ω :=
{
Z ∈ CN : |Z| < δ2C4

2 }
}

and let q = (zq, wq) ∈ Ω ∩ M be arbitrary.

Using what we have done before with (η, σ) = (zq, wq) = q and θ = η̄ = z̄q, we see
that

(3.30) ϑ

(
x, ξ,Δ(x)Υ

(
x,

ξ

Δ(x)2
,

q

Δ(x)2
z̄q

Δ(x)2
,

ω

Δ(x)2
,

Z0

Δ(x)2

)
, q, z̄q, ω

)
= Z0

for all x ∈ S, |ξ| < δ2C4, |ω| < δ2C4, and |Z0| < δ2C4. Using (2.2), (2.4) and the
fact that q ∈ M , we further notice that

ϑ(0, 0, q, z̄q, 0) = v2s (L(0, 0, zq, z̄q); q)− q = v2s(zq, z̄q, . . . , z̄q; q)− q = 0.

Consider now a germ of a holomorphic map f : (CN , q) → CN ′
, sending (M, q) into

S2N
′−1. Using Proposition 3.6 and its notation, writing P = P̃j0 , D = D̃j0 and

using (3.21), we have
(3.31)

f(q + ϑ(x, u, q, z̄q, ω)) =
P
(
Ψ(x, u, q, z̄q, ω), (∂

μf̄(ω + q), ∂μf(ω + q))|μ|≤2sN ′
)

D
(
Ψ(x, u, q, z̄q, ω), (∂μf̄(ω + q), ∂μf(ω + q))|μ|≤2sN ′

)
for all (x, u) ∈ C2ns in a sufficiently small neighborhood of 0 (depending on q)
and for all ω in a sufficiently small neighborhood, denoted M (q), of the origin in
CN ∩ {ω : ω + q ∈ M}. Furthermore the denominator in (3.31) does not vanish
identically for all the above (x, u, ω)’s since the linear map (x, u) �→ L(x, u, zq, z̄q)
is invertible.

Next we observe that the right hand side of (3.31) is well-defined, as a ratio, for
|x|, |u| < C3 and for ω ∈ M (q). We now claim that the left-hand side is also defined
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and holomorphic for |x| < C3 and for |u| sufficiently small (depending on q) and
for ω ∈ M (q). This claim follows from the fact that for every x with |x| < C3,

(3.32)

ϑ(x, 0, q, z̄q, 0) = v2s(L(x, 0, zq, z̄q); q)− q

= v2s(zq, x
1 + z̄q, . . . , x

s + z̄q, x
s−1 + zq, . . . , x

1 + z̄q; q)− q

= q − q = 0,

which itself follows from (2.2) and the fact that q ∈ M . All this implies that the
equality (3.31) holds for all |x| < C3 (which is independent of the mapping f and q)
and for all u, ω sufficiently small (depending on f and q). Now we may use (3.30)
to get the following identity

(3.33) f(q + Z0) =
P
(
T (x, ξ, q, z̄q, ω, Z

0), (∂μf̄(ω + q), ∂μf(ω + q))|μ|≤2sN ′
)

D
(
T (x, ξ, q, z̄q, ω, Z0), (∂μf̄(ω + q), ∂μf(ω + q))|μ|≤2sN ′

)
for all x ∈ S and ξ, Z0, ω sufficiently small (depending on q) and ω ∈ M (q). Fur-
thermore, the reader may easily check that the mapping

Z0 �→ Δ(x)Υ

(
x,

ξ

Δ(x)2
,

q

Δ(x)2
z̄q

Δ(x)2
,

ω

Δ(x)2
,

Z0

Δ(x)2

)
is of full rank N for (x, ξ, Z0, ω)’s as above. This implies that the denominator in
(3.33) does not vanish identically (for all above (x, ξ, Z0, ω)′s). We may rewrite
(3.33) as follows:

(3.34) f(Z) =
P
(
T (x, ξ, q, z̄q, ω, Z − q), (∂μf̄(ω + q), ∂μf(ω + q))|μ|≤2sN ′

)
D

(
T (x, ξ, q, z̄q, ω, Z − q), (∂μf̄(ω + q), ∂μf(ω + q))|μ|≤2sN ′

)
for all Z close to q and x, ξ, ω as above.

Set t = (x, ξ) and H(t, p, q, Z) := T (x, ξ, q, z̄q, p − q, Z − q). Then it follows

that, H is a real-analytic map for x ∈ S, |ξ| < δ2C4, |p| < δ2C4

2 , |q| < δ2C4

2 and

|Z| < δ2C4

2 , and holomorphic in (t, Z). We thus have proved the following:

Proposition 3.7. Let M ⊂ CN be a generic real-analytic minimal submanifold
through the origin. Then there exist a real-analytic map H(t, p, q, Z) defined on
some open polydisc V ×W 3 ⊂ Cr ×C3N for some integer r ≥ 1, holomorphic with
respect to (t, Z), with 0 ∈ W , a finite collection of (universal) holomorphic CN ′

-
valued polynomial maps P1, . . . , PJ , and a finite collection of (universal) holomor-
phic polynomials D1, . . . , DJ , such that for every q ∈ M ∩W , and every germ of a
holomorphic map f : (CN , q) → C

N ′
with f(M) ⊂ S

2N ′−1, there exists 1 ≤ j0 ≤ J ,
such that for every p ∈ M and Z ∈ CN sufficiently close to q, and every t ∈ V ,

(3.35) f(Z) =
Pj0

(
H(t, p, q, Z), (∂μf̄(p̄), ∂μf(p))|μ|≤2sN ′

)
Dj0

(
H(t, p, q, Z), (∂μf̄(p̄), ∂μf(p))|μ|≤2sN ′

) ,
where the denominator in (3.35) does not vanish identically for (t, p, Z) as above.

4. Proofs of Theorems 1.1 and 1.4 and Corollary 1.5

4.1. Meromorphic extension to a larger neighborhood – Proof of Theo-
rem 1.4. Without loss of generality, we may assume that p0 = 0. Let Ω := W
where W is given by Proposition 3.7. Let q ∈ Ω and f : (M, q) → S

2N ′−1 be a germ
of a C∞-smooth CR map. As already mentioned, we may assume that f extends
holomorphically to a neighborhood of q in CN . Choosing some value of t ∈ V and
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p ∈ W such that the denominator in (3.35) does not vanish identically, we see that
f admits a meromorphic extension to all of Ω. The second part of the theorem
follows from the first part in conjunction with [17]. The proof is complete.

4.2. Proof of Corollary 1.5. Fix p0 ∈ M and f : (M,p0) → S2N
′−1 as in the

corollary. It follows from Theorem 1.4 that f extends holomorphically along any
path in M starting from p0. Hence, since M is connected and simply-connected,
we can extend, by analytic continuation, the local map f holomorphically to a
neighborhood of M in CN .

The second part of Corollary 1.5 follows from the first part of it together with
the regularity results in [25, 41].

4.3. Unique jet determination – Proof of Theorem 1.1. The proof of Theo-
rem 1.1 will follow once we have proved the following:

Proposition 4.1. Let M ⊂ C
N be a generic real-analytic minimal submanifold

through 0. Then there exists a neighbhorhood U0 of 0 in CN and an integer K > 0
such that for every q ∈ M∩U0, if f, g : (C

N , q) → CN ′
are two germs of holomorphic

maps sending M into S
2N ′−1 with jKq f = jKq g, then f = g.

Proof. Let H, V , W and the collection of polynomial maps Pj and Dj , 1 ≤ j ≤ J ,

be given by Proposition 3.7. For each CN ′
-valued polynomial map Pj , we write

Pj = (Pj,1, . . . , Pj,N ′). Shrinking V and W if necessary we may assume that the
map H is real-analytic in a neighborhood of the closure of V × W 3. We also
introduce, for every μ ∈ NN , new independent complex variables Λμ ∈ CN ′

and

Λ̂μ ∈ CN ′
, and write Λ = (Λμ)|μ|≤2sN ′ , Λ̂ = (Λ̂μ)|μ|≤2sN ′ . For any open set Ω

in some real manifold, we write A(Ω) for the ring of real-analytic functions in a
neighborhood of Ω. For 1 ≤ i, j ≤ J , 1 ≤ ν ≤ N ′, we set

(4.1)
Ri,j,ν(t, p, q, Z,Λ, Λ̂) :=Pi,ν(H(t, p, q, Z),Λ,Λ) Dj(H(t, p, q, Z), Λ̂, Λ̂)

− Pj,ν(H(t, p, q, Z), Λ̂, Λ̂) Di(H(t, p, q, Z),Λ,Λ),

and also define, for each α ∈ NN ,

Rα
i,j,ν(t, p, q,Λ, Λ̂) :=

∂|α|Ri,j,ν

∂Zα
(t, p, q, q,Λ, Λ̂) ∈ A

(
V ×W 2

) [
Λ, Λ̂,Λ, Λ̂

]
.

For 1 ≤ i, j ≤ J and 1 ≤ ν ≤ N ′, let Ii,j,ν be the ideal generated by the Rα
i,j,ν for

α ∈ NN in the ring R := A
(
V ×W 2

) [
Λ,Λ, Λ̂, Λ̂

]
. By [26], the ring A(V ×W 2) is

noetherian, and therefore, so is R. Hence there is an integer �i,j,ν such that Ii,j,ν
is generated, as an ideal in R, by the Rα

i,j,ν for |α| ≤ �i,j,ν . Set K = max{�i,j,ν :
1 ≤ i, j ≤ J, 1 ≤ ν ≤ N ′}. We claim that the conclusion of the proposition holds
with U0 = W and the above mentioned choice of K.

Indeed, pick q ∈ M ∩ W and assume that f, g : (CN , q) → CN ′
are two germs

of holomorphic maps sending M into S2N
′−1, with jKq f = jKq g. It follows from

Proposition 3.7 that we may find 1 ≤ j1, j2 ≤ J such that

(4.2) f(Z) =
Pj1

(
H(t, p, q, Z), (∂μf̄(p̄), ∂μf(p))|μ|≤2sN ′

)
Dj1

(
(H(t, p, q, Z), (∂μf̄(p̄), ∂μf(p))|μ|≤2sN ′)

)
(4.3) g(Z) =

Pj2

(
H(t, p, q, Z), (∂μḡ(p̄), ∂μg(p))|μ|≤2sN ′

)
Dj2

(
(H(t, p, q, Z), (∂μḡ(p̄), ∂μg(p))|μ|≤2sN ′)

)
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for Z sufficiently close to q, t ∈ V , and p ∈ M sufficiently close to q. Since
f(Z) − g(Z) = O(|Z − q|K+1), we get that for all t, Z and p as above, and for
1 ≤ ν ≤ N ′,

Rj1,j2,ν(t, p, q, Z, (∂
μf(p))|μ|≤2sN ′ , (∂μg(p))|μ|≤2sN ′) = O(|Z − q|K+1),

or equivalently that

Rα
j1,j2,ν(t, p, q, (∂

μf(p))|μ|≤2sN ′ , (∂μg(p))|μ|≤2sN ′) = 0, |α| ≤ K.

By the choice of K = �0, we get that for ν = 1, . . . , N ′,

Rj1,j2,ν(t, p, q, Z, (∂
μf(p))|μ|≤2sN ′ , (∂μg(p))|μ|≤2sN ′) = 0

for Z ∈ W , t ∈ V , and p ∈ M sufficiently close to q, which implies that f(Z) = g(Z)
for Z close to q, i.e. f = g. �

Since any real-analytic CR submanifold in CN is locally biholomorphically equiv-
alent to a product manifold Σ × {0} ⊂ CN−e × Ce for some real-analytic generic
submanifold Σ ⊂ C

N−e, the following result follows at once from Proposition 4.1
and [40].

Proposition 4.2. Let M ⊂ CN be a real-analytic minimal CR submanifold through
the origin. Then there exists a neighbhorhood M0 of 0 in M and an integer K > 0
such that for every q ∈ M0, if f, g : (M, q) → S

2N ′−1 are two germs of C∞-smooth
CR maps with jKq f = jKq g, then f = g.

Theorem 1.1 is then a straightforward consequence of Proposition 4.2.
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[42] H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend.

Circ. Mat. Palermo (2) 23, (1907), 185–220.
[43] S. I. Pinchuk, Analytic continuation of holomorphic mappings and problems of holomorphic

classification of multidimensional domains (Russian), Mat. Zametki 33 (1983), no. 2, 301–
314, 320. MR693441
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