VIRTUAL EAST-WEST SCV SEMINAR

March 8, 2022

Takeo OHSAWA Nagoya University

ON THE COHOMOLOGY VANISHING WITH POLYNOMIAL GROWTH ON COMPLEX MANIFOLDS WITH PSEUDOCONVEX BOUNDARY

 $\bar{\partial}$ coholomology groups with polynomial growth $H_{p.g.}^{r,s}$ will be studied. It will be shown that, given a complex manifold M, a locally pseudoconvex bounded domain $\Omega \subset \subset M$ satisfying certain geometric boundary condition and a holomorphic vector bundle $E \to M$, $H_{p.g.}^{r,s}(\Omega, E) = 0$ holds for all $s \geq 1$ if E is Nakano positive and $r = \dim M$. It will be also shown that $H_{p.g.}^{r,s}(\Omega, E) = 0$ for all rand s with $r + s > \dim M$ if moreover rank E = 1. By Deligne-Maltsiniotis-Sasakura's comparison theorem, it follows in particular that, for any smooth projective variety X, for any ample line bundle $L \to X$ and for any effective divisor D on X such that $[D]|_{|D|} \geq 0$, the algebraic cohomology $H_{alg}^s(X \setminus |D|, \Omega_X^r(L))$ vanishes if $r + s > \dim X$.