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1. Introduction

A formal holomorphic map H: (M,p)!M ′ from a germ of a real-analytic submanifold

M⊂CN at p∈M into a real-analytic subset M ′⊂CN ′
is an N ′-tuple of formal holomor-

phic power series H=(H1, ...,HN ′) satisfying H(p)∈M ′ with the property that, for any

germ of a real-analytic function δ(w, 	w) at H(p)∈CN ′
which vanishes on M ′, the formal

power series δ(H(z), H(z)) vanishes on M . There is an abundance of examples showing

that formal maps may diverge: After the trivial example of self-maps of a complex sub-

manifold, possibly the simplest non-trivial example is given by the formal maps of (R, 0)

into R which are just given by the formal power series in z∈C with real coefficients, that

is, by elements of R[[z]].

It is a surprising fact at first that, for formal mappings between real submanifolds

in complex spaces, if one assumes that the trivial examples above are excluded in a

suitable sense, the situation is fundamentally different. The first result of this kind was

encountered by Chern and Moser in [CM], where—as a byproduct of the convergence of

their normal form—it follows that every formal holomorphic invertible map between Levi-

non-degenerate hypersurfaces in CN necessarily converges. The convergence problem,

that is, deciding whether formal maps, as described above, are in fact convergent, has

been studied intensively in different contexts, both for CR manifolds and for manifolds

with CR singularities, for which we refer the reader to the papers [Rot], [MMZ2], [LM1],

[HY1], [HY2], [HY3], [Sto], [GS] and the references therein. Solutions to the convergence

problem have important applications, for example, to the biholomorphic equivalence
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problem, where they yield the fact that formal invertible maps are automatically local

biholomorphisms.

The convergence problem for formal CR maps, i.e. when the source manifold M

is CR, which this paper mainly focuses on, has received considerable attention. Build-

ing on extensive work by Baouendi, Ebenfelt and Rothschild in the 1990s (see [BER1],

[BER2], [BER3]), Baouendi, Rothschild and the second author [BMR] proved conver-

gence of formal invertible CR maps under optimal geometric conditions on CR subman-

ifolds M,M ′⊂CN : they are the generic submanifolds of CN that are of finite type and

holomorphically non-degenerate. Let us recall that M is holomorphically non-degenerate

(in the sense of Stanton [Sta]) if any (locally defined) holomorphic vector field X tangent

to an open piece of M must be trivial, and that M is of finite type (in the sense of

Bloom–Graham [BG]) if the evaluations at every point p∈M of vector fields in the Lie

algebra generated by the CR and anti-CR vector fields constitute the full complexified

tangent space CTpM .

Understanding the convergence problem in the more general case of arbitrary maps

between CR submanifolds in complex spaces of arbitrary dimensions N and N ′ has

remained much more challenging. The first general convergence result along these lines

has only recently been obtained by the authors in [LM1] in the case when M ′ is a strictly

pseudoconvex CR manifold; we refer to that paper for an up-to-date account of previous

work in that area. In the present paper we introduce a quite different approach to deal

with the more general case where we do not assume any strict and, not even any weak,

a-priori curvature conditions on M ′.

Let us first discuss the question of how formal CR maps from a given germ (M,p)

into M ′ may diverge. It turns out that the natural geometric obstruction to convergence

comes from the existence of complex-analytic subvarieties (of positive dimension) lying

in M ′. Indeed, assume that A: ∆={ζ∈C:|ζ|<1}!M ′ is a holomorphic disc in M ′.

Then, every formal holomorphic power series f : (CN , p)!(C, 0) defines a formal CR

map A�f : (M,p)!M ′. If f is furthermore divergent, so is A�f . Hence, from this simple

observation, one may generate, due to the presence of holomorphic discs in M ′, divergent

maps whose image, furthermore, is entirely contained in the set formed by the union of

complex-analytic subvarieties (of positive dimension) contained in M ′. Our first main

result, Theorem 1.1 below, provides a converse to this by showing that, for any generic

submanifold of finite type M , the only way to get divergent formal CR maps is by having

them being valued in the above mentioned set. Some care is needed in order to define

the notion of the image being contained in that set, as the map H is a priori only formal.

For this, we need to recall the definition of points of infinite D’Angelo type (intro-

duced by D’Angelo in [D1] in the context of smooth hypersurfaces) in the real-analytic
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set M ′. A point p′∈M ′ is of infinite D’Angelo type if there exists a (non-constant) holo-

morphic disc A: ∆!M ′ with A(0)=p′. We note that D’Angelo discusses, e.g. in his book

[D3], effective ways of deciding whether a given point p′ is of finite or infinite D’Angelo

type. We denote by EM ′ the collection of all points p′∈M ′ which are of infinite D’Angelo

type; this, by [D2] and [D3], is a closed subset of M ′. We further say that a formal

holomorphic map H: (M,p)!M ′ sends M into EM ′ if there exists a sequence of (germs

of) real-analytic maps hk: (CN , p)!CN ′
which satisfies hk=H+O(|z−p|k+1) for k∈N,

and such that, for every k∈N, we have hk((M,p))⊂EM ′ .

We can now state our main theorem.

Theorem 1.1. Let M⊂CN be a generic real-analytic submanifold, of finite type at

p∈M , and M ′⊂CN ′
be a real-analytic set, where N,N ′>2. For any formal holomorphic

mapping H: (M,p)!M ′, if H does not send M into EM ′ , then H is convergent.

Theorem 1.1 contains as a special case the main theorem in the aforementioned

recent paper of the two authors [LM1], because a strictly pseudoconvex CR manifold

M ′ satisfies EM ′ =∅. We also note that, under the additional assumption that M ′ is

real algebraic, the conclusion of Theorem 1.1 was obtained by Meylan, Zaitsev and the

second author in [MMZ1] and, furthermore, Theorem 1.1 fully settles in the affirmative

a question raised in [MMZ2]. Our approach for real-analytic target sets necessarily

differs completely from the one taken in the algebraic setting, as all techniques from

commutative algebra are not available in this general situation any longer. It turns out

that the general setting studied here requires a completely different approach, which we

will shortly describe and which provides a new line of attack for a previously untractable

problem. Another remarkable feature of Theorem 1.1 we should point out is that it is

optimal in the sense that the finite-type assumption on M can not be dropped. Indeed,

according to [KS], there exists infinite-type real-analytic hypersurfaces M in C2 through

the origin and formal CR divergent self-maps H: (M, 0)!M such that H(M) 6⊂EM .

As a particular application of Theorem 1.1, we settle the long-standing question

whether the absence of complex-analytic subvarieties in M ′ actually characterizes con-

vergence of every formal map; see [Rot, Conjecture 3.6].

Corollary 1.2. Let M⊂CN be a generic real-analytic submanifold, of finite type

at p∈M , and M ′⊂CN ′
be a real-analytic set, where N,N ′>2. Then, every formal

holomorphic mapping H: (M,p)!M ′ is convergent if and only if M ′ does not contain

any complex-analytic subvariety of positive dimension.

In the equidimensional case N=N ′, some variants of Corollary 1.2 for hypersurfaces

have appeared in [BER3] and [Su]. However, even in that special setting, our corollary

covers previously unknown cases. The reader will note that Corollary 1.2 is one, among
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others, of the applications of Theorem 1.1. For instance, if H: (M,p)!M ′ is a formal

CR map, of generic (complex) rank RkH>1, and if EM ′ consists of a single analytic

disc passing through H(p), then one can check that H does not send M into EM ′ , and

so Theorem 1.1 shows that H must converge. In §2, we point out a number of other

results extending this observation, where we in particular relate conditions on the size of

the set of infinite D’Angelo points EM ′ and the generic rank of H in order to guarantee

convergence (see, e.g., Corollary 2.5).

Theorem 1.1 will follow from a far more powerful result, Theorem 2.2, which we state

in §2 below. It gives a general necessary condition for the existence of divergent maps;

heuristically speaking, in order for a divergent formal map H: (M,p)!M ′ to exist, there

must be some integer 16r6N ′ and, for every positive integer k, a family of r-dimensional

complex-analytic subvarieties (Υz)z∈Mk
parameterized by some neighborhood Mk of p

in M , depending in a CR fashion on the parameter z∈Mk (in a suitable sense), and such

that each submanifold Υz passes through H(z) and has order of contact at least k with

M ′ at H(z). Of course, as H is only a formal mapping, one cannot talk of the point

H(z) in M ′ for z 6=p, but making this rough intuition precise and exploitable takes up

the major part of this paper.

Our approach not only provides restrictions in the sense that for divergent maps to

exist the target set M ′ must contain positive-dimensional complex-analytic subvarieties,

but also relates the location of these subvarieties with the geometry of M ′ through the

map H|M . This opens the way to study the convergence problem in certain given classes

of formal CR mappings (typically, classes that are defined through rank conditions that

are stable under small deformations) for which the target setM ′ is allowed to be of infinite

D’Angelo type everywhere, i.e. allowing M ′=EM ′ . We illustrate our claim through three

applications fitting the above described setting. We show how the convergence result

for formal CR invertible mappings of [BMR] follows as a straightforward consequence of

Theorem 2.2 (see Corollary 2.6) and we also completely settle two particularly interesting

and previously unknown cases in this paper: optimal results are stated below in §2 for

(transversal) mappings between Levi-non-degenerate hypersurfaces (Corollary 2.7) and

mappings with target the tube over the light cone (Corollary 2.8).

The approach developed in the present paper is completely new and radically differ-

ent from the methods used so far to study the convergence problem for formal CR maps.

We therefore believe that the methods described here will be useful in other contexts,

and will be adapted for other mapping problems in the future. Indeed, in a forthcoming

article, we will use the philosophy of the approach in this paper (together with other

ingredients) to study the C∞-regularity of CR mappings in complex spaces of different

dimension (see [LM2]), in the spirit of the recent work of Berhanu and Xiao [BX1] in the
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case of strictly pseudoconvex targets.

We will now describe our proof in greater detail and also explain the organization

of the paper. As already pointed out, we will establish a link between the divergence

properties of a formal CR map and the geometry of the triple (M,M ′, H). This is done

by means of what we call k-approximate formal deformations in §2. Theorem 2.2 shows

that a divergent formal CR mapping which sends a real-analytic generic submanifold

M⊂CN of finite type into some real-analytic set M ′⊂CN ′
generates k-approximate for-

mal deformations (of the mapping) of any order k.

A k-approximate formal deformation of the mapping can be viewed as a holomor-

phic family, depending on a parameter t∈Cr, for some r>1, of formal holomorphic maps

Ht: (CN , p)!CN ′
, satisfying H0=H, sending M into M ′ up to order k (with respect

to the deformation parameter t) and such that the family (Ht)t∈Cr is an r-dimensional

deformation of the mapping H. We construct these objects, which are crucial for our

approach, in §3 and §4. The first step in their construction is the introduction and the

study of a new invariant attached to (M,H), which we call the divergence rank of H.

For a generic submanifold M of finite type, the divergence rank provides a suitable mea-

surement of the lack of convergence of the mapping H. In order to define the divergence

rank, we need to consider the collection of all relations of a certain type satisfied by the

mapping H, including (but not restricted to) the one coming from the basic mapping

identity H(M)⊂M ′. In all previous works on the subject (except notably the algebraic

situation studied in [MMZ1]), the basic mapping identity was the only one that was taken

into consideration. It appears that this single identity and its prolongations, especially

in the case of positive codimension (i.e. N ′>N), cannot carry enough information to

encode exactly how divergent/convergent the map is.

After we establish the basic properties of the divergence rank in §3.2, we can identify

the right “directions” in which the mapping H can be deformed holomorphically. In §3.3

we show that such directions can be chosen formally meromorphic. At this point, we

should mention that the implementation of the above strategy is based on two useful

technical results from our previous work [LM1]. In §4, we use the formal meromorphic

vectors found in §3.3 to build, for any formal CR map with divergence rank >1, a formal

deformation of the mapping H (with meromorphic coefficients), which is then used to

obtain the desired approximate formal deformations of any order, yielding the proof of

Theorem 2.2. The proof heavily relies on the well-chosen definition of the divergence

rank and on its related properties.

In §5, from the existence of approximate formal deformations of any order, we de-

rive some more geometric consequences on the existence of families of complex-analytic

subvarieties of positive dimension contained in M ′, which yields, among other things,
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the proof of Theorem 1.1. While deriving these geometric consequences (from the given

formal approximate statements), we are naturally led to investigate some very interesting

open problems related to Artin’s approximation theorem [A] in the context of CR geom-

etry (see, e.g., [Mir3]). One relevant question we mention in Conjecture 2.12 concerns an

approximation result of strong type in the CR setting. Even though an answer to this

question appears presently out of reach in full generality, for the purposes of the present

paper, we are able to utilize a parameter version of an approximation result of strong

type due to Hickel–Rond [HR]. In the last section of the article, we discuss the notion of

k-approximate formal deformations for k=1, 2, and complete the proof of a number of

results mentioned in §2, including the solutions of the convergence problems for formal

CR transversal maps between Levi-non-degenerate hypersurfaces and for maps valued in

the tube over the light cone.

2. Existence of divergent formal CR maps:

necessary and sufficient conditions

In this section, we state our most general result (Theorem 2.2), providing a new necessary

condition for the existence of divergent formal CR maps. Such a result will be used to

derive Theorem 1.1, but we also include here a number of additional convergence results

following from Theorem 2.2. Such results cover the case of target real-analytic sets that

may be foliated by complex-analytic subvarieties, and hence go beyond the situation

treated in Theorem 1.1. We also next discuss in §2.2 how close to being sufficient the

condition obtained in Theorem 2.2 is to guarantee the existence of divergent maps.

2.1. Approximate formal (holomorphic) deformations

In what follows, we define the rank of a formal power series map to be the rank of its

Jacobian matrix over the quotient field of power series, or, equivalently, the size of a

largest non-identically vanishing minor of its Jacobian matrix (see §3.1 for more details).

The following notion will be crucial throughout the paper.

Definition 2.1. Let M⊂CN be a generic real-analytic submanifold, M ′⊂CN ′
be a

real-analytic set and p∈M , N,N ′>2.

Given a positive integer k, a k-approximate formal (holomorphic) deformation for

(M,M ′) at p is a formal holomorphic map Bk: (CNz ×Crt , (p, 0))!CN ′
for some integer
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r>1, with Bk(p, 0)∈M ′, satisfying the following conditions:

(i)

Rk
∂Bk

∂t
(z, 0) = r;

(ii) for every germ of a real-analytic function %: (M ′, Bk(p, 0))!R, vanishing on M ′

near Bk(p, 0),

%(Bk(z, t), Bk(z, t))|z∈M =O(|t|k+1).

If, in addition, H: (CN , p)!CN ′
is a formal holomorphic map sending M into M ′, we

say that H admits a k-approximate formal deformation if there exists a k-approximate

formal deformation Bk of (M,M ′) at p as above satisfying Bk(z, 0)=H(z). In that case,

we also say that H admits Bk as a k-approximate formal deformation (of (M,M ′)).

Note that, if Bk is a k-approximate formal deformation, one may assume without

loss of generality that each component of Bk belongs to C[[z−p]][t] (by truncating Bk

up to order k with respect to t). Hence Bk can be identified with a holomorphic family

of formal holomorphic maps (Bkt )t∈Cr where Bkt :=Bk( · , t) is deforming the map Bk0 .

The main result of the present paper is given by the following theorem, providing

a necessary condition for the existence of divergent formal holomorphic maps in terms

of approximate formal deformations. We recall that M is said to be of finite type at a

point p∈M if the Lie algebra generated by its CR vector fields and its conjugates spans

the full complexified tangent space at p (see, e.g., [BER3] and [BCH]).

Theorem 2.2. Let M⊂CN be a generic real-analytic submanifold, of finite type at

p∈M , with N,N ′>2. If H: (CN , p)!CN ′
is a divergent formal holomorphic map, there

exist an integer r∈{1, ..., N ′} and, for every k∈N, a formal holomorphic map

Bk: (CN×Cr, (p, 0))−!CN
′

such that, for every real-analytic set M ′⊂CN ′
passing through H(p), if H(M)⊂M ′ then

H admits Bk as a k-approximate formal deformation of (M,M ′).

Theorem 2.2 shows that the existence of k-approximate formal deformations, for

every integer k, is a necessary condition for the existence of divergent formal holomorphic

maps. It is a natural question if this condition, or an analog, can also serve as a sufficient

condition. We will turn to this question in §2.2 below. Let us emphasize that the k-

approximate deformations we will construct are universal in the sense that they only

depend on the map H and not on the particular real-analytic set M ′ containing H(M).

We see from Theorem 2.2 that, in order to understand the existence of divergent

maps, it is essential to understand how the geometry of the triple (M,M ′, H) is related to
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the existence/non-existence of approximate formal deformations. To this end, for every

positive integer d, we denote by ẼdM ′ the set of points in M ′ through which there passes

a complex submanifold of dimension d. We can use this set to formulate the following

geometric consequence of Theorem 2.2.

Corollary 2.3. Let M⊂CN be a generic real-analytic submanifold, of finite type

at p∈M , and M ′⊂CN ′
be a real-analytic set, with N,N ′>2. If H: (M,p)!M ′ is a

divergent formal holomorphic map, then there exist an integer r∈{1, ..., N ′} and, for any

positive integer k, a neighborhood Uk of p in CN and a real-analytic map hk:Uk!CN ′

such that the following conditions are satisfied :

(a) hk(M∩Uk)⊂M ′, and hk agrees with H at p up to order k;

(b) there exists a Zariski open subset Ωk of M∩Uk such that hk(Ωk)⊂ẼrM ′ .

In particular, we have that hk(M∩Uk)⊂EM ′ for every positive integer k.

This result immediately implies Theorem 1.1 mentioned in the introduction. We

would like to mention the following geometric consequence of Corollary 2.3. In this

corollary, RkH|M denotes the generic (real) rank of H as a formal map M!CN ′'R2N ′
.

Corollary 2.4. Let M⊂CN be a generic real-analytic submanifold, of finite type at

p∈M , and M ′⊂CN ′
be a real-analytic set, with N,N ′>2. If H: (M,p)!M ′ is a diver-

gent formal holomorphic map, then there exist an integer r∈{1, ..., N ′} and, in any neigh-

bourhood U of H(p) in CN ′
, a family of r-dimensional complex submanifolds (Yq)q∈X

parameterized by a real-analytic submanifold X⊂U∩M ′ such that q∈Yq⊂M ′ for every

q∈X, and with dimRX>RkH|M .

A straightforward but noteworthy consequence of Corollary 2.4 providing an easy

criterion for convergence of formal holomorphic maps is given by the following.

Corollary 2.5. Let M⊂CN be a generic real-analytic submanifold, of finite type

at p∈M , and M ′⊂CN ′
be a real-analytic set, with N,N ′>2. Denote by �0 the maximum

dimension of real-analytic submanifolds contained in EM ′ . Then, any formal holomorphic

map H: (M,p)!M ′ with RkH|M>�0 is convergent.

Corollaries 2.3 and 2.5 allow us to conclude the convergence of formal CR maps

when their “formal image” is not entirely contained in the set EM ′ of infinite D’Angelo

type points in M ′, or when EM ′ is not too large. But when M ′ is itself entirely foliated by

complex-analytic varieties (which can happen for example if M ′ is a Levi-non-degenerate

hyperquadric of positive signature or any homogeneous Levi-degenerate hypersurface; see,

e.g., [Fre]), these corollaries are not applicable. However, we shall show that our main

result on approximate formal deformations (Theorem 2.2) provides effective results even
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in such cases. We start with a general statement about the existence of 1-approximate

deformations.

Given a triple (M,M ′, H) as in Theorem 2.2, a 1-approximate formal deformation

of H corresponds to the existence of a non-zero formal holomorphic vector field tangent

to M ′ along H(M) (see Proposition 6.1). If we furthermore assume that N=N ′ and

H is of rank N , the existence of a 1-approximate formal deformation of H happens

to be equivalent to M being holomorphically degenerate at p in the sense of [Sta] (see

Proposition 6.2). Hence, Theorem 2.2 implies in this specific setting the well-known

following result of [BMR] and [Su].

Corollary 2.6. Let M,M ′⊂CN be (connected) generic real-analytic submanifolds

and p∈M , N>2. If M is of finite type at p and H: (CN , p)!CN ′
is a divergent formal

holomorphic map of rank N with H(M)⊂M ′, then M is holomorphically degenerate.

Regarding 2-approximate formal deformations, it is pretty easy to see that there are

no such objects when M ′ is a strongly pseudoconvex CR manifold (see Proposition 6.3).

On the other hand, the situation is different and, in some sense, more interesting when

we study the existence of 2-approximate formal deformations for CR transversal formal

maps between Levi-non-degenerate hypersurfaces. Let us recall that, if M is Levi-non-

degenerate and connected, then the minimum (resp. maximum) of the numbers of positive

and negative eigenvalues of its Levi form is the same at each point of M and is called the

signature (resp. cosignature) of M . Let us also recall that, if M and M ′ are two real-

analytic hypersurfaces in CN and CN ′
, respectively, with p∈M , a formal holomorphic

map H: (CN , p)!CN ′
sending M into M ′ is called CR transversal (at p) if

T 1,0
H(p)M

′+dH(T 1,0
p (CN )) =T 1,0

H(p)C
N ′
.

The following result is an application of Theorem 2.2 in the context of transversal

maps between Levi-non-degenerate hypersurfaces.

Corollary 2.7. Let M⊂CN and M ′⊂CN ′
be (connected) real-analytic Levi-non-

degenerate hypersurfaces, of signature ` and `′, respectively, with N,N ′>2. Assume that

M and M ′ have either the same signature (i.e. `=`′) or cosignature (i.e. N−`=N ′−`′).
Then, for every p∈M , if H: (M,p)!M ′ is a formal holomorphic map which is CR

transversal at p, then H is convergent.

More specifically, this result will follow from Theorem 2.2 by showing that, under the

above conditions `=`′ or `′−`=N ′−N , a CR transversal formal holomorphic mapH does

not admit any 2-approximate formal deformation (see Proposition 6.4). Corollary 2.7 is

optimal in the sense that, if the condition on the signatures of M and M ′ is violated, then
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there exists examples of Levi-non-degenerate hyperquadrics and CR transversal formal

holomorphic maps which are divergent. This is explained in detail in Remark 6.6.

In the case `=`′=0, Corollary 2.7 is a special case of the strongly pseudoconvex

setting already settled in [LM1] (or contained in Corollary 1.2), in the sense that, in this

setting, the transversality assumption is superfluous. Besides that case, Corollary 2.7 is

a completely new result, which has not appeared even in special cases in the literature.

It is worth pointing out the similarity between the condition on the signatures in our

Corollary 2.7 and the one appearing in the work of Baouendi–Huang [BH] in their study

of the rigidity of holomorphic maps between hyperquadrics. We also note that, if `=0,

that is, if the source hypersurface M is strongly pseudoconvex, then Corollary 2.7 not

only guarantees the convergence of all formal CR transversal maps in the case that M ′

is strictly pseudoconvex, but also under the condition `′=N ′−N . This condition is

analogous to the one given in the works by Berhanu-Xiao and the second author [BX2],

[Mir4] dealing with the smoothness/analyticity of CR maps.

We should also add that if the codimension is 1, that is, N ′=N+1, the condition of

Corollary 2.7 on the signatures of M and M ′ is always satisfied. We thus also recover a

result of the second author [Mir2, Theorem 1.2] (see also [L] for an earlier related result).

We conclude with a last application of Theorem 2.2 (not accessible from Corol-

lary 2.3) that allows to treat formal maps valued in the tube over the light cone. Recall

that the latter is the regular part of the real-algebraic variety given by

TN
′
:=

{
(z1, ..., zN ′)∈CN

′
: (Re zN ′)2 =

N ′−1∑
j=1

(Re zj)
2

}
. (2.1)

As is well known, the regular points of TN ′
constitute a holomorphically non-degenerate

real hypersurface foliated by complex lines. For any real-analytic generic submanifold M

of finite type in CN and for M ′=TN ′
, we shall determine in Proposition 6.8 all formal CR

maps sending M into TN ′
admitting a 2-approximate formal deformation. In conjunction

with Theorem 2.2, this description immediately yields the following result.

Corollary 2.8. Let M⊂CN be a generic real-analytic submanifold in CN , of finite

type at p∈M , and TN ′⊂CN ′
be the tube over the light cone, with N,N ′>2. Then, every

formal holomorphic map H: (M,p)−!TN ′
with RkH>2 is convergent.

We note that the rank condition in Corollary 2.8 is again optimal, in the sense that

there exist divergent formal holomorphic maps of rank 1. Indeed, if η(z) is any divergent

formal holomorphic function, the map z 7!(η(z), 0, ..., 0, η(z)) is an example of a divergent

formal holomorphic map valued in TN ′
. Actually, all of the possible divergent maps can

be completely characterized (see Corollary 6.9).
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2.2. Approximate formal deformations vs. holomorphic deformations

Theorem 2.2 shows that the existence of divergent formal CR maps imply the existence

of k-approximate formal deformations for every integer k. We shall now explain to what

extent the existence of approximate formal deformations is relevant in order to establish

the existence of divergent formal CR maps. To this end, following the lines developed

by the second author for the study of the analyticity problem for CR maps in [Mir4], we

first introduce the notion of holomorphic deformation as follows.

Definition 2.9. Let M⊂CN be a generic real-analytic submanifold and M ′⊂CN ′
be

a real-analytic set and p∈M , with N,N ′>2. A holomorphic deformation for (M,M ′)

at p is a (germ of a) holomorphic map B: (CNz ×Crt , (p, 0))!CN ′
for some integer r>1

satisfying the following conditions:

(i)

Rk
∂B

∂t
(z, t) = r;

(ii) B(M×Cr)⊂M ′.

If, in addition, H: (CN , p)!CN ′
is a formal holomorphic map with H(M)⊂M ′, we

say that B is a holomorphic deformation of H (or that H admits B as a holomorphic

deformation) if there exists a formal power series map G: (CN , p)!(Cr, 0) such that

H(z)=B(z,G(z)).

Given a holomorphic deformation B for (M,M ′) at p as in Definition 2.9, one may

also define the rank of the deformation to be

Rk
∂B

∂z
(z, t).

We conjecture the following necessary and sufficient condition for the convergence of

formal CR maps of a prescribed rank in terms of the non-existence of holomorphic de-

formations.
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Conjecture 2.10. Let M⊂CN be a generic real-analytic submanifold, of finite type

at p∈M , and M ′⊂CN ′
be a real-analytic set, with N,N ′>2. Then for every positive

integer �, the following conditions are equivalent:

(i) any formal holomorphic map H: (CN , p)!CN ′
sending M into M ′ with RkH>�

is convergent;

(ii) there does not exist any holomorphic deformation for (M,M ′) at p of rank at

least �.

The implication (i)⇒ (ii) can be easily obtained as follows. Suppose that there exists

a holomorphic deformation B of (M,M ′) at p of rank >�. Then, for any divergent formal

power series $(z)∈C[[z−p]] vanishing at p, for u∈C∗ and for δ1, ..., δr∈C sufficiently

small generic values, the formal map z 7!B(z, u$(z)+δ1, δ2, ..., δr) is divergent. Indeed,

for δ1, ..., δr∈C sufficiently small generic values and u∈C, we have

Rk
∂B

∂t
(z, u$(z)+δ1, δ2, ..., δr) = r (in C[[z−p]])

and the formal map

z 7−!B(z, u$(z)+δ1, δ2, ..., δr) (2.2)

has rank >�. If B(z, u$(z)+δ1, δ2, ..., δr) were convergent for u 6=0, it would follow that

$(z) would be convergent too, as a consequence of e.g. [Mir1, Proposition 4.2]. Hence

for the above choices of u and δ1, ..., δr, the full map (2.2) is therefore divergent, sends

(M,p) into M ′ and has rank >�. Note that in case �=1, condition (ii) is equivalent to

say that M ′ does not contain any holomorphic curve, and hence Conjecture 2.10 in this

case is true, in view of Corollary 1.2. The converse implication in Conjecture 2.10 for

�>1 seems to be still open. However, Theorem 2.2 can be seen as a contribution to its

solution. Namely, from Theorem 2.2 we have the following result.

Corollary 2.11. Let M⊂CN be a generic real-analytic submanifold, of finite type

at p∈M , and M ′⊂CN ′
be a real-analytic set, with N,N ′>2. If H: (CN , p)!CN ′

is a

divergent formal holomorphic map with H(M)⊂M ′, there exists an integer r∈{1, ..., N ′},
and for any k∈N, a formal holomorphic map Bk: (CN×Cr, (p, 0))!CN ′

such that Bk

is a k-approximate formal deformation of H of rank at least RkH.

We believe, in fact, that the existence of k-approximate formal deformations for

every integer k for a given map H as above happens to be equivalent to the existence of

a holomorphic deformation of that map. In fact, we conjecture the following, which in

view of Corollary 2.11 implies Conjecture 2.10.
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Conjecture 2.12. Let M⊂CN be a generic real-analytic submanifold, of finite type

at p∈M , and M ′⊂CN ′
be a real-analytic set, with N,N ′>2. Let H: (CN , p)!CN ′

be

a formal holomorphic map with H(M)⊂M ′. Assume that there exist an integer r∈
{1, ..., N ′} and, for any k∈N, a formal holomorphic map Bk: (CN×Cr, (p, 0))!CN ′

such

that Bk is a k-approximate formal deformation of H. Then, there exists a holomorphic

map B: (CN×Cr, (p, 0))!CN ′
that is a holomorphic deformation for (M,M ′) at p of

rank at least RkH.

Hence, assuming the validity of Conjecture 2.12, Theorem 2.2 provides a necessary

condition that is also sufficient regarding the existence of divergent formal CR maps.

Note that results of a similar flavour as that of Conjecture 2.12 can be found in the

existing literature (see, e.g., [Z] and [Mir3]), but Conjecture 2.12 involves a much more

challenging and general situation than what can so far be found.

3. Properties of divergent formal maps

Let M⊂CN be a generic real-analytic submanifold and p∈M . Throughout the paper,

(M,p) will denote the germ of M at p. In this section, given a formal holomorphic

map H: (CN , p)!CN ′
, we will introduce the first main ingredient for our construction

of approximate deformations, namely a new numerical invariant attached to the pair

(M,H), which we call the divergence rank of (M,H) (or simply H). It will then be

shown that such an invariant suitably measures, when M is of finite type at p, the lack

of convergence of the map H.

3.1. Notation and preliminary results

Throughout the paper, for k>1 and t=(t1, ..., tk)∈Ck'R2k, we denote by C[[t, t̄ ]] the

ring of formal power series, by C{t, t̄ } the ring of convergent power series, and by C[t, t̄ ]

the ring of polynomials in t and t̄ with complex coefficients. The subring of holomorphic

formal power series (resp. holomorphic convergent power series) is denoted by C[[t]] (resp.

C{t}). The field of fractions of C[[t, t̄ ]] (resp. C[[t]]) is denoted by C((t, t̄ )) (resp. C((t))).

Note that, by complexification, C[[t, t̄ ]] (resp. C{t, t̄ }) may be identified with the ring

of formal holomorphic power series C[[t, τ ]] (resp. holomorphic convergent power series

C{t, τ}) in 2k complex variables (t, τ). For a formal power series g(t)∈C[[t]], we denote

by ḡ(t) the formal power series whose coefficients are the complex conjugates of those

of g(t). Furthermore, given a positive integer m, for a formal power series mapping

h(t, t̄)∈(C[[t, t̄ ]])m, the rank of h, denoted by Rkh, is the rank of its Jacobian matrix
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over the field C((t, t̄ )); it is equal to the size of a largest non identically vanishing (in

C[[t, t̄ ]]) minor of its Jacobian matrix.

All of the previous notation will also be used for rings of power series over the field

of real numbers, as well as for power series that are not necessarily centered at the origin.

For instance, C[[t−q, t̄−q̄ ]] denotes the ring of convergent power series in t and t̄ centered

at q, with complex coefficients.

Let M⊂CNz be a real-analytic generic submanifold of codimension d and p∈M .

Then, there exists a real-analytic vector-valued defining function %: (CN , p)!Rd,

%= (%1, ..., %d)∈ (R{z−p, z̄−p̄})d,

for M near p. This means that % is real-valued, M={%=0} as germs at p and

∂%1∧...∧∂%d(p, p̄) 6= 0.

The components %1, ..., %d generate an ideal I(M)⊂C{z−p, z̄−p̄}. The ring of germs of

real-analytic functions on M at p is then given by

C{M} :=
C{z−p, z̄−p̄}
I(M)

.

The ideal of formal power series that vanish on M , i.e. Î(M)=I(M)C[[z−p, z̄−p̄]] is the

ideal of formal power series S(z, z̄)∈C[[z−p, z̄−p̄]] such that, for any real-analytic (or

formal) parametrization ψ: (R2N−d
x , 0)!(M,p), we have S(ψ(x), ψ̄(x))=0. It is easy to

check that both I(M) and Î(M) are prime ideals (in C{z−p, z̄−p̄} and C[[z−p, z̄−p̄]],
respectively). We define the ring of formal power series on M to be the quotient ring

C[[M ]] :=
C[[z−p, z̄−p̄]]
Î(M)

.

Note that C[[M ]] is an integral domain, and the closure of C{M} with respect to the

topology generated by its maximal ideal. One should in principle indicate in this notation

that the ring C[[M ]] depends on the point p, but we will omit this, as the point p will be

fixed throughout the paper, and therefore identify M with the germ of M at p. For any

formal power series A(z, z̄)∈C[[z−p, z̄−p̄]], we will denote by A(z, z̄)|M (or A(z, z̄)|z∈M )

the image of A in C[[M ]] under the canonical projection. The field of fractions of C[[M ]]

will be denoted by C((M)).

Let M and p be as above, and n denote the CR dimension of M . For any real-

analytic (or formal) CR vector field L̄ tangent to M near p, we can define L̄u∈C((M))

for u∈C((M)), since the coefficients of L̄ belong to C{z−p, z̄−p̄} (resp. C[[z−p, z̄−p̄]]),
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and L̄ annihilates I(M) (resp. Î(M)). We say that u is CR if L̄u=0 for every such CR

vector field L̄. It is well known that u∈C((M)) is CR if and only there exists η∈C((z)),

where C((z)) denotes the quotient field of C[[z]] such that u=η|M (see, e.g., [MMZ1]).

Since L̄ satisfies the Leibniz rule, the collection of all CR elements in C((M)) is a subfield,

which we will denote by CR((M)).

Suppose now that we are given a real-analytic set M ′⊂CN ′
. We recall that a formal

holomorphic mapping H: (CNz , p)!CN ′

w sends M into M ′, and write H(M)⊂M ′, or

H: (M,p)−!M ′,

if, for every germ of a real-analytic function A(w, 	w)∈C{w−H(p), 	w−H(p)} vanishing

on M ′ near H(p), the power series A(H(z), H(z))∈Î(M) or, equivalently,

A(H(z), H(z))|M = 0.

In case H is convergent, the reader can easily check that this means that the germ of H

at p sends the germ of M (at p) into M ′ in the usual sense.

We now collect a few preliminary but important results from [LM1]. The first one,

Lemma 3.1, follows from using similar arguments as those of [LM1, Lemma 4.5], and is

very much related to a corresponding statement in the smooth category in [BX1]. We

leave the details to the reader.

Lemma 3.1. Let M⊂CN be a generic real-analytic submanifold, p∈M , and m and r

be two positive integers with r<m. Let F be a subfield of C((M)), and consider a subspace

G of (F)m over F of dimension r which is closed under the application of CR vector fields.

Then, the (m−r)-dimensional subspace Ann(G) can be generated by CR vectors, i.e. there

exist F-linearly independent V 1, ..., V m−r∈(CR((M)))m∩(F)m satisfying

A·V ` :=

m∑
k=1

AkV
`
k = 0 for all A∈G, 16 `6m−r.

In other words, Ann(G)⊂Fm is flat over CR((M)), that is,

Ann(G) =F(Ann(G)∩(CR((M)))m).

The next result is the main technical proposition from [LM1], establishing conver-

gence of a formal map which satisfies a certain system of singular, partially formal,

equations on a generic manifold.

Proposition 3.2. ([LM1, Proposition 3.1]) Let M⊂CN be a real-analytic generic

submanifold through a point p∈M , and Θ=(Θ1, ...,ΘN ′) be a convergent power series
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mapping with components in C{z−p, z̄−p̄, λ, w}, where z∈CN , w∈CN ′
and λ∈Cm, with

N ′, N,m>1. Let H: (CN , p)!CN ′
and G: (CN , p)!Cm be formal holomorphic power

series mappings, vanishing at p, satisfying

Θ(z, z̄, G(z), H(z))|M = 0, and det
∂Θ

∂w
(z, z̄, G(z), H(z))

∣∣∣∣
M

6≡ 0. (3.1)

If M is of finite type at p, then H is convergent.

Remark 3.3. It is well known that, for every real-analytic holomorphically non-

degenerate hypersurface M⊂CN (in the sense of [Sta]) and every p∈M , the formal

self-equivalences H of (M,p) satisfy systems of equations of the form (3.1) (see, e.g.,

[Mir1]). The existence of such hypersurfaces (of infinite type) with divergent formal CR

equivalences (see [KS]) shows that Proposition 3.2 does not hold in general if the finite

type assumption is dropped.

3.2. The divergence rank

We equip CN with coordinates z=(z1, ..., zN ), and CN ′
with coordinates w=(w1, ..., wN ′).

With respect to these coordinates, we decompose our map H into components

H(z) = (H1(z), ...,HN ′(z))∈ (C[[z−p]])N
′
.

Let AH be the set of all pairs (∆, S) of power series such that ∆=∆(z)∈(C[[z−p]])m for

some m and

S=S(z, z̄, λ, w)∈C{z−p, z̄−p̄, λ−∆(p), w−H(p)}, (3.2)

where λ∈Cm. For every (∆, S)∈AH , we set

S∆ : =S(z, z̄,∆(z), H(z))|M ∈C[[M ]],

S∆
wj : =

∂S

∂wj
(z, z̄,∆(z), H(z))

∣∣∣∣
M

∈C[[M ]], j= 1, ..., N ′,

S∆
w : = (S∆

w1
, ..., S∆

wN′ )∈ (C[[M ]])N
′
.

We now consider the subring SH(M)⊂C[[M ]] consisting of those power series of the

form S∆ for some (∆, S)∈AH , and let KMH denote the quotient field of SH(M).

Finally, we denote by A0
H(M) the subset of AH consisting of all pairs (∆, S) satis-

fying S∆=0, and define

rankA0
H(M) := dimKMH span{S∆

w : (∆, S)∈A0
H(M)},

where the dimension is computed over the field KMH , and where every S∆
w is considered

as a vector in (SH(M))N
′⊂(KMH )N

′
.
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Definition 3.4. Let M and H be as above. We define the divergence rank of H by

divrkM H =N ′−rankA0
H(M).

The following result provides a link between the divergence rank of a formal map

and its divergence/convergence properties.

Proposition 3.5. Let M⊂CN be a generic real-analytic submanifold, p∈M and let

H: (CN , p)!CN ′
be a formal holomorphic map. The following statements hold :

(a) divrkM H6δ, where δ is the number of divergent components of H;

(b) if M is of finite type at p, then divrkM H=0 if and only if H is convergent.

Proof. In order to prove (a), note that, if H has δ components that are divergent,

say the last δ ones, and H1, ...,HN ′−δ are all convergent, then we may set

Sj(z, w) =wj−Hj(z)∈C{z−p, w−H(p)} for j= 1, ..., N ′−δ,

and see that each (0, Sj)∈A0
H(M). Hence, rankA0

H(M)>N ′−δ, which proves (a).

In order to prove (b), it remains to check, due to (a), that if divrkM H=0 then H is

convergent. For this note that divrkM H=0 means that there exist ∆∈(C[[z−p]])m (for

some integer m) and Θ:=(S1, ..., SN
′
)∈(C{z−p, z̄−p̄, λ−∆(p), w−H(p)})N ′

such that

Θ(z, z̄,∆(z), H(z))|M = 0 and detΘw(z, z̄,∆(z), H(z))|M 6≡ 0.

Applying Proposition 3.2, we get that H is convergent.

Remark 3.6. Note that, in Proposition 3.5, the inequality in (a) can be strict: In-

deed, if H=(H1, ...,HN ′), with H1 divergent and H2, ...,HN ′ convergent, then, after a

change of coordinates Z̃1=Z1 and Z̃j=Zj+Z1, j>2, the map H̃ has no convergent com-

ponents, but the divergence rank (being independent of the chosen coordinates) is still

at most 1.

There are also more interesting examples where a strict inequality may occur, such

as the following one: Consider the real-algebraic hypersurface M in C3
z1,z2,z3 given by

Im z3=|z1z2|2, and the formal holomorphic map H(z1, z2, z3)=(z1e
h(z1), z2e

−h(z1), z3),

where h(z1) is any formal divergent power series satisfying h(0)=0. As H(M)⊂M , one

can check that divrkM H=1, whereas H has two divergent components.

Remark 3.7. It follows from Remark 3.3 that there exists germs of real-analytic

hypersurfaces (M,p) in CN of infinite type and divergent formal holomorphic maps

H: (CN , p)!CN such that divrkM H=0. This shows that Proposition 3.5 (b) does not

hold in general when the finite type assumption is dropped.
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3.3. Construction of formal meromorphic vectors

We define the following vector subspace of (KMH )N
′
.

VMH : = {V = (V1, ..., VN ′)∈ (KMH )N
′
:V ·S∆

w = 0 for all (∆, S)∈A0
H(M)}

= Ann{S∆
w : (∆, S)∈A0

H(M)},
(3.3)

where

V ·S∆
w =

N ′∑
j=1

VjS
∆
wj .

The following is the main result of this section.

Proposition 3.8. Let M⊂CN be a generic real-analytic submanifold, p∈M and

H: (CN , p)!CN ′
be a formal holomorphic map. For A0

H(M), VMH and divrkM H defined

as above, we have

dimKMH V
M
H = divrkM H, (3.4)

and there exists a basis of VMH that consists of ` CR vectors in (KMH )N
′

which are linearly

independent over KMH , with `:=divrkM H.

Proof. From Definition 3.4, we can find (Γ, S1), ..., (Γ, SN ′−`)∈A0
H(M) such that

dimKMH span{SΓ
j,w : 16 j6N ′−`}=N ′−`.

Set

WM
H := {V = (V1, ..., VN ′)∈ (KMH )N

′
:V ·SΓ

j,w = 0 for all 16 j6N ′−`}⊃VMH ,

and note that dimKMH W
M
H =`.

Let (∆, S)∈A0
H(M). By the definition of `, the vector S∆

w ∈(KMH )N
′

is KMH -linearly

dependent over the vectors SΓ
j,w, 16j6N ′−`. This implies that WM

H =VMH , and hence

proves (3.4).

Next, we claim that, for any real-analytic CR vector field L̄ near p, the dimension

of the space spanned by all the vectors SΓ
j,w and L̄SΓ

j,w for 16j6N ′−` over KMH is still

N ′−`. Indeed, we first note that

L̄SΓ
j,wν = L̄

(
∂Sj
∂wν

(z, z̄,Γ(z), H(z))

)∣∣∣∣
M

.

Since (Γ, Sj)∈A0
H(M) for every 16j6N ′−`, for each 16ν6N ′ we may write, using the

chain rule,

L̄

(
∂Sj
∂wν

(z, z̄,Γ(z), w)

)
=
∂S̃j
∂wν

(
z, z̄, Γ̃(z), w

)
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for some (Γ̃, S̃j)∈A0
H(M). It follows that the vectors L̄SΓ

j,w coincide with S̃Γ̃
j,w, where

(Γ̃, S̃j)∈A0
H(M) for all j. From our choice of (Γ, Sj), 16j6N ′−`, the claim follows.

Hence, the KMH -vector subspace G spanned by the SΓ
j,w, 16j6N ′−`, is closed under the

application of CR vector fields. Applying Lemma 3.1 (with F=KMH ), we reach the desired

conclusion.

We still need some simple but useful remarks regarding notation for the rest of the

paper.

Given (∆, S), (∆, T )∈AH such that (∆, T ) /∈A0
H(M), S∆/T∆ defines an element of

KMH . We define in the natural way(
S

T

)∆
w

:=
T∆S∆

w −S∆T∆
w

(T∆)2
∈ (KMH )N

′
.

The following is a fact regarding the space VMH which we will use often; we are indeed

going to need it to give meaning to some evaluations of gradients of elements of KMH .

Lemma 3.9. With the above notation, for all V ∈VHH and all (∆, S), (∆, T )∈AH
such that (∆, S)∈A0

H(M) and (∆, T ) /∈A0
H(M),

V ·
(
S

T

)∆
w

:=

N ′∑
j=1

Vj

(
S

T

)∆
wj

= 0.

Now, given η∈KMH , there exist (∆, S), (∆, T )∈AH , with (∆, T ) /∈A0
H(M), such that

η=S∆/T∆. One would like to define ηw as (S/T )∆
w , but such a choice might depend on

the chosen representative. In fact, if (∆̃, S̃), (∆̃, T̃ )∈AH are such that (∆̃, T̃ ) /∈A0
H(M)

and η=S̃∆̃/T̃ ∆̃, it is entirely possible that (S/T )∆
w 6=(S̃/T̃ )∆̃

w . However, Lemma 3.9 shows

that, for every V ∈VMH , we have

V ·
(
S

T

)∆
w

=V ·
(
S̃

T̃

)̃∆
w

, (3.5)

which shows that, even though ηw is not well defined, V ·ηw is, by the expression on

either side of (3.5).

Finally, given a polynomial map

P (t, t̄) =
∑

α,β∈Nk
Pα,βt

αt̄β ∈ (KMH [t, t̄ ])c,

t=(t1, ..., tk), k, c>1, we define, for V ∈VMH ,

V ·Pw(t, t̄) :=
∑

α,β∈Nk
V ·Pα,β;wt

αt̄β ∈ (KMH [t, t̄ ])c,

where we write Pα,β;w=(Pα,β)w.

We conclude with the following lemma.
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Lemma 3.10. With the above notation, let

P (t, t̄) =
∑

α,β∈Nk
Pα,βt

αt̄β ∈ (KMH [t, t̄ ])c, k, c> 1.

Then, the following statements hold :

(i) if P (t, t̄)=0, then for every V ∈VMH we have V ·Pw(t, t̄)=0;

(ii) if L̄ is a CR vector field of M near p with real-analytic coefficients, then

(L̄P )(t, t̄) :=
∑

α,β∈Nk
(L̄Pα,β)tαt̄β ∈ (KMH [t, t̄ ])c,

and, for any CR vector V ∈VMH , we have

V ·(L̄P )w(t, t̄) = L̄(V ·Pw(t, t̄)). (3.6)

Proof. Part (i) is immediate. Part (ii) is a direct consequence of the following

observation. Given η∈KMH and any CR vector V ∈VMH , the expression V ·L̄(S/T )∆
w is

independent of the choice of representative η=(S/T )∆, and the following identities hold:

L̄(V ·ηw) =V ·L̄
(
S

T

)∆
w

=V ·(L̄η)w.

4. From formal meromorphic vectors to approximate

formal deformations: proof of Theorem 2.2

In this section, we will prove Theorem 2.2, that is, we will construct, for any divergent

formal CR map, approximate formal deformations of any order. In a first step, we are

going to use the formal meromorphic vectors introduced in the previous section to build

formal deformations of a special type, i.e. formal deformations with formal meromorphic

coefficients (Theorem 4.1 below).

4.1. Construction of a special type of formal deformations for maps

of divergence rank >1

Theorem 4.1. Let M⊂CN be a generic real-analytic submanifold, let p∈M and

assume that N,N ′>2. Let H: (CN , p)!CN ′
be a formal holomorphic map with r=

divrkM H∈{1, ..., N ′}, and let V=(V 1, ..., V r) be a basis, containing only CR vectors,

of VMH over KMH as given in Proposition 3.8. For t=(t1, ..., tr)∈Cr set t·V=
∑r
i=1 tiV

i.
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We inductively define, for every `∈Z+, a homogeneous polynomial map of degree ` in

(KMH [t])N
′

as follows:

D1(t) := t·V, D`+1(t) =
1

`+1
(t·V)·D`

w(t), (4.1)

and set

D(t) =

∞∑
`=1

D`(t)∈ (KMH [[t]])N
′
.

Then, the following statements hold :

(i) D(t)∈(CR((M))[[t]])N
′
;

(ii) if %∈C{w−H(p), 	w−H(p)} satisfies %(H(z), H(z))|M=0, then

%(H+D(t), H+D(t)) = 0 in C((M))[[t, t̄]].

Proof. The fact that the polynomial maps D`(t) are homogeneous of degree ` with

coefficients in KMH is clear from the given construction. The proof of Theorem 4.1 is

based on three main ingredients: the properties of the space VMH previously described

in §3.3, the chain rule, and the crucial property stating that, for every i=1, ..., r, the

components of V i still belong to KMH , a property following from the fact that the V i’s

are CR vectors.

To prove (i), we need to check that D`(t)∈(CR((M))[t])N
′

for every `>1, which

we will prove by induction on `. For `=1, this follows from the fact that V is a set

of r CR vectors in C((M)). Assume now that D`(t)∈(CR((M))[t])N
′

for some `, that

is, for every real-analytic CR vector field L̄ near p, we have (L̄D`)(t)=0 in (KMH [t])N
′
.

From the definition of VMH and Lemma 3.9, we have V i ·(L̄D`)w(t)=0 for 16i6r. Using

Lemma 3.10 (ii), we obtain

0 =V i ·(L̄D`)w(t) = L̄(V i ·D`
w(t)), 16 i6 r.

This proves V i ·D`
w(t)∈(CR((M))[t])N

′
for every i, and thereforeD`+1(t)∈(CR((M))[t])N

′
,

too. This completes the proof of (i).

It remains to prove (ii). To this aim, we need the following lemma.

Lemma 4.2. Let %, H and D be as in Theorem 4.1. Write

%(H+D(t), H+D(t)) =
∑

j,k∈Z+

Rj,k(t, t̄)

j!k!
∈C((M))[[t, t̄]], (4.2)

where each Rj,k is homogeneous of degree j in t, and of degree k in t̄. Then, for any

j, k∈Z+, there exists a universal polynomial Uj,k in all its arguments such that

Rj,k(t, t̄) =Uj,k
(

(%wβ 	wν (H,�H))|β|6j
|ν|6k

, (`!D`(t))`6j , (s!D
s(t))s6k

)
. (4.3)
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Furthermore, for j, k∈Z+, writing

Uj,k =Uj,k
(

(Λβ,ν)|β|6j
|ν|6k

, X1, ..., Xj , Y1, ..., Yk

)
,

where Λβ,ν∈C and Xi, Ym∈CN
′
, we have

Rj+1,k(t, t̄)

=

j∑
i=1

(i+1)!
∂Uj,k
∂Xi

(
(%wβ 	wν (H,�H))|β|6j

|ν|6k
, (`!D`(t))`6j , (s!D

s(t))s6k

)
·Di+1(t)

+
∑
|γ|6j
|µ|6k

∂Uj,k
∂Λγ,µ

(
(%wβ 	wν (H,�H))|β|6j

|ν|6k
, (`!D`(t))`6j , (s!D

s(t))s6k

)
×D1(t)·(%wγ 	wµ(H,�H))w

(4.4)

Proof. The proof is a consequence of the chain rule. The details are as follows.

In what follows, we write D(t)=(D1(t), ..., DN ′(t)) and D(t)=H+D(t). Consider,

for λ∈C,

Φ(t, t̄, λ, λ̄) = %(D(λt),D(λt)) =
∑

j,k∈Z+

Rj,k(t, t̄)

j!k!
λj λ̄k ∈C((M))[[t, t̄, λ, λ̄]],

and hence, for every j, k∈Z+,

Rj,k(t, t̄) = Φλj λ̄k(t, t̄, 0, 0). (4.5)

Fix j and k. By the chain rule, there exists a universal polynomial of its arguments Uj,k
such that

Φλj λ̄k(t, t̄, λ, λ̄)

=Uj,k
(

(%wβ 	wν (D(λt),D(λt)))|β|6j
|ν|6k

, (∂`λ(D(λt)))16`6j , (∂
s
λ̄(D(λt)))16s6k

)
.

(4.6)

Setting λ=0 in (4.6) and using (4.5) yields (4.3). Now, differentiating (4.6) with respect

to λ yields that

Φλj+1λ̄k(t, t̄, λ, λ̄)

=

j∑
i=1

Uj,k
∂Xi

(
(%wβ 	wν )|β|6j

|ν|6k
, (∂`λ(D(λt)))16`6j , (∂

s
λ̄(D(λt)))16s6k

)
·∂i+1
λ (D(λt))

+
∑
|γ|6j
|µ|6k

∂Uj,k
∂Λγ,µ

(
(%wβ 	wν )|β|6j

|ν|6k
, (∂`λ(D(λt)))`6j , (∂

s
λ̄(D(λt)))s6k

)
×

N ′∑
m=1

%wγwm	wµ ∂λ(Dm(λt)),

(4.7)
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where in (4.7) we write %wβ 	wν (resp. %wγwm	wµ) for %wβ 	wν (H+D(λt), H+D(λt)) (resp.

%wγwm	wµ(H+D(λt), H+D(λt))). Setting λ=0 in (4.7) and using that

∂`λ(D(λt))|λ=0 = `!D`(t)

for every integer ` yields (4.4). This completes the proof of the lemma.

We can now continue the proof of Theorem 4.1 (ii). We will show that Rj,k(t, t̄)=0,

by induction on e=k+j, where we recall that Rj,k(t, t̄) is given in (4.2). First, note that

R0,0(t, t̄)=%(H,�H)|M=0. Hence, let e∈Z+ and let us assume that Rj,k(t, t̄)=0 for all

j+k6e and prove that Rj+1,k(t, t̄)=Rj,k+1(t, t̄)=0 for all j and k such that j+k6e.

By Lemma 4.2, there exists a universal polynomial Uj,k in all its arguments such

that

0 =Rj,k(t, t̄) =Uj,k
(

(%wβ 	wν (H,�H))|β|6j
|ν|6k

, (`!D`(t))`6j , (s!D
s(t))s6k

)
. (4.8)

Note that CR((M))⊂KMH . Because each D`(t) lies at the same time in (KMH [t])N
′

and in

(CR((M))[t])N
′
, we have Rj,k(t, t̄)∈KMH [t, t̄ ]. Hence, (4.8) together with Lemma 3.10 (i)

implies that

D1(t)·Rj,kw (t, t̄) = (t·V)·Rj,kw (t, t̄) = 0. (4.9)

In view of (4.8) and using (4.1), we have

D1(t)·Rj,kw (t, t̄)

=

j∑
i=1

i!
∂Uj,k
∂Xi

((
%wβ 	wν (H,�H)

)
|β|6j
|ν|6k

, (`!D`(t))`6j , (s!D
s(t))s6k

)
·D1(t)·Di

w(t)

+
∑
|γ|6j
|µ|6k

∂Uj,k
∂Λγ,µ

((
%wβ 	wν (H,�H)

)
|β|6j
|ν|6k

, (`!D`(t))`6j , (s!D
s(t))s6k

)
×D1(t)·(%wγ 	wµ(H,�H))w

=

j∑
i=1

(i+1)!
∂Uj,k
∂Xi

((
%wβ 	wν (H,�H)

)
|β|6j
|ν|6k

, (`!D`(t))`6j , (s!D
s(t))s6k

)
·Di+1(t)

+
∑
|γ|6j
|µ|6k

∂Uj,k
∂Λγ,µ

((
%wβ 	wν (H,�H)

)
|β|6j
|ν|6k

, (`!D`(t))`6j , (s!D
s(t))s6k

)
×D1(t)·(%wγ 	wµ(H,�H))w.

(4.10)

Hence, using (4.4) in Lemma 4.2, we obtain that

D1(t)·Rj,kw (t, t̄) =Rj+1,k(t, t̄).
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Using (4.9), we get that Rj+1,k(t, t̄)=0 for j+k6e. In order to prove that Rj,k+1(t, t̄)=0

for j+k6e, it suffices to observe the following. Consider the power series

ϕ∈C{w−H(p), 	w−H(p)}

given by ϕ(w, 	w)=%(w, 	w). Then, ϕ(H,�H)|M=0, and one has

ϕ(H+D(t), H+D(t)) =
∑

m,n∈Z+

Sm,n(t, t̄)

m!n!
∈C((M))[[t, t̄ ]],

where Sm,n(t, t̄) is homogeneous of degree m in t and of degree n in t̄, and where

Sm,n(t, t̄)=Rn,m(t, t̄). SinceRj,k(t, t̄)=0 for j+k6e, we also have Sk,j(t, t̄)=0 for all such

k and j. The first part of the proof, applied to ϕ and the Sk,j , shows that Sk+1,j(t, t̄)=0,

and it follows that Rj,k+1(t, t̄)= for all j and k such that j+k6e. This completes the

induction step in the proof of (ii), and therefore the proof of Theorem 4.1.

4.2. Proof of Theorem 2.2

Since M is of finite type and H is divergent, it follows from Proposition 3.5 (b) that

r:=divrkM H∈{1, ..., N ′}. Let D(t) be given by Theorem 4.1. Let M ′⊂CN ′
be a real-

analytic set through H(p) such that H(M)⊂M ′. Let also %∈C{w−H(p), 	w−H(p)} be

any real-analytic function defined near H(p), vanishing on M ′. As %(H(z), H(z))|M=0,

we get from Theorem 4.1 that

%(H+D(t), H+D(t)) = 0 in C((M))[[t, t̄ ]]. (4.11)

Fix k∈Z+. As each coefficient of each component of D(t) is in CR((M)), there exists a

non-zero power series gk(z)∈C[[z]] and power series maps Nγ=Nγ(z)∈(C[[z]])N
′
, γ∈NN ,

16|γ|6k, such that
k∑
`=1

D`(t) =
∑

16|γ|6k

Nγ(z)

gk(z)

∣∣∣∣
M

tγ .

Hence, setting

Bk(z, t) :=H(z)+

k∑
`=1

D`(gk(z)t) =H(z)+
∑

16|γ|6k

Nγ(z)(gk(z))|γ|−1tγ ,

we have that Bk(z, t)∈(C[[z, t]])N
′

and Bk(z, 0)=H(z), and it follows from (4.11) that

%(Bk(z, t), Bk(z, t))|z∈M =O(|t|k+1).
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Observe that Bk depends only on H and M (and not on M ′). Finally, note that, since

D1(t)=t·V, where V=(V 1, ..., V r) is of rank r (over C((M))), it follows from the above

construction that the rank of
∂Bk

∂t
(z, 0)

over C((z)) is also equal to r. Hence, Bk is a k-approximate formal holomorphic defor-

mation for (M,M ′) satisfying Bk(z, 0)=H(z). This completes the proof of the theorem.

5. Proofs of Corollaries 2.3 and 2.4

In order to prove Corollary 2.3 (and hence Corollaries 2.4 and 2.5 and Theorem 1.1),

we need to relate the conclusion given in Theorem 2.2 to some geometric properties

of the target real-analytic set M ′. Roughly speaking, Theorem 2.2 provides, for any

formal divergent map H: (M,p)!M ′, a real-analytic CR family (over M) of formal

holomorphic subvarieties tangent to M ′ along the formal “image” of H (along M), up

to any prescribed order. From such a family, we essentially wish to conclude, if possible,

the existence of a real-analytic CR family (over M) of holomorphic complex-analytic

subvarieties entirely contained in M ′ and closely related to the original formal map H.

One possible conclusion one could expect was already mentioned in Conjecture 2.12,

but seems out to reach to the authors for the moment. Instead, we will be able to

conclude from Theorem 2.2 the statement given in Corollary 2.3 regarding the existence

of suitable families of complex-analytic subvarieties in M ′, but with no information on

the dependence of the subvarieties on the parameter. Our main tool will be a parameter

version of an approximation theorem due to Hickel–Rond [HR].

5.1. Strong approximation and Hickel–Rond’s theorem with parameters

We start by recalling the following theorem of Hickel–Rond [HR] providing a stronger

version of an older result due to Milman [Mil].

Theorem 5.1. ([HR]) Let R1, ..., Rm∈C{t, t̄, ζ, ζ̄}, where t∈Cn2 and ζ∈Cn3 . Then,

there exists a function L:N!N such that the following holds: If S(t)∈(C{t})n3 satisfies

S(0)=0 and

Rj(t, t̄, S(t), S(t)) =O(|t|L(k)+1), j= 1, ...,m,

for some k∈N, then there exists S̃(t)∈(C{t})n3 such that

Rj(t, t̄, S̃(t), S̃(t)) = 0, j= 1, ...,m,

and S(t)−S̃(t)=O(|t|k+1).
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Such kind of statements are usually known in the literature around Artin’s approx-

imation theorem as of “strong approximation” type (see [W], the extensive survey by

Rond on this matter [Ron], and the survey by Hauser [H]). Very closely related problems

in the CR setting are also fully discussed in the second author’s survey [Mir3].

We will need the following parameter version of Theorem 5.1, which follows from an

inspection of its proof.

Theorem 5.2. Let R1, ..., Rm∈C{u−q, ū−q̄, t, t̄, ζ, ζ̄}, where u∈Cn1 , t∈Cn2 , ζ∈
Cn3 and q∈Cn1 is fixed. Then, there exist an open neighbourhood V of q in Cn1 and

a function L:N!N such that the following holds: For every u∈V , if S(t)∈(C{t})n3

satisfies S(0)=0 and

Rj(u, ū, t, t̄, S(t), S(t)) =O(|t|L(k)+1), j= 1, ...,m,

for some k∈N, then there exists S̃(t)∈(C{t})n3 such that

Rj(u, ū, t, t̄, S̃(t), S̃(t)) = 0, j= 1, ...,m,

and S(t)−S̃(t)=O(|t|k+1).

Proof. The arguments provided here are due to Guillaume Rond. By [HR], there

exist a neighbourhood ω of q in Cn1 and, for u∈ω, a function Lu:N!N such that the

statement of Theorem 5.2 holds, with L replaced by Lu. In order to prove the theorem,

one only needs to check that there exists a neighbourhood V ⊂ω of q in Cn1 such that the

map V 3u 7!Lu(k) is bounded for every integer k. This can be proved by repeating the

proof given in [HR], based on the theory of ultraproducts developed by Denef–Lipschitz

[DL]. The boundedness of Lu(k), for u∈V and k∈Z+, can be obtained by following step

by step the arguments of [DL, p. 26 and Theorem 8.2], as long as the neighbourhood

V ⊂Cn1'R2n1 is chosen in such a way that the ring of functions that are real-analytic

in a neighbourhood of 
V is Noetherian. According to [Fri, Theorem 1.9], such a choice

is possible by taking V to be, e.g., a polydisc. The proof is complete.

5.2. Proof of Corollary 2.3

Let (M,M ′, H) be as in Corollary 2.3. We may choose a real-analytic function

%= %(w, 	w)∈R{w−H(p), 	w−H(p)}

so that the zero-set of % coincides with M ′ near H(p). For

R(u, ū, ζ, ζ̄) := %(u+ζ, ū+ζ̄)∈C{u−H(p), ū−H(p), ζ, ζ̄}, u, ζ ∈CN
′
,
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let V be a neighbourhood of H(p) in CN ′
, and L be given by applying Theorem 5.2 to R.

We may assume, without loss of generality, that L(1)>1. By Theorem 2.2, there exists

r∈{1, ..., N ′} and a formal holomorphic map B: (CN×Cr, (p, 0))!CN ′
such that B is an

L(1)-approximate formal deformation of H, i.e. such that

%(B(z, t), B(z, t))|z∈M =O(|t|L(1)+1). (5.1)

We may write, without loss of generality,

B(z, t) =B0(z)+
∑
γ∈NN

16|γ|6L(1)

Bγ(z)tγ , B0(z) =H(z).

Furthermore, since (∂B/∂t)(z, 0) is of rank r, the same is true for (∂B/∂t)(z, 0)|M .

Hence, the matrix of formal power series (∂B/∂t)(z, 0)|M possesses an r×r minor that

is not zero; we denote the order of vanishing of this minor by m0∈N.

Observe now that (5.1) is equivalent to

Ψ
(
(Bγ(z))16|γ|6L(1), (Bγ(z))16|γ|6L(1), B0(z), B0(z)

)
|z∈M = 0, (5.2)

where Ψ is a certain Cδ-valued mapping (for some integer δ) whose components are in

the ring

C{w−H(p), 	w−H(p) }[(Λγ)16|γ|6L(1), (Λ̄γ)16|γ|6L(1)],

with each Λγ∈CN
′
. By Artin’s approximation theorem [A], there exists, for every positive

integer k and every γ∈NN with |γ|6L(1), a convergent power series map

B̂kγ (z, z̄)∈ (C{z−p, z̄−p̄})N
′
,

such that B̂kγ (z, z̄)|M agrees with Bγ(z)|M up to order k at p, and such that

Ψ
(

(B̂kγ (z, z̄))16|γ|6L(1), (B̂
k
γ (z, z̄))16|γ|6L(1), B̂

k
0 (z, z̄), B̂k0 (z, z̄)

)∣∣∣
M

= 0. (5.3)

Hence, setting

Sk(z, z̄, t) :=
∑
γ∈NN

16|γ|6L(1)

B̂kγ (z, z̄)tγ ,

we get, for every positive integer k,

R
(
B̂k0 (z, z̄), B̂k0 (z, z̄), Sk(z, z̄, t), Sk(z, z̄, t)

)∣∣∣
z∈M

: = %
(
B̂k0 (z, z̄)+Sk(z, z̄, t), B̂k0 (z, z̄)+Sk(z, z̄, t)

)∣∣∣
z∈M

=O(|t|L(1)+1).
(5.4)
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As B̂k0 (p, p̄)=H(p), we may choose a neighbourhood Uk of p in CN such that M∩Uk is

connected and B̂k0 (M∩Uk)⊂V . Hence, from the choice of V and L, Theorem 5.2 and

(5.4), we get that, for every z∈M∩Uk, there exists S̃kz (t)∈(C{t})N ′
such that

%
(
B̂k0 (z, z̄)+S̃kz (t), B̂k0 (z, z̄)+S̃kz (t)

) ∣∣∣
z∈M∩Uk

= 0, (5.5)

satisfying in addition S̃kz (0)=0 and

∂S̃kz
∂t

(0) =
∂Sk

∂t
(z, z̄, 0).

Now, observe that, if we set hk :=B̂k0 , then hk is a real-analytic map that sends, according

to (5.5) (for t=0), M∩Uk into M ′. Furthermore, hk|M∩Uk agrees with H|M at p up to

order k. Hence, one can find, shrinking Uk if necessary, a real-analytic map Uk!CN ′

that agrees with H up to order k at p and that coincides with hk on M∩Uk. Calling still

this new map hk, we see that the proof of part (a) of Corollary 2.3 is now complete.

Regarding part (b), recall that

∂S̃kz
∂t

(0) =
∂Sk

∂t
(z, z̄, 0) for z ∈M∩Uk

and that
∂Sk

∂t
(z, z̄, 0)

∣∣∣∣
M

and
∂B

∂t
(z, 0)

∣∣∣∣
z∈M

agree up to order k at p. Hence from our above choice of m0, it follows that, for k>m0+1,

(∂Sk/∂t)(z, z̄, 0)|M is of rank r. This implies that there is a Zariski open subset Ωk of

M∩Uk such the rank of (∂S̃kz /∂t)(0) is equal to r for every z∈Ωk. For all such z’s, (5.5)

shows that the r-dimensional complex submanifold parameterized by t 7!hk(z, z̄)+S̃kz (t)

passing through hk(z, z̄) is entirely contained in M ′ and, therefore, that hk(z, z̄)∈ẼrM ′ ,

which completes the proof of (b).

Finally, to conclude that hk(M∩Uk)⊂EM ′ , it suffices to note that ẼrM ′⊂EM ′ , and

then invoke the closedness of the set EM ′ (see [D2] and [D3]).

5.3. Proof of Corollary 2.4

This is a direct and simple consequence of Corollary 2.3. Indeed, let (hk)k∈N be given by

that corollary. From (a), we conclude that there exists an integer k0 such that the generic

rank of hk0 |M∩Uk0 is at least RkH|M (where we assumed, without loss of generality,

that M∩Uk0 is connected). The conclusion of Corollary 2.4 then follows from applying

Corollary 2.3 to hk0 and using the rank theorem.
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6. On k-approximate formal deformations with k=1, 2;

proofs of Corollaries 2.6–2.8

In this last section, we discuss the notion of k-approximate formal deformations, for k=

1, 2, and provide some existence/non-existence results for such objects in some important

circumstances. This will allow us to derive Corollaries 2.6–2.8.

6.1. 1-approximate formal deformations

We have the following easy characterization of formal CR maps admitting 1-approximate

formal deformations.

Proposition 6.1. Let M⊂CN and M ′⊂CN ′
be generic real-analytic submanifolds,

with N,N ′>2, and let p∈M . Let H: (CNz , p)!CN ′

w be a formal holomorphic map with

H(M)⊂M ′. Then, H admits a 1-approximate formal deformation if and only if there

exists a non-zero formal holomorphic vector field

X(z) =

N ′∑
j=1

Xj(z)
∂

∂wj
, Xj(z)∈C[[z−p]], j= 1, ..., N ′, (6.1)

tangent to M ′ along H(M).

Proof. Choose %=(%1, ..., %d)∈(R{w−H(p), 	w−H(p) })d such that M ′ is given by

the zero-set of % near H(p) with ∂%1∧...∧∂%d 6=0 near H(p), where d=codimRM
′.

Note that H admits a 1-approximate formal deformation if and only if there exists

a non-zero formal holomorphic map X: (CN , p)!CN ′
such that

%(H(z)+tX(z), H(z)+tX(z))|z∈M =O(|t|2), t∈C. (6.2)

Since H(M)⊂M ′, (6.2) is equivalent to say that the formal holomorphic vector field

X(z) =

N ′∑
j=1

Xj(z)
∂

∂wj

is tangent to M ′ along H(M). This completes the proof of the proposition.

From Proposition 6.1, we easily get the following.

Proposition 6.2. Let M and M ′ be generic real-analytic submanifolds in CN , with

N>2, and let p∈M . Let H: (CN , p)!CN be a formal holomorphic map with H(M)⊂M ′

satisfying RkH=N . Then, H admits a 1-approximate formal deformation if and only

if M is holomorphically degenerate at p.
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Proof. First recall that M is holomorphically degenerate at p if and only if there

exists a non-zero formal holomorphic vector field with coefficients in C[[z−p]] that is

tangent to M (see [BER3] for more details). Let JH(z) be the Jacobian matrix of the

formal map H and denote by C(z)=(Cij(z))16i,j6N the classical adjoint of JH(z)T .

Then, the reader can easily check that, if

X =

N∑
j=1

Xj(z)
∂

∂zj

is a formal holomorphic vector field at p tangent to M , then the formal holomorphic

vector field

X̃ :=X(H) =

N∑
j=1

X(Hj)
∂

∂wj

is tangent to M ′ along H(M). Conversely, if

Y =

N∑
j=1

Yj(z)
∂

∂wj

is a formal holomorphic vector field at p tangent to M ′ along H(M), then the formal

holomorphic vector at p
N∑
j=1

N∑
ν=1

Yν(z)Cνj(z)
∂

∂zj

is tangent to M .

Using this, the fact that detC(z) 6≡0 (since H is of rank N) and Proposition 6.1, we

reach the desired conclusion.

Proposition 6.2 together with Theorem 2.2 then immediately imply Corollary 2.6.

6.2. 2-approximate formal deformations in the Levi-non-degenerate case

We first start with the following easy fact mentioned in §2.1. Recall that a generic

submanifold in CN is called strongly pseudoconvex if it is locally contained in a strongly

pseudoconvex real hypersurface.

Proposition 6.3. Let M and M ′ be generic real-analytic submanifolds in CN and

CN ′
, respectively, with N,N ′>2, and let p∈M . Let H: (CN , p)!CN be a formal holo-

morphic map with H(M)⊂M ′. If M ′ is strongly pseudoconvex, then H does not admit

any 2-approximate formal deformation.
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Proof. We first note that, if we prove the proposition when M ′ is a hypersurface,

then the general case follows by definition. Hence, we assume that M ′⊂CN ′
is a strongly

pseudoconvex hypersurface passing through H(p) with H(M)⊂M ′. Without loss of

generality, we may assume that p=0 and H(p)=0. We can choose a real-analytic defining

function r(w, 	w) of M ′ near 0 such that the complex Hessian of r is positive definite on

T c0M
′. Let us assume that there is a 2-approximate formal deformation

B: (CN×C, 0)−! (CN
′
, 0)

for H. This means that we have

r(B(z, t), B(z, t))|z∈M =O(|t|3). (6.3)

Differentiating (6.3) with respect to t and t̄ and then evaluating at t=0, we get

∂tB(z, 0)·rw	w(H(z), H(z))·∂tB(z, 0)|M = 0. (6.4)

From our choice of r, equality (6.4) implies that ∂tB(z, 0)=0 for z∈M (see [LM1,

Lemma 6.1]), and hence that ∂tB(z, 0)=0 in C[[z]], since M is generic. This contradicts

the fact that B is an approximate formal deformation. The proof of the proposition is

complete.

The situation regarding the existence of 2-approximate formal deformations for CR

transversal maps between Levi-non-degenerate hypersurfaces is somewhat more interest-

ing than the strongly pseudoconvex case. In that case, the existence of 2-approximate

formal deformations is related to the signature and cosignature of the hypersurfaces. We

will prove the following.

Proposition 6.4. Let M⊂CN and M ′⊂CN ′
be (connected) real-analytic Levi-non-

degenerate hypersurfaces, of signature ` and `′, respectively, with N,N ′>2. Let p∈M
and let H: (M,p)!M ′ be a formal holomorphic CR transversal mapping. If H admits a

2-approximate formal deformation, then M and M ′ have different signatures (i.e. `′ 6=`)
and different cosignatures (i.e. N ′−`′ 6=N−`).

Remark 6.5. We remark that Proposition 6.4 is optimal in the following sense.

Given Nand N ′, and signatures ` and `′ (satisfying `6 1
2 (N−1), `′6 1

2 (N ′−1)), we say

that (`, `′) is an admissible pair of signatures if either `′>` and N ′−1−`′>N−1−`, or

`′>N−1−`. It is well known (see, e.g., [BH] and [BEH]) that formal CR transversal

mappings do not exist if (`, `′) is not admissible. The following is therefore a converse

to Proposition 6.4. For any set of admissible signatures (`, `′) which satisfy `′ 6=` and

N ′−`′ 6=N−`, there exist explicit examples of germs of real-analytic Levi-non-degenerate
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hypersurfaces M⊂CN and M ′⊂CN ′
with these signatures and a convergent formal CR

transversal map between M and M ′ admitting a 2-approximate formal deformation (in

fact, even a holomorphic deformation). Indeed, to see that, one easily checks that, in the

above described setting, we necessarily have `′>` and N ′−`′>N−`. Choose now for M

the hyperquadric in CNz with ` positive eigenvalues, and for M ′ the hyperquadric in CN ′

w

with `′ positive eigenvalues, i.e.

M : Im zn+1 = ‖z̃‖2−‖ẑ‖2 ,

M ′: Im wn′+1 = ‖w̃‖2−‖ŵ‖2 ,

where we write N=n+1, N ′=n′+1, z=(z̃, ẑ, zn+1)∈C`×Cn−`×C, w=(w̃, ŵ, wn′+1)∈
C`′×Cn′−`′×C and ‖z̃‖2=

∑
16j6` |zj |2, and analogously for the other norm quantities

involved. Then, the convergent CR transversal holomorphic map w=H(z) sending M

into M ′ given by wn′+1=zn+1 and w̃=(z̃, 0), ŵ=(ẑ, 0) admits the holomorphic deforma-

tion B(z, t)=(z̃, t, 0, ẑ, t, 0, zn+1), t∈C.

Remark 6.6. As an immediate consequence of Remark 6.5, it follows that the condi-

tion on the signatures in Corollary 2.7 is optimal. Indeed, from the previous remark, we

get that, for any set of admissible signatures (`, `′) which satisfy `′ 6=` and N ′−`′ 6=N−`,
there exist explicit examples of germs of real-analytic Levi-non-degenerate hypersurfaces

M⊂CN and M ′⊂CN ′
with these signatures and having divergent formal CR transversal

mappings.

Proposition 6.4 will be a consequence of the following result, whose proof is in part

inspired by that of [Mir4, Proposition 3.1].

Lemma 6.7. Let M⊂CNz and M ′⊂CN ′

w be real-analytic Levi-non-degenerate hyper-

surfaces passing through the origin, with N ′>N>2. Write N=n+1 and N ′=n′+1, and

assume that M and M ′ are given by local real-defining functions % and %′ near the origin

as follows:

%(z, z̄) : = Im zn+1+

e∑
j=1

|zj |2−
n∑

j=e+1

|zj |2+O(|z|3)

%′(w, 	w) : = Imwn′+1+

e′∑
j=1

|wj |2−
n′∑

j=e′+1

|wj |2+O(|w|3),

(6.5)

where 16e6n and 16e′6n′. Let H: (M, 0)!(M ′, 0) be a formal CR transversal holo-

morphic map such that
∂Hn′+1

∂zn+1
(0)> 0.

If H admits a 2-approximate formal deformation, then 0<e′−e<N ′−N .



convergence and divergence of formal cr mappings 399

Proof. By [BH, pp. 385–387], we have N ′>N , e′>e, n′−e′>n−e and there exist

local holomorphic coordinates z∗ in Cn′+1 such that M ′ is given near the origin in these

new coordinates by the vanishing of a real-analytic function %∗(z∗, z∗) of the form

%∗(z∗, z∗) = Im z∗n′+1+

e∑
j=1

|z∗j |2−
n∑

j=e+1

|z∗j |2+

n+e′−e∑
j=n+1

|z∗j |2−
n′∑

j=n+1+e′−e
|z∗j |2+R(z∗, z∗),

where R(z∗, z∗)=O(|z∗|3). Furthermore, in such coordinates, we may write H=(f, ϕ, g)∈
Cn×Cn′−n×C, where the formal map H satisfies the following normalization conditions

(f(z), g(z)) = z+O(|z|2), ϕ(z) =O(|z|2). (6.6)

By assumption, H admits a 2-approximate formal deformation B: (CN×Cr, 0)!(CN ′
, 0).

Without loss of generality, we may assume that r=1. We write

B(z, t) = (f(z, t), ϕ(z, t), g(z, t))∈Cn×Cn
′−n×C,

so that f(z, 0)=f(z), ϕ(z, 0)=ϕ(z) and g(z, 0)=g(z). We also write

f(z, t) = (f1(z, t), ..., fn(z, t)) and ϕ(z, t) = (ϕn+1(z, t), ..., ϕn′(z, t)).

It will be convenient to view the power series maps B(z, t) and H(z) as power series

restricted to M×C. Hence, we may use x=(z1, ..., zn, z̄1, ..., z̄n,Re zn+1)∈R2n+1 as local

coordinates for M near 0, and write B(x, t) and H(x) for the corresponding restricted

power series. We also choose a basis of real-analytic CR vector fields (L̄j)16j6n for M

near 0 represented in the above chosen x coordinates. In addition, we write B′(x, t) for

∂B/∂t(x, t), as well as for all its components. We define ÎH , Îϕ and Îf,ϕ to be the

ideals in C[[x]] generated by the components of B′(x, 0), ϕ′(x, 0) and (f ′(x, 0), ϕ′(x, 0)),

respectively. The ideal m̂ denotes the usual maximal ideal of C[[x]].

SinceB is 2-approximate deformation, we have the power series identity, in C[[x, t, t̄ ]],

Im g(x, t)+

e∑
j=1

|fj(x, t)|2−
n∑

j=e+1

|fj(x, t)|2+

n+e′−e∑
j=n+1

|ϕj(x, t)|2

−
n′∑

j=n+1+e′−e
|ϕj(x, t)|2+R(B(x, t), B(x, t)) =O(|t|3).

(6.7)

Differentiating (6.7) with respect to t yields

1

2i
g′(x, t)+

e∑
j=1

f ′j(x, t)fj(x, t)−
n∑

j=e+1

f ′j(x, t)fj(x, t)+

n+e′−e∑
j=n+1

ϕ′j(x, t)ϕj(x, t)

−
n′∑

j=n+1+e′−e
ϕ′j(x, t)ϕj(x, t)+

∂

∂t
{R(B(x, t), B(x, t))}=O(|t|2).

(6.8)
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Evaluating (6.8) at t=0 yields the following identity in C[[x]]:

1

2i
g′(x, 0)+

e∑
j=1

f ′j(x, 0)fj(x, 0)−
n∑

j=e+1

f ′j(x, 0)fj(x, 0)+

n+e′−e∑
j=n+1

ϕ′j(x, 0)ϕj(x, 0)

−
n′∑

j=n+1+e′−e
ϕ′j(x, 0)ϕj(x, 0)+

∂

∂t
{R(B(x, t), B(x, t))}

∣∣∣∣
t=0

= 0.

(6.9)

Since R(z∗, z∗)=O(|z∗|3),
∂

∂t
{R(B(x, t), B(x, t))}

∣∣∣∣
t=0

clearly belongs to the product ideal m̂ÎH . Hence, from (6.9), we conclude that g′(x, 0)

belongs to the ideal m̂Îf,ϕ, and thus ÎH=Îf,ϕ. Next, applying the CR vector fields L̄k

to (6.8) for k=1, ..., n, and evaluating at t=0, we obtain

e∑
j=1

f ′j(x, 0)L̄kf̄j(x, 0)−
n∑

j=e+1

f ′j(x, 0)L̄kf̄j(x, 0)+

n+e′−e∑
j=n+1

ϕ′j(x, 0)L̄kϕ̄j(x, 0)

−
n′∑

j=n+1+e′−e
ϕ′j(x, 0)L̄kϕ̄j(x, 0)+L̄k

∂

∂t
{R(B(x, t), B(x, t))}

∣∣∣∣
t=0

= 0.

(6.10)

Again, since R(z∗, z∗)=O(|z∗|3), the last term of (6.10) belongs to the ideal m̂ÎH=m̂Îf,ϕ.

Using the fact ϕ(z)=O(|z|2) from (6.6), we conclude from (6.10) that, for k=1, ..., n,

e∑
j=1

f ′j(x, 0)L̄kf̄j(x, 0)−
n∑

j=e+1

f ′j(x, 0)L̄kf̄j(x, 0)∈ m̂Îf,ϕ. (6.11)

We recall that

(f(z), g(z)) = z+O(|z|2)

by (6.6), which implies that the matrix (L̄kf̄j(0))j,k is invertible, and therefore, (6.11)

shows that f ′j(x, 0)∈m̂Îϕ for j=1, ..., n. Note that this latter statement also implies that

g′(x, 0)∈m̂Îϕ, since we already know that g′(x, 0)∈m̂Îf,ϕ.

Differentiating (6.8) with respect to t̄ and evaluating at t=0, we get

e∑
j=1

|f ′j(x, 0)|2−
n∑

j=e+1

|f ′j(x, 0)|2+

n+e′−e∑
j=n+1

|ϕ′j(x, 0)|2

−
n′∑

j=n+1+e′−e
|ϕ′j(x, 0)|2+

∂

∂t̄∂t
{R(B(x, t), B(x, t))}

∣∣∣∣
t=0

= 0.

(6.12)
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Since each f ′j(x, 0) belongs to m̂Îϕ, we see that we may write

∂

∂t̄∂t
{R(B(x, t), B(x, t))}

∣∣∣∣
t=0

=
∑
j,k

Ajk(x)ϕ′j(x, 0)ϕ′k(x, 0), (6.13)

where each Ajk(x)∈m̂. Recall now that, since B is an approximate formal deformation,

we necessarily have B′(x, 0) 6≡0. As each f ′j(x, 0) and g′(x, 0) belong to m̂Îϕ, there exists

m∈{n+1, ..., n′} such that ϕ′m(x, 0) 6≡0. There exists therefore 06`<+∞ such that,

for each n+16j6n′, one may write the homogeneous expansion ϕ′j(x, 0)=
∑
ν>` θj,ν(x),

where θj,`(x) 6≡0 for some j. Comparing the homogeneous terms of degree 2` in (6.12)

and using (6.13), we obtain

n+e′−e∑
j=n+1

|θj,`(x)|2−
n′∑

j=n+1+e′−e
|θj,`(x)|2 = 0. (6.14)

Equality (6.14) implies that we necessarily have e′−e>0 and e′−e<n′−n=N ′−N . The

proof of Lemma 6.7 is complete.

Proof of Proposition 6.4. We may assume that p=0 and H(p)=0. One may find

local holomorphic coordinates z∈CN and z′∈CN ′
such that the germs at 0 of M and

M ′ are respectively given by the vanishing of real-analytic functions % and %′ as given

by (6.5), with e=` and e′=`′. As is well known, ∂Hn′+1/∂zn+1 is real-valued (see, e.g.,

[BH]). We have to distinguish the following two situations.

• ∂Hn′+1/∂zn+1>0. Then, it follows from Lemma 6.7 that `′−` /∈{0, N ′−N}.
• ∂Hn′+1/∂zn+1<0. Then, by making the new change of coordinates

z 7−! (z1, ..., zn,−zn+1),

we are back to the situation where we can apply Lemma 6.7 with e=N−1−` and e′=`′.

Hence, in this setting, we get that 0<`′−(N−1−`)<N ′−N . We leave it to the reader

to check that these last inequalities prevent `′−` to be equal to 0 and N ′−N , as the

signatures ` and `′ must satisfy the inequalites `6 1
2 (N−1) and `′6 1

2 (N ′−1). The proof

of Proposition 6.4 is therefore complete.

Corollary 2.7 now follows immediately from Theorem 2.2 and Proposition 6.4.

6.3. 2-approximate formal deformations into the tube over the light cone

The following result describes precisely the formal maps valued into the tube over the

light cone that admit a 2-approximate formal deformation.
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Proposition 6.8. Let M⊂CN be a generic real-analytic submanifold in CN , of

finite type at p∈M , and TN ′⊂CN ′
be the tube over the light cone given by (2.1), with

N,N ′>2. If the formal holomorphic map H: (M,p)!TN ′
admits a 2-approximate for-

mal deformation, then there exist a formal holomorphic power series µ(z)∈C[[z−p]] and

αj , ηj∈R, 16j6N ′−1, with
∑N ′−1
j=1 α2

j=1, such that

H(z) = (α1µ(z)+iη1, ..., αN ′−1µ(z)+iηN ′−1, µ(z)). (6.15)

We note that Proposition 6.8 immediately implies, together with Theorem 2.2 the

following result.

Corollary 6.9. Let M⊂CN be a generic real-analytic submanifold in CN , of finite

type at p∈M , and TN ′⊂CN ′
be the tube over the light cone, with N,N ′>2. Then

any divergent formal holomorphic map H: (M,p)!TN ′
is of the form (6.15), for some

divergent formal power series µ.

From Corollary 6.9, we immediately get Corollary 2.8. The proof of Proposition 6.8

is mainly an adaptation of the arguments of the proof of [Mir4, Lemma 2.3].

Proof of Proposition 6.8. Let B(z, t) be a 2-approximate formal deformation for

(M,M ′, H), with t∈Cr. Without loss of generality, we may assume that r=1. We

write

B(z, t) = (B1(z, t), ..., BN
′
(z, t)), Bν(z, t) =

2∑
j=0

Bνj (z)tj , ν= 1, ..., N ′.

We have

(ReBN
′
(z, t))2 =

N ′−1∑
k=1

(ReBk(z, t))2+O(|t|3), z ∈M. (6.16)

The zero-, first- and second-order terms with respect to (t, t̄) in (6.16) give the following

system of equations, valid for z∈M :
(ReBN

′

0 (z))2 =
∑N ′−1
k=1 (ReBk0 (z))2,

(ReBN
′

0 )BN
′

1 (z) =
∑N ′−1
k=1 (ReBk0 (z))Bk1 (z),

|BN ′

1 (z)|2 =
∑N ′−1
k=1 |Bk1 (z)|2

(6.17)

Since B(z, t) is a formal deformation, in view of the last equation of (6.17), we must have

BN
′

1 (z) 6≡0 for z∈M . Furthermore, we may assume that

ReBN
′

0 (z)|z∈M 6≡ 0. (6.18)



convergence and divergence of formal cr mappings 403

Indeed, if not, then we see from the first equation of (6.17) that this implies that the

restriction to M of every formal holomorphic power series Bν0 (z) is purely imaginary.

Since M is of finite type, by [JLM], each Bν0 (z), ν=1, ..., N ′, must be a purely imaginary

constant. Then, it is not difficult to see that the map H is of the form (6.15), since

H=(B1
0 , ..., B

N ′

0 ). Hence, in what follows we may assume that (6.18) holds.

With this assumption, we can consider the set of equations

1 =

N ′−1∑
k=1

(ReBk0 (z))2

(ReBN
′

0 (z))2
, 1 =

N ′−1∑
k=1

(ReBk0 (z))

(ReBN
′

0 )

Bk1 (z)

BN
′

1 (z)
, 1 =

N ′−1∑
k=1

Bk1 (z)

BN
′

1 (z)

Bk1 (z)

BN
′

1 (z)
(6.19)

in C((M)). It follows that

N ′−1∑
k=1

(
(ReBk0 (z))

(ReBN
′

0 (z))
− Bk1 (z)

BN
′

1 (z)

)(
(ReBk0 (z))

(ReBN
′

0 (z))
− Bk1 (z)

BN
′

1 (z)

)
= 0 in C((M)). (6.20)

In other words, the power series

ϕk(z, z̄) = (ReBk0 (z))BN
′

1 (z)BN
′

1 (z)−Bk1 (z)BN
′

1 (z)(ReBN
′

0 (z))∈C[[M ]]

for k=1, ..., N ′−1, satisfy
∑N ′−1
k=1 |ϕk(z, z̄)|2=0, and hence ϕk(z, z̄)=0, for k=1, ..., N ′−1

and z∈M . It follows that(
ReB1

0

ReBN
′

0

, ...,
ReBN

′−1
0

ReBN
′

0

)
=

(
B1

1

BN
′

1

, ...,
BN

′−1
1

BN
′

1

)
.

Hence, each of the ratios Bν1 (z)/BN
′

1 (z), for ν=1, ..., N ′−1, is real-valued when restricted

toM . By [JLM], the latter ratios must be real constants, that we denote by αν , satisfying,

in view of the last equation of (6.17),
∑

16ν6N ′−1 α
2
ν=1. Furthermore, this also yields

that, for ν=1, ..., N ′−1,

Re(Bν0 (z)−ανBN
′

0 (z))|z∈M = 0.

Again by [JLM], this implies that there exist ην∈R, ν=1, ..., N ′−1, such that

Bν0 (z)−ανBN
′

0 (z) = iην .

Noticing that H=(B1
0 , ..., B

N ′

0 ) and setting µ(z):=BN
′

0 (z), we have reached the desired

conclusion.
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