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Some Notation

I Let L2
h(Ω, ϕ) denote the Bergman space of a domain Ω ⊆ Cn

with weight e−ϕ. More precisely,

L2
h(Ω, ϕ) =

{
f is holomorphic on Ω :

∫
Ω
|f |2e−ϕdV <∞

}
.

I Write ‖f ‖Ω,ϕ for the L2-norm of f with respect to e−ϕ.

I We use the convention ‖f ‖Ω = ‖f ‖Ω,0 and L2
h(Ω) = L2

h(Ω, 0).

I Denote the Lelong number of a plurisubharmonic function ϕ
at z = a by

ν(ϕ, a) = lim
r→0

(2π)−1∆ϕ(B(a, r))

dV2n−2(B(a, r) ∩ Cn−1)



Some History

“Does there exist a domain whose Bergman space is non-
trivial and finite-dimensional?”

In 1984, J. Wiegerinck showed two things:

I The Bergman space of a domain in the complex plane must
be either trivial or have infinite dimension.

I For each natural number k , there exists a Reinhardt domain
Ωk ⊆ C2 whose Bergman space has dimension k .

“Does there exist a pseudoconvex domain whose Bergman
space is nontrivial and finite-dimensional?”
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Initial Observations

I If Ω is bounded, then L2
h(Ω) has infinite dimension.

I The dimension of L2
h(Ω) is preserved under biholomorphic

mappings.

I (Carleson 1983) L2
h(Ω) is nontrivial for Ω ⊆ C if and only if

Ωc has positive logarithmic capacity.
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What’s Next After The Complex Plane?

I For a domain G ⊆ CM and function ϕ, set

Dϕ(G ) =
{

(z ,w) ∈ G × CN : ‖w‖ < e−ϕ(z)
}
.

I Dϕ(G ) is pseudoconvex if and only if ϕ is plurisubharmonic
and G is pseudoconvex.

I Every f ∈ L2
h

(
Dϕ(G )

)
has a decomposition

f (z ,w) =
∑
α∈ZN

+

fα(z)wα.

I The fα are holomorphic functions on G with

‖fαwα‖2
Dϕ(G) = Cα,N‖fα‖2

G ,2(N+|α|)ϕ.
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The Wiegerinck Problem on Hartogs Domains

The case of complete N-circled Hartogs domains with
one-dimensional base was largely solved by P. Jucha (2012):

I If G ⊂ CM is bounded, then L2
h(Dϕ(G )) has infinite

dimension.

I If G ⊂ C has nonpolar complement, then L2
h(Dϕ(G )) has

infinite dimension.

I If ∆ϕ 6≡ 0 on some open set U ⊆ G ⊂ C with ν(ϕ, ·) = 0 on
U, then L2

h(Dϕ(G )) has infinite dimension.

I The Wiegerinck problem was solved for domains Dϕ(C). In
fact, a necessary and sufficient condition was given for the
nontriviality of Dϕ(C) in terms of the Riesz measure ∆ϕ.

Problem
Show that L2

h(Dϕ(G )) is trivial or infinite-dimensional whenever
G ⊂ C has polar complement and ϕ is harmonic on G .
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Other Reasons We Like Hartogs Domains

I A balanced domain is a domain of the form
{z ∈ Cn : h(z) < 1}, where h(λz) = |λ|h(z), for λ ∈ C.

I {z ∈ Cn : h(z) < 1} \ {zn = 0} is biholomorphic to the
complete 1-circled Hartogs domain Dlog h(z ′,1)(Cn−1) via

(
z ′, zn

)
7→
(
z ′

zn
, zn

)
.

I It follows that the Bergman space of {z ∈ C : h(z) < 1} is
isomorphic to the Bergman space of Dlog h(z ′,1)(Cn−1).

I Pflug and Zwonek (2017) used this isomorphism to show that
a balanced pseudoconvex domain in C2 has trivial Bergman
space if it is either C2 or h is of the form h(z) = |Az |t |Bz |1−t ,
where A,B : C2 → C are nontrivial linear mappings and
t ∈ [0, 1].
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Hartogs Domains With Base in CM , M > 1

Theorem
Let G ⊆ CM be pseudoconvex and ϕ ∈ PSH(G ). Assume that
U ⊆ G is an open set such that ϕ− c | · |2 is plurisubharmonic on
U for some c > 0, and ν(ϕ, · ) = 0 on U. Then L2

h(Dϕ(G )) has
infinite dimension.

Theorem (Gallagher, Harz, Herbort (2017))

Let G ⊆ CM be a pseudoconvex domain and let Φ ∈ PSH(G ).
Assume that

I U ⊆ G is open such that Φ− c | · |2 is plurisubharmonic on U
for some c > 0, and

I v ∈ L2
(0,1)(G ,Φ) is a smooth form such that ∂̄v = 0 and

supp v ⊆ U.

Then there exists a smooth form u : G → C such that ∂̄u = v and

‖u‖2
G ,Φ ≤

1

c
‖v‖2

G ,Φ.



Hartogs Domains With Base in CM , M > 1

Theorem
Let G ⊆ CM be pseudoconvex and ϕ ∈ PSH(G ). Assume that
U ⊆ G is an open set such that ϕ− c | · |2 is plurisubharmonic on
U for some c > 0, and ν(ϕ, · ) = 0 on U. Then L2

h(Dϕ(G )) has
infinite dimension.

Theorem (Gallagher, Harz, Herbort (2017))

Let G ⊆ CM be a pseudoconvex domain and let Φ ∈ PSH(G ).
Assume that

I U ⊆ G is open such that Φ− c | · |2 is plurisubharmonic on U
for some c > 0, and

I v ∈ L2
(0,1)(G ,Φ) is a smooth form such that ∂̄v = 0 and

supp v ⊆ U.

Then there exists a smooth form u : G → C such that ∂̄u = v and

‖u‖2
G ,Φ ≤

1

c
‖v‖2

G ,Φ.



Hartogs Domains With Base in CM

Theorem (Shortened Statement)

∃c > 0 3 ϕ− c| · |2 ∈ PSH(U) implies dim L2
H(Dϕ(G )) =∞.

Sketch of Proof.
I It suffices to find for infinitely many α ∈ ZN

+ a nontrivial
fα ∈ O(G ) with ‖fα‖G ,2(N+|α|)ϕ <∞.

I Choose p ∈ U and ε > 0 such that B(p, ε) ⊂⊂ U,
e−2(N+|α|)ϕ ∈ L1(B(p, ε)), and smooth function χ such that
χ|{|z|≤ε/3} = 1 and χ|{|z|≥2ε/3} = 0.

I Set v(z) := ∂̄χ(z − p), and

Φα := 2(N + |α|)ϕ+ M · χ(z − p) log |z − p|.

I Hörmander’s estimate above yields a smooth function uα such
that ∂̄uα = v and ‖uα‖2

G ,Φα
≤ ‖v‖2

G ,Φα
.
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I Hörmander’s estimate above yields a smooth function uα such
that ∂̄uα = v and ‖uα‖2

G ,Φα
≤ ‖v‖2

G ,Φα
.



Hartogs Domains With Base in CM

Theorem (Shortened Statement)

∃c > 0 3 ϕ− c| · |2 ∈ PSH(U) implies dim L2
H(Dϕ(G )) =∞.

Sketch of Proof.
I It suffices to find for infinitely many α ∈ ZN

+ a nontrivial
fα ∈ O(G ) with ‖fα‖G ,2(N+|α|)ϕ <∞.

I Choose p ∈ U and ε > 0 such that B(p, ε) ⊂⊂ U,
e−2(N+|α|)ϕ ∈ L1(B(p, ε)), and smooth function χ such that
χ|{|z|≤ε/3} = 1 and χ|{|z|≥2ε/3} = 0.

I Set v(z) := ∂̄χ(z − p), and

Φα := 2(N + |α|)ϕ+ M · χ(z − p) log |z − p|.
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I exp(−Φα) is not integrable near p, so uα(p) = 0.

I Setting fα := χ(z − p)− uα(z) yields a nontrivial member of
L2
h(G , 2(N + |α|)ϕ).
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Hartogs Domains With Base in CM

By taking advantage of various generalizations of the
Ohsawa-Takegoshi extension theorem, we have

Theorem
Suppose G ⊂ Ω× CM−1 is a pseudoconvex domain, where Ω ⊂ C
is bounded. Then for any ϕ ∈ PSH(G ), dim L2

h(Dϕ(G )) =∞
whenever L2

h(Dϕ({z1 = 0} ∩ G )) is infinite dimensional.

More generally, Ω may have nonpolar complement in C.
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Hartogs Domains With Base in CM

A similar theorem, with the restriction on G replaced by a
restriction on ϕ, is

Theorem
Suppose that G ⊆ CM is pseudoconvex and ϕ ∈ PSH(G ) ∩ C2(G ).
Further suppose that there exists a complex hyperplane A ⊂ CM

such that
inf
p∈A

Hp(ϕ,Np) > 0,

where Np is the unit complex normal vector to A at p ∈ A. Then
dim L2

h(Dϕ(G )) =∞ whenever L2
h(Dϕ|A∩G (A ∩ G )) has infinite

dimension.

Problem
Is it possible to replace the hyperplane in the above theorem with a
hypersurface?



Hartogs Domains With Base in CM

A similar theorem, with the restriction on G replaced by a
restriction on ϕ, is

Theorem
Suppose that G ⊆ CM is pseudoconvex and ϕ ∈ PSH(G ) ∩ C2(G ).
Further suppose that there exists a complex hyperplane A ⊂ CM

such that
inf
p∈A

Hp(ϕ,Np) > 0,

where Np is the unit complex normal vector to A at p ∈ A. Then
dim L2

h(Dϕ(G )) =∞ whenever L2
h(Dϕ|A∩G (A ∩ G )) has infinite

dimension.

Problem
Is it possible to replace the hyperplane in the above theorem with a
hypersurface?



Other Questions

A previous theorem implies that if dimDϕ(CM) <∞, then the
Monge-Ampère operator of ϕ is a sum of point-masses.

Problem
Are there necessary and sufficient conditions on the weights of the
point-masses which yields the nontrivial or infinite-dimensionality
of Dϕ(CM)?

This is still not known in the case where ϕ is smooth:

Problem
Give necessary and sufficient conditions for a domain Dϕ(CM) to
have trivial or infinite-dimensional Bergman space when ϕ is
smooth.
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Thank you!


