The Wiegerinck Problem in The Class of Hartogs Domains

Blake J. Boudreaux

Texas A&M University

April 20, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Some Notation

Let L²_h(Ω, φ) denote the Bergman space of a domain Ω ⊆ Cⁿ with weight e^{-φ}. More precisely,

$$L^2_h(\Omega, arphi) = \left\{ f ext{ is holomorphic on } \Omega \, : \, \int_\Omega |f|^2 e^{-arphi} \mathrm{d} V < \infty
ight\}.$$

- Write $||f||_{\Omega,\varphi}$ for the L^2 -norm of f with respect to $e^{-\varphi}$.
- We use the convention $||f||_{\Omega} = ||f||_{\Omega,0}$ and $L^2_h(\Omega) = L^2_h(\Omega, 0)$.
- Denote the Lelong number of a plurisubharmonic function φ at z = a by

$$u(arphi, \mathbf{a}) = \lim_{r o 0} rac{(2\pi)^{-1} \Delta arphi(B(\mathbf{a}, r))}{\mathsf{d} V_{2n-2}(B(\mathbf{a}, r) \cap \mathbb{C}^{n-1})}$$

Some History

"Does there exist a domain whose Bergman space is nontrivial and finite-dimensional?"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Some History

"Does there exist a domain whose Bergman space is nontrivial and finite-dimensional?"

In 1984, J. Wiegerinck showed two things:

- The Bergman space of a domain in the complex plane must be either trivial or have infinite dimension.
- For each natural number k, there exists a Reinhardt domain Ω_k ⊆ C² whose Bergman space has dimension k.

Some History

"Does there exist a domain whose Bergman space is nontrivial and finite-dimensional?"

In 1984, J. Wiegerinck showed two things:

- The Bergman space of a domain in the complex plane must be either trivial or have infinite dimension.
- For each natural number k, there exists a Reinhardt domain Ω_k ⊆ C² whose Bergman space has dimension k.

"Does there exist a pseudoconvex domain whose Bergman space is nontrivial and finite-dimensional?"

Initial Observations

• If Ω is bounded, then $L^2_h(\Omega)$ has infinite dimension.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

Initial Observations

- If Ω is bounded, then $L_h^2(\Omega)$ has infinite dimension.
- The dimension of L²_h(Ω) is preserved under biholomorphic mappings.

Initial Observations

- If Ω is bounded, then $L^2_h(\Omega)$ has infinite dimension.
- The dimension of L²_h(Ω) is preserved under biholomorphic mappings.
- (Carleson 1983) L²_h(Ω) is nontrivial for Ω ⊆ C if and only if Ω^c has positive logarithmic capacity.

▶ For a domain $G \subseteq \mathbb{C}^M$ and function φ , set

$$D_{\varphi}(G) = \left\{ (z,w) \in G imes \mathbb{C}^N : \|w\| < e^{-\varphi(z)}
ight\}.$$

▶ For a domain $G \subseteq \mathbb{C}^M$ and function φ , set

$$D_{\varphi}(G) = \left\{ (z,w) \in G \times \mathbb{C}^N : \|w\| < e^{-\varphi(z)}
ight\}.$$

 D_φ(G) is pseudoconvex if and only if φ is plurisubharmonic and G is pseudoconvex.

▶ For a domain $G \subseteq \mathbb{C}^M$ and function φ , set

$$D_{\varphi}(G) = \left\{ (z,w) \in G \times \mathbb{C}^{N} : \|w\| < e^{-\varphi(z)}
ight\}.$$

- D_φ(G) is pseudoconvex if and only if φ is plurisubharmonic and G is pseudoconvex.
- Every $f \in L^2_h(D_{\varphi}(G))$ has a decomposition

$$f(z,w) = \sum_{lpha \in \mathbb{Z}_+^N} f_lpha(z) w^lpha.$$

▶ For a domain $G \subseteq \mathbb{C}^M$ and function φ , set

$$D_{\varphi}(G) = \left\{ (z,w) \in G \times \mathbb{C}^{N} : \|w\| < e^{-\varphi(z)}
ight\}.$$

- D_φ(G) is pseudoconvex if and only if φ is plurisubharmonic and G is pseudoconvex.
- Every $f \in L^2_h(D_{\varphi}(G))$ has a decomposition

$$f(z,w) = \sum_{lpha \in \mathbb{Z}_+^N} f_lpha(z) w^lpha_{-}$$

• The f_{α} are holomorphic functions on G with

$$\|f_{\alpha}w^{\alpha}\|_{D_{\varphi}(G)}^{2}=C_{\alpha,N}\|f_{\alpha}\|_{G,2(N+|\alpha|)\varphi}^{2}.$$

The case of complete *N*-circled Hartogs domains with one-dimensional base was largely solved by P. Jucha (2012):

If G ⊂ C^M is bounded, then L²_h(D_φ(G)) has infinite dimension.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The case of complete *N*-circled Hartogs domains with one-dimensional base was largely solved by P. Jucha (2012):

- If G ⊂ C^M is bounded, then L²_h(D_φ(G)) has infinite dimension.
- If G ⊂ C has nonpolar complement, then L²_h(D_φ(G)) has infinite dimension.

The case of complete *N*-circled Hartogs domains with one-dimensional base was largely solved by P. Jucha (2012):

- If G ⊂ C^M is bounded, then L²_h(D_φ(G)) has infinite dimension.
- If G ⊂ C has nonpolar complement, then L²_h(D_φ(G)) has infinite dimension.
- If Δφ ≠ 0 on some open set U ⊆ G ⊂ C with ν(φ, ·) = 0 on U, then L²_h(D_φ(G)) has infinite dimension.

The case of complete *N*-circled Hartogs domains with one-dimensional base was largely solved by P. Jucha (2012):

- If G ⊂ C^M is bounded, then L²_h(D_φ(G)) has infinite dimension.
- If G ⊂ C has nonpolar complement, then L²_h(D_φ(G)) has infinite dimension.
- If Δφ ≠ 0 on some open set U ⊆ G ⊂ C with ν(φ, ·) = 0 on U, then L²_h(D_φ(G)) has infinite dimension.
- The Wiegerinck problem was solved for domains D_φ(C). In fact, a necessary and sufficient condition was given for the nontriviality of D_φ(C) in terms of the Riesz measure Δφ.

The case of complete N-circled Hartogs domains with one-dimensional base was largely solved by P. Jucha (2012):

- If G ⊂ C^M is bounded, then L²_h(D_φ(G)) has infinite dimension.
- If G ⊂ C has nonpolar complement, then L²_h(D_φ(G)) has infinite dimension.
- If Δφ ≠ 0 on some open set U ⊆ G ⊂ C with ν(φ, ·) = 0 on U, then L²_h(D_φ(G)) has infinite dimension.
- The Wiegerinck problem was solved for domains D_φ(C). In fact, a necessary and sufficient condition was given for the nontriviality of D_φ(C) in terms of the Riesz measure Δφ.

Problem

Show that $L_h^2(D_{\varphi}(G))$ is trivial or infinite-dimensional whenever $G \subset \mathbb{C}$ has polar complement and φ is harmonic on G.

A balanced domain is a domain of the form $\{z \in \mathbb{C}^n : h(z) < 1\}$, where $h(\lambda z) = |\lambda|h(z)$, for $\lambda \in \mathbb{C}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► A balanced domain is a domain of the form $\{z \in \mathbb{C}^n : h(z) < 1\}$, where $h(\lambda z) = |\lambda|h(z)$, for $\lambda \in \mathbb{C}$.
- ▶ $\{z \in \mathbb{C}^n : h(z) < 1\} \setminus \{z_n = 0\}$ is biholomorphic to the complete 1-circled Hartogs domain $D_{\log h(z',1)}(\mathbb{C}^{n-1})$ via

$$(z',z_n)\mapsto \left(\frac{z'}{z_n},z_n\right).$$

- ► A balanced domain is a domain of the form $\{z \in \mathbb{C}^n : h(z) < 1\}$, where $h(\lambda z) = |\lambda|h(z)$, for $\lambda \in \mathbb{C}$.
- {*z* ∈ ℂⁿ : *h*(*z*) < 1} \ {*z_n* = 0} is biholomorphic to the complete 1-circled Hartogs domain *D*_{log *h*(*z'*,1)}(ℂⁿ⁻¹) via

$$(z',z_n)\mapsto \left(\frac{z'}{z_n},z_n\right).$$

It follows that the Bergman space of {z ∈ C : h(z) < 1} is isomorphic to the Bergman space of D_{log h(z',1)}(Cⁿ⁻¹).

- ► A balanced domain is a domain of the form $\{z \in \mathbb{C}^n : h(z) < 1\}$, where $h(\lambda z) = |\lambda|h(z)$, for $\lambda \in \mathbb{C}$.
- {*z* ∈ Cⁿ : *h*(*z*) < 1} \ {*z_n* = 0} is biholomorphic to the complete 1-circled Hartogs domain D_{log *h*(*z'*,1)}(Cⁿ⁻¹) via

$$(z',z_n)\mapsto \left(\frac{z'}{z_n},z_n\right).$$

- It follows that the Bergman space of {z ∈ C : h(z) < 1} is isomorphic to the Bergman space of D_{log h(z',1)}(Cⁿ⁻¹).
- ▶ Pflug and Zwonek (2017) used this isomorphism to show that a balanced pseudoconvex domain in \mathbb{C}^2 has trivial Bergman space if it is either \mathbb{C}^2 or *h* is of the form $h(z) = |Az|^t |Bz|^{1-t}$, where $A, B : \mathbb{C}^2 \to \mathbb{C}$ are nontrivial linear mappings and $t \in [0, 1]$.

Theorem

Let $G \subseteq \mathbb{C}^M$ be pseudoconvex and $\varphi \in PSH(G)$. Assume that $U \subseteq G$ is an open set such that $\varphi - c| \cdot |^2$ is plurisubharmonic on U for some c > 0, and $\nu(\varphi, \cdot) = 0$ on U. Then $L^2_h(D_{\varphi}(G))$ has infinite dimension.

Theorem

Let $G \subseteq \mathbb{C}^M$ be pseudoconvex and $\varphi \in PSH(G)$. Assume that $U \subseteq G$ is an open set such that $\varphi - c| \cdot |^2$ is plurisubharmonic on U for some c > 0, and $\nu(\varphi, \cdot) = 0$ on U. Then $L^2_h(D_{\varphi}(G))$ has infinite dimension.

Theorem (Gallagher, Harz, Herbort (2017))

Let $G \subseteq \mathbb{C}^M$ be a pseudoconvex domain and let $\Phi \in PSH(G)$. Assume that

- $U \subseteq G$ is open such that $\Phi c |\cdot|^2$ is plurisubharmonic on U for some c > 0, and
- $v \in L^2_{(0,1)}(G, \Phi)$ is a smooth form such that $\bar{\partial}v = 0$ and supp $v \subseteq U$.

Then there exists a smooth form $u: {\mathsf G} o {\mathbb C}$ such that $ar\partial u = {\mathsf v}$ and

$$||u||_{G,\Phi}^2 \leq \frac{1}{c} ||v||_{G,\Phi}^2.$$

・ロト・(部・・モト・モー・)への

Theorem (Shortened Statement) $\exists c > 0 \ni \varphi - c | \cdot |^2 \in PSH(U) \text{ implies } \dim L^2_H(D_{\varphi}(G)) = \infty.$

Sketch of Proof.

It suffices to find for infinitely many α ∈ Z^N₊ a nontrivial f_α ∈ O(G) with ||f_α||_{G,2(N+|α|)φ} < ∞.</p>

Theorem (Shortened Statement) $\exists c > 0 \ni \varphi - c | \cdot |^2 \in PSH(U) \text{ implies } \dim L^2_H(D_{\varphi}(G)) = \infty.$

Sketch of Proof.

- It suffices to find for infinitely many α ∈ Z^N₊ a nontrivial f_α ∈ O(G) with ||f_α||_{G,2(N+|α|)φ} < ∞.</p>
- Choose $p \in U$ and $\varepsilon > 0$ such that $B(p, \varepsilon) \subset C$, $e^{-2(N+|\alpha|)\varphi} \in L^1(B(p, \varepsilon))$, and smooth function χ such that $\chi|_{\{|z| \le \varepsilon/3\}} = 1$ and $\chi|_{\{|z| \ge 2\varepsilon/3\}} = 0$.

Theorem (Shortened Statement) $\exists c > 0 \ni \varphi - c | \cdot |^2 \in PSH(U) \text{ implies } \dim L^2_H(D_{\varphi}(G)) = \infty.$

Sketch of Proof.

- It suffices to find for infinitely many α ∈ Z^N₊ a nontrivial f_α ∈ O(G) with ||f_α||_{G,2(N+|α|)φ} < ∞.</p>
- Choose p∈ U and ε > 0 such that B(p, ε) ⊂⊂ U, e^{-2(N+|α|)φ} ∈ L¹(B(p, ε)), and smooth function χ such that χ|_{|z|≤ε/3} = 1 and χ|_{|z|≥2ε/3} = 0.
 Set v(z) := ∂χ(z − p), and

$$\Phi_{lpha} := 2(N + |lpha|) \varphi + M \cdot \chi(z - p) \log |z - p|.$$

Theorem (Shortened Statement) $\exists c > 0 \ni \varphi - c | \cdot |^2 \in PSH(U) \text{ implies } \dim L^2_H(D_{\varphi}(G)) = \infty.$

Sketch of Proof.

- It suffices to find for infinitely many α ∈ Z^N₊ a nontrivial f_α ∈ O(G) with ||f_α||_{G,2(N+|α|)φ} < ∞.</p>
- Choose p ∈ U and ε > 0 such that B(p, ε) ⊂⊂ U, e^{-2(N+|α|)φ} ∈ L¹(B(p, ε)), and smooth function χ such that χ|_{|z|≤ε/3} = 1 and χ|_{|z|≥2ε/3} = 0.
 Set v(z) := ∂χ(z − p), and

$$\Phi_{lpha} := 2(N + |lpha|) \varphi + M \cdot \chi(z - p) \log |z - p|.$$

► Hörmander's estimate above yields a smooth function u_{α} such that $\bar{\partial}u_{\alpha} = v$ and $||u_{\alpha}||^2_{G,\Phi_{\alpha}} \leq ||v||^2_{G,\Phi_{\alpha}}$.

Theorem (Shortened Version) $\exists c > 0 \ni \varphi - c | \cdot |^2 \in PSH(U) \text{ implies } \dim L^2_h(D_{\varphi}(G)) = \infty.$

Sketch of Proof.

• Set
$$v(z) := \bar{\partial}\chi(z-p)$$
, and

$$\Phi_{\alpha} := 2(N + |\alpha|)\varphi + M \cdot \chi(z - p) \log |z - p|.$$

► Hörmander's estimate above yields a smooth function u_α such that ∂
u_α = v and ||u_α||²_{G,Φ_α} ≤ ||v||²_{G,Φ_α}.

• $\exp(-\Phi_{\alpha})$ is not integrable near p, so $u_{\alpha}(p) = 0$.

Theorem (Shortened Version) $\exists c > 0 \ni \varphi - c | \cdot |^2 \in PSH(U) \text{ implies } \dim L^2_h(D_{\varphi}(G)) = \infty.$

Sketch of Proof.

• Set
$$v(z) := \bar{\partial} \chi(z-p)$$
, and

$$\Phi_{\alpha} := 2(N + |\alpha|)\varphi + M \cdot \chi(z - p) \log |z - p|.$$

- ► Hörmander's estimate above yields a smooth function u_α such that ∂
 u_α = v and ||u_α||²_{G,Φ_α} ≤ ||v||²_{G,Φ_α}.
- $\exp(-\Phi_{\alpha})$ is not integrable near p, so $u_{\alpha}(p) = 0$.
- Setting $f_{\alpha} := \chi(z p) u_{\alpha}(z)$ yields a nontrivial member of $L_{h}^{2}(G, 2(N + |\alpha|)\varphi)$.

By taking advantage of various generalizations of the Ohsawa-Takegoshi extension theorem, we have

Theorem

Suppose $G \subset \Omega \times \mathbb{C}^{M-1}$ is a pseudoconvex domain, where $\Omega \subset \mathbb{C}$ is bounded. Then for any $\varphi \in PSH(G)$, dim $L^2_h(D_{\varphi}(G)) = \infty$ whenever $L^2_h(D_{\varphi}(\{z_1 = 0\} \cap G))$ is infinite dimensional.

By taking advantage of various generalizations of the Ohsawa-Takegoshi extension theorem, we have

Theorem

Suppose $G \subset \Omega \times \mathbb{C}^{M-1}$ is a pseudoconvex domain, where $\Omega \subset \mathbb{C}$ is bounded. Then for any $\varphi \in PSH(G)$, dim $L^2_h(D_{\varphi}(G)) = \infty$ whenever $L^2_h(D_{\varphi}(\{z_1 = 0\} \cap G))$ is infinite dimensional. More generally, Ω may have nonpolar complement in \mathbb{C} .

A similar theorem, with the restriction on ${\it G}$ replaced by a restriction on $\varphi,$ is

Theorem

Suppose that $G \subseteq \mathbb{C}^M$ is pseudoconvex and $\varphi \in PSH(G) \cap C^2(G)$. Further suppose that there exists a complex hyperplane $A \subset \mathbb{C}^M$ such that

 $\inf_{p\in A}H_p(\varphi,N_p)>0,$

where N_p is the unit complex normal vector to A at $p \in A$. Then dim $L_h^2(D_{\varphi}(G)) = \infty$ whenever $L_h^2(D_{\varphi}|_{A \cap G}(A \cap G))$ has infinite dimension.

A similar theorem, with the restriction on ${\it G}$ replaced by a restriction on $\varphi,$ is

Theorem

Suppose that $G \subseteq \mathbb{C}^M$ is pseudoconvex and $\varphi \in PSH(G) \cap C^2(G)$. Further suppose that there exists a complex hyperplane $A \subset \mathbb{C}^M$ such that

 $\inf_{p\in A}H_p(\varphi,N_p)>0,$

where N_p is the unit complex normal vector to A at $p \in A$. Then dim $L^2_h(D_{\varphi}(G)) = \infty$ whenever $L^2_h(D_{\varphi}|_{A \cap G}(A \cap G))$ has infinite dimension.

Problem

Is it possible to replace the hyperplane in the above theorem with a hypersurface?

Other Questions

A previous theorem implies that if dim $D_{\varphi}(\mathbb{C}^{M}) < \infty$, then the Monge-Ampère operator of φ is a sum of point-masses.

Problem

Are there necessary and sufficient conditions on the weights of the point-masses which yields the nontrivial or infinite-dimensionality of $D_{\varphi}(\mathbb{C}^{M})$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Other Questions

A previous theorem implies that if dim $D_{\varphi}(\mathbb{C}^{M}) < \infty$, then the Monge-Ampère operator of φ is a sum of point-masses.

Problem

Are there necessary and sufficient conditions on the weights of the point-masses which yields the nontrivial or infinite-dimensionality of $D_{\varphi}(\mathbb{C}^{M})$?

This is still not known in the case where φ is smooth:

Problem

Give necessary and sufficient conditions for a domain $D_{\varphi}(\mathbb{C}^M)$ to have trivial or infinite-dimensional Bergman space when φ is smooth.

Thank you!

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)