VIRTUAL EAST-WEST SCV SEMINAR

May 31, 2022

Ziming SHI Rutgers University

Existence of Solutions for $\overline{\partial}$ Equation in Sobolev Spaces of Negative Index

Let Ω be a strictly pseudoconvex domain in \mathbb{C}^n with C^{k+2} boundary, $k \geq 1$. We construct a $\overline{\partial}$ solution operator (depending on k) that gains $\frac{1}{2}$ derivative in the Sobolev space $H^{s,p}(\Omega)$ for any $1 and <math>s > \frac{1}{p} - k$. If the domain is C^{∞} , then there exists a $\overline{\partial}$ solution operator that gains $\frac{1}{2}$ derivative in $H^{s,p}(\Omega)$ for all $s \in \mathbb{R}$. We obtain our solution operators through the method of homotopy formula. The new ideas include a technique which we call "reverse integration by parts" and the construction of "anti-derivative operators" on distributions defined on bounded Lipschitz domains. This is joint work with Liding Yao.