The Wiegerinck Problem in The Class of Hartogs Domains

Blake J. Boudreaux
Texas A\&M University

April 20, 2021

Some Notation

- Let $L_{h}^{2}(\Omega, \varphi)$ denote the Bergman space of a domain $\Omega \subseteq \mathbb{C}^{n}$ with weight $e^{-\varphi}$. More precisely,

$$
L_{h}^{2}(\Omega, \varphi)=\left\{f \text { is holomorphic on } \Omega: \int_{\Omega}|f|^{2} e^{-\varphi} \mathrm{d} V<\infty\right\}
$$

- Write $\|f\|_{\Omega, \varphi}$ for the L^{2}-norm of f with respect to $e^{-\varphi}$.
- We use the convention $\|f\|_{\Omega}=\|f\|_{\Omega, 0}$ and $L_{h}^{2}(\Omega)=L_{h}^{2}(\Omega, 0)$.
- Denote the Lelong number of a plurisubharmonic function φ at $z=a$ by

$$
\nu(\varphi, a)=\lim _{r \rightarrow 0} \frac{(2 \pi)^{-1} \Delta \varphi(B(a, r))}{\mathrm{d} V_{2 n-2}\left(B(a, r) \cap \mathbb{C}^{n-1}\right)}
$$

Some History

"Does there exist a domain whose Bergman space is nontrivial and finite-dimensional?"

Some History

"Does there exist a domain whose Bergman space is nontrivial and finite-dimensional?"

In 1984, J. Wiegerinck showed two things:

- The Bergman space of a domain in the complex plane must be either trivial or have infinite dimension.
- For each natural number k, there exists a Reinhardt domain $\Omega_{k} \subseteq \mathbb{C}^{2}$ whose Bergman space has dimension k.

Some History

"Does there exist a domain whose Bergman space is nontrivial and finite-dimensional?"

In 1984, J. Wiegerinck showed two things:

- The Bergman space of a domain in the complex plane must be either trivial or have infinite dimension.
- For each natural number k, there exists a Reinhardt domain $\Omega_{k} \subseteq \mathbb{C}^{2}$ whose Bergman space has dimension k.
"Does there exist a pseudoconvex domain whose Bergman space is nontrivial and finite-dimensional?"

Initial Observations

- If Ω is bounded, then $L_{h}^{2}(\Omega)$ has infinite dimension.

Initial Observations

- If Ω is bounded, then $L_{h}^{2}(\Omega)$ has infinite dimension.
- The dimension of $L_{h}^{2}(\Omega)$ is preserved under biholomorphic mappings.

Initial Observations

- If Ω is bounded, then $L_{h}^{2}(\Omega)$ has infinite dimension.
- The dimension of $L_{h}^{2}(\Omega)$ is preserved under biholomorphic mappings.
- (Carleson 1983) $L_{h}^{2}(\Omega)$ is nontrivial for $\Omega \subseteq \mathbb{C}$ if and only if Ω^{c} has positive logarithmic capacity.

What's Next After The Complex Plane?

- For a domain $G \subseteq \mathbb{C}^{M}$ and function φ, set

$$
D_{\varphi}(G)=\left\{(z, w) \in G \times \mathbb{C}^{N}:\|w\|<e^{-\varphi(z)}\right\} .
$$

What's Next After The Complex Plane?

- For a domain $G \subseteq \mathbb{C}^{M}$ and function φ, set

$$
D_{\varphi}(G)=\left\{(z, w) \in G \times \mathbb{C}^{N}:\|w\|<e^{-\varphi(z)}\right\}
$$

- $D_{\varphi}(G)$ is pseudoconvex if and only if φ is plurisubharmonic and G is pseudoconvex.

What's Next After The Complex Plane?

- For a domain $G \subseteq \mathbb{C}^{M}$ and function φ, set

$$
D_{\varphi}(G)=\left\{(z, w) \in G \times \mathbb{C}^{N}:\|w\|<e^{-\varphi(z)}\right\}
$$

- $D_{\varphi}(G)$ is pseudoconvex if and only if φ is plurisubharmonic and G is pseudoconvex.
- Every $f \in L_{h}^{2}\left(D_{\varphi}(G)\right)$ has a decomposition

$$
f(z, w)=\sum_{\alpha \in \mathbb{Z}_{+}^{N}} f_{\alpha}(z) w^{\alpha} .
$$

What's Next After The Complex Plane?

- For a domain $G \subseteq \mathbb{C}^{M}$ and function φ, set

$$
D_{\varphi}(G)=\left\{(z, w) \in G \times \mathbb{C}^{N}:\|w\|<e^{-\varphi(z)}\right\}
$$

- $D_{\varphi}(G)$ is pseudoconvex if and only if φ is plurisubharmonic and G is pseudoconvex.
- Every $f \in L_{h}^{2}\left(D_{\varphi}(G)\right)$ has a decomposition

$$
f(z, w)=\sum_{\alpha \in \mathbb{Z}_{+}^{N}} f_{\alpha}(z) w^{\alpha} .
$$

- The f_{α} are holomorphic functions on G with

$$
\left\|f_{\alpha} w^{\alpha}\right\|_{D_{\varphi}(G)}^{2}=C_{\alpha, N}\left\|f_{\alpha}\right\|_{G, 2(N+|\alpha|) \varphi}^{2} .
$$

The Wiegerinck Problem on Hartogs Domains

The case of complete N-circled Hartogs domains with one-dimensional base was largely solved by P. Jucha (2012):

- If $G \subset \mathbb{C}^{M}$ is bounded, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.

The Wiegerinck Problem on Hartogs Domains

The case of complete N-circled Hartogs domains with one-dimensional base was largely solved by P. Jucha (2012):

- If $G \subset \mathbb{C}^{M}$ is bounded, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.
- If $G \subset \mathbb{C}$ has nonpolar complement, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.

The Wiegerinck Problem on Hartogs Domains

The case of complete N-circled Hartogs domains with one-dimensional base was largely solved by P. Jucha (2012):

- If $G \subset \mathbb{C}^{M}$ is bounded, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.
- If $G \subset \mathbb{C}$ has nonpolar complement, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.
- If $\Delta \varphi \not \equiv 0$ on some open set $U \subseteq G \subset \mathbb{C}$ with $\nu(\varphi, \cdot)=0$ on U, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.

The Wiegerinck Problem on Hartogs Domains

The case of complete N-circled Hartogs domains with one-dimensional base was largely solved by P. Jucha (2012):

- If $G \subset \mathbb{C}^{M}$ is bounded, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.
- If $G \subset \mathbb{C}$ has nonpolar complement, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.
- If $\Delta \varphi \not \equiv 0$ on some open set $U \subseteq G \subset \mathbb{C}$ with $\nu(\varphi, \cdot)=0$ on U, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.
- The Wiegerinck problem was solved for domains $D_{\varphi}(\mathbb{C})$. In fact, a necessary and sufficient condition was given for the nontriviality of $D_{\varphi}(\mathbb{C})$ in terms of the Riesz measure $\Delta \varphi$.

The Wiegerinck Problem on Hartogs Domains

The case of complete N-circled Hartogs domains with one-dimensional base was largely solved by P. Jucha (2012):

- If $G \subset \mathbb{C}^{M}$ is bounded, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.
- If $G \subset \mathbb{C}$ has nonpolar complement, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.
- If $\Delta \varphi \not \equiv 0$ on some open set $U \subseteq G \subset \mathbb{C}$ with $\nu(\varphi, \cdot)=0$ on U, then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.
- The Wiegerinck problem was solved for domains $D_{\varphi}(\mathbb{C})$. In fact, a necessary and sufficient condition was given for the nontriviality of $D_{\varphi}(\mathbb{C})$ in terms of the Riesz measure $\Delta \varphi$.

Problem

Show that $L_{h}^{2}\left(D_{\varphi}(G)\right)$ is trivial or infinite-dimensional whenever $G \subset \mathbb{C}$ has polar complement and φ is harmonic on G.

Other Reasons We Like Hartogs Domains

- A balanced domain is a domain of the form $\left\{z \in \mathbb{C}^{n}: h(z)<1\right\}$, where $h(\lambda z)=|\lambda| h(z)$, for $\lambda \in \mathbb{C}$.

Other Reasons We Like Hartogs Domains

- A balanced domain is a domain of the form $\left\{z \in \mathbb{C}^{n}: h(z)<1\right\}$, where $h(\lambda z)=|\lambda| h(z)$, for $\lambda \in \mathbb{C}$.
- $\left\{z \in \mathbb{C}^{n}: h(z)<1\right\} \backslash\left\{z_{n}=0\right\}$ is biholomorphic to the complete 1 -circled Hartogs domain $D_{\log h\left(z^{\prime}, 1\right)}\left(\mathbb{C}^{n-1}\right)$ via

$$
\left(z^{\prime}, z_{n}\right) \mapsto\left(\frac{z^{\prime}}{z_{n}}, z_{n}\right) .
$$

Other Reasons We Like Hartogs Domains

- A balanced domain is a domain of the form $\left\{z \in \mathbb{C}^{n}: h(z)<1\right\}$, where $h(\lambda z)=|\lambda| h(z)$, for $\lambda \in \mathbb{C}$.
- $\left\{z \in \mathbb{C}^{n}: h(z)<1\right\} \backslash\left\{z_{n}=0\right\}$ is biholomorphic to the complete 1 -circled Hartogs domain $D_{\log h\left(z^{\prime}, 1\right)}\left(\mathbb{C}^{n-1}\right)$ via

$$
\left(z^{\prime}, z_{n}\right) \mapsto\left(\frac{z^{\prime}}{z_{n}}, z_{n}\right) .
$$

- It follows that the Bergman space of $\{z \in \mathbb{C}: h(z)<1\}$ is isomorphic to the Bergman space of $D_{\log h\left(z^{\prime}, 1\right)}\left(\mathbb{C}^{n-1}\right)$.

Other Reasons We Like Hartogs Domains

- A balanced domain is a domain of the form $\left\{z \in \mathbb{C}^{n}: h(z)<1\right\}$, where $h(\lambda z)=|\lambda| h(z)$, for $\lambda \in \mathbb{C}$.
- $\left\{z \in \mathbb{C}^{n}: h(z)<1\right\} \backslash\left\{z_{n}=0\right\}$ is biholomorphic to the complete 1 -circled Hartogs domain $D_{\log h\left(z^{\prime}, 1\right)}\left(\mathbb{C}^{n-1}\right)$ via

$$
\left(z^{\prime}, z_{n}\right) \mapsto\left(\frac{z^{\prime}}{z_{n}}, z_{n}\right) .
$$

- It follows that the Bergman space of $\{z \in \mathbb{C}: h(z)<1\}$ is isomorphic to the Bergman space of $D_{\log h\left(z^{\prime}, 1\right)}\left(\mathbb{C}^{n-1}\right)$.
- Pflug and Zwonek (2017) used this isomorphism to show that a balanced pseudoconvex domain in \mathbb{C}^{2} has trivial Bergman space if it is either \mathbb{C}^{2} or h is of the form $h(z)=|A z|^{t}|B z|^{1-t}$, where $A, B: \mathbb{C}^{2} \rightarrow \mathbb{C}$ are nontrivial linear mappings and $t \in[0,1]$.

Hartogs Domains With Base in $\mathbb{C}^{M}, M>1$

Theorem
Let $G \subseteq \mathbb{C}^{M}$ be pseudoconvex and $\varphi \in P S H(G)$. Assume that $U \subseteq G$ is an open set such that $\varphi-c|\cdot|^{2}$ is plurisubharmonic on U for some $c>0$, and $\nu(\varphi, \cdot)=0$ on U. Then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.

Hartogs Domains With Base in $\mathbb{C}^{M}, M>1$

Theorem
Let $G \subseteq \mathbb{C}^{M}$ be pseudoconvex and $\varphi \in P S H(G)$. Assume that $U \subseteq G$ is an open set such that $\varphi-c|\cdot|^{2}$ is plurisubharmonic on U for some $c>0$, and $\nu(\varphi, \cdot)=0$ on U. Then $L_{h}^{2}\left(D_{\varphi}(G)\right)$ has infinite dimension.

Theorem (Gallagher, Harz, Herbort (2017))

Let $G \subseteq \mathbb{C}^{M}$ be a pseudoconvex domain and let $\Phi \in P S H(G)$.
Assume that

- $U \subseteq G$ is open such that $\Phi-c|\cdot|^{2}$ is plurisubharmonic on U for some $c>0$, and
- $v \in L_{(0,1)}^{2}(G, \Phi)$ is a smooth form such that $\bar{\partial} v=0$ and supp $v \subseteq U$.
Then there exists a smooth form $u: G \rightarrow \mathbb{C}$ such that $\bar{\partial} u=v$ and

$$
\|u\|_{G, \Phi}^{2} \leq \frac{1}{c}\|v\|_{G, \Phi}^{2}
$$

Hartogs Domains With Base in \mathbb{C}^{M}

Theorem (Shortened Statement)
$\exists c>0 \ni \varphi-c|\cdot|^{2} \in P S H(U)$ implies $\operatorname{dim} L_{H}^{2}\left(D_{\varphi}(G)\right)=\infty$.
Sketch of Proof.

- It suffices to find for infinitely many $\alpha \in \mathbb{Z}_{+}^{N}$ a nontrivial $f_{\alpha} \in \mathcal{O}(G)$ with $\left\|f_{\alpha}\right\|_{G, 2(N+|\alpha|) \varphi}<\infty$.

Hartogs Domains With Base in \mathbb{C}^{M}

Theorem (Shortened Statement)
$\exists c>0 \ni \varphi-c|\cdot|^{2} \in \operatorname{PSH}(U)$ implies $\operatorname{dim} L_{H}^{2}\left(D_{\varphi}(G)\right)=\infty$.
Sketch of Proof.

- It suffices to find for infinitely many $\alpha \in \mathbb{Z}_{+}^{N}$ a nontrivial $f_{\alpha} \in \mathcal{O}(G)$ with $\left\|f_{\alpha}\right\|_{G, 2(N+|\alpha|) \varphi}<\infty$.
- Choose $p \in U$ and $\varepsilon>0$ such that $B(p, \varepsilon) \subset \subset U$, $e^{-2(N+|\alpha|) \varphi} \in L^{1}(B(p, \varepsilon))$, and smooth function χ such that $\left.\chi\right|_{\{|z| \leq \varepsilon / 3\}}=1$ and $\left.\chi\right|_{\{|z| \geq 2 \varepsilon / 3\}}=0$.

Hartogs Domains With Base in \mathbb{C}^{M}

Theorem (Shortened Statement)
$\exists c>0 \ni \varphi-c|\cdot|^{2} \in \operatorname{PSH}(U)$ implies $\operatorname{dim} L_{H}^{2}\left(D_{\varphi}(G)\right)=\infty$.
Sketch of Proof.

- It suffices to find for infinitely many $\alpha \in \mathbb{Z}_{+}^{N}$ a nontrivial $f_{\alpha} \in \mathcal{O}(G)$ with $\left\|f_{\alpha}\right\|_{G, 2(N+|\alpha|) \varphi}<\infty$.
- Choose $p \in U$ and $\varepsilon>0$ such that $B(p, \varepsilon) \subset \subset U$, $e^{-2(N+|\alpha|) \varphi} \in L^{1}(B(p, \varepsilon))$, and smooth function χ such that $\left.\chi\right|_{\{|z| \leq \varepsilon / 3\}}=1$ and $\left.\chi\right|_{\{|z| \geq 2 \varepsilon / 3\}}=0$.
- Set $v(z):=\bar{\partial} \chi(z-p)$, and

$$
\Phi_{\alpha}:=2(N+|\alpha|) \varphi+M \cdot \chi(z-p) \log |z-p| .
$$

Hartogs Domains With Base in \mathbb{C}^{M}

Theorem (Shortened Statement)
$\exists c>0 \ni \varphi-c|\cdot|^{2} \in \operatorname{PSH}(U)$ implies $\operatorname{dim} L_{H}^{2}\left(D_{\varphi}(G)\right)=\infty$.
Sketch of Proof.

- It suffices to find for infinitely many $\alpha \in \mathbb{Z}_{+}^{N}$ a nontrivial $f_{\alpha} \in \mathcal{O}(G)$ with $\left\|f_{\alpha}\right\|_{G, 2(N+|\alpha|) \varphi}<\infty$.
- Choose $p \in U$ and $\varepsilon>0$ such that $B(p, \varepsilon) \subset \subset U$, $e^{-2(N+|\alpha|) \varphi} \in L^{1}(B(p, \varepsilon))$, and smooth function χ such that $\left.\chi\right|_{\{|z| \leq \varepsilon / 3\}}=1$ and $\left.\chi\right|_{\{|z| \geq 2 \varepsilon / 3\}}=0$.
- Set $v(z):=\bar{\partial} \chi(z-p)$, and

$$
\Phi_{\alpha}:=2(N+|\alpha|) \varphi+M \cdot \chi(z-p) \log |z-p| .
$$

- Hörmander's estimate above yields a smooth function u_{α} such that $\bar{\partial} u_{\alpha}=v$ and $\left\|u_{\alpha}\right\|_{G, \Phi_{\alpha}}^{2} \leq\|v\|_{G, \Phi_{\alpha}}^{2}$.

Hartogs Domains With Base in \mathbb{C}^{M}

Theorem (Shortened Version)
$\exists c>0 \ni \varphi-c|\cdot|^{2} \in P S H(U)$ implies $\operatorname{dim} L_{h}^{2}\left(D_{\varphi}(G)\right)=\infty$.
Sketch of Proof.

- Set $v(z):=\bar{\partial} \chi(z-p)$, and

$$
\Phi_{\alpha}:=2(N+|\alpha|) \varphi+M \cdot \chi(z-p) \log |z-p| .
$$

- Hörmander's estimate above yields a smooth function u_{α} such that $\bar{\partial} u_{\alpha}=v$ and $\left\|u_{\alpha}\right\|_{G, \Phi_{\alpha}}^{2} \leq\|v\|_{G, \Phi_{\alpha}}^{2}$.
- $\exp \left(-\Phi_{\alpha}\right)$ is not integrable near p, so $u_{\alpha}(p)=0$.

Hartogs Domains With Base in \mathbb{C}^{M}

Theorem (Shortened Version)
$\exists c>0 \ni \varphi-c|\cdot|^{2} \in P S H(U)$ implies $\operatorname{dim} L_{h}^{2}\left(D_{\varphi}(G)\right)=\infty$.
Sketch of Proof.

- Set $v(z):=\bar{\partial} \chi(z-p)$, and

$$
\Phi_{\alpha}:=2(N+|\alpha|) \varphi+M \cdot \chi(z-p) \log |z-p| .
$$

- Hörmander's estimate above yields a smooth function u_{α} such that $\bar{\partial} u_{\alpha}=v$ and $\left\|u_{\alpha}\right\|_{G, \Phi_{\alpha}}^{2} \leq\|v\|_{G, \Phi_{\alpha}}^{2}$.
- $\exp \left(-\Phi_{\alpha}\right)$ is not integrable near p, so $u_{\alpha}(p)=0$.
- Setting $f_{\alpha}:=\chi(z-p)-u_{\alpha}(z)$ yields a nontrivial member of $L_{h}^{2}(G, 2(N+|\alpha|) \varphi)$.

Hartogs Domains With Base in \mathbb{C}^{M}

By taking advantage of various generalizations of the Ohsawa-Takegoshi extension theorem, we have

Theorem
Suppose $G \subset \Omega \times \mathbb{C}^{M-1}$ is a pseudoconvex domain, where $\Omega \subset \mathbb{C}$ is bounded. Then for any $\varphi \in P S H(G), \operatorname{dim} L_{h}^{2}\left(D_{\varphi}(G)\right)=\infty$ whenever $L_{h}^{2}\left(D_{\varphi}\left(\left\{z_{1}=0\right\} \cap G\right)\right)$ is infinite dimensional.

Hartogs Domains With Base in \mathbb{C}^{M}

By taking advantage of various generalizations of the Ohsawa-Takegoshi extension theorem, we have

Theorem
Suppose $G \subset \Omega \times \mathbb{C}^{M-1}$ is a pseudoconvex domain, where $\Omega \subset \mathbb{C}$ is bounded. Then for any $\varphi \in P S H(G), \operatorname{dim} L_{h}^{2}\left(D_{\varphi}(G)\right)=\infty$ whenever $L_{h}^{2}\left(D_{\varphi}\left(\left\{z_{1}=0\right\} \cap G\right)\right)$ is infinite dimensional.
More generally, Ω may have nonpolar complement in \mathbb{C}.

Hartogs Domains With Base in \mathbb{C}^{M}

A similar theorem, with the restriction on G replaced by a restriction on φ, is

Theorem
Suppose that $G \subseteq \mathbb{C}^{M}$ is pseudoconvex and $\varphi \in \operatorname{PSH}(G) \cap \mathcal{C}^{2}(G)$. Further suppose that there exists a complex hyperplane $A \subset \mathbb{C}^{M}$ such that

$$
\inf _{p \in A} H_{p}\left(\varphi, N_{p}\right)>0
$$

where N_{p} is the unit complex normal vector to A at $p \in A$. Then $\operatorname{dim} L_{h}^{2}\left(D_{\varphi}(G)\right)=\infty$ whenever $L_{h}^{2}\left(\left.D_{\varphi}\right|_{A \cap G}(A \cap G)\right)$ has infinite dimension.

Hartogs Domains With Base in \mathbb{C}^{M}

A similar theorem, with the restriction on G replaced by a restriction on φ, is
Theorem
Suppose that $G \subseteq \mathbb{C}^{M}$ is pseudoconvex and $\varphi \in \operatorname{PSH}(G) \cap \mathcal{C}^{2}(G)$. Further suppose that there exists a complex hyperplane $A \subset \mathbb{C}^{M}$ such that

$$
\inf _{p \in A} H_{p}\left(\varphi, N_{p}\right)>0
$$

where N_{p} is the unit complex normal vector to A at $p \in A$. Then $\operatorname{dim} L_{h}^{2}\left(D_{\varphi}(G)\right)=\infty$ whenever $L_{h}^{2}\left(\left.D_{\varphi}\right|_{A \cap G}(A \cap G)\right)$ has infinite dimension.

Problem

Is it possible to replace the hyperplane in the above theorem with a hypersurface?

Other Questions

A previous theorem implies that if $\operatorname{dim} D_{\varphi}\left(\mathbb{C}^{M}\right)<\infty$, then the Monge-Ampère operator of φ is a sum of point-masses.

Problem
Are there necessary and sufficient conditions on the weights of the point-masses which yields the nontrivial or infinite-dimensionality of $D_{\varphi}\left(\mathbb{C}^{M}\right)$?

Other Questions

A previous theorem implies that if $\operatorname{dim} D_{\varphi}\left(\mathbb{C}^{M}\right)<\infty$, then the Monge-Ampère operator of φ is a sum of point-masses.
Problem
Are there necessary and sufficient conditions on the weights of the point-masses which yields the nontrivial or infinite-dimensionality of $D_{\varphi}\left(\mathbb{C}^{M}\right)$?
This is still not known in the case where φ is smooth:

Problem

Give necessary and sufficient conditions for a domain $D_{\varphi}\left(\mathbb{C}^{M}\right)$ to have trivial or infinite-dimensional Bergman space when φ is smooth.

Thank you!

