The Wiegerinck Problem in The Class of Hartogs
Domains

Blake J. Boudreaux

Texas A&M University

April 20, 2021



Some Notation

v

Let L2(, ) denote the Bergman space of a domain Q C C”
with weight e~%. More precisely,

[3(Q,¢) = {f is holomorphic on Q : / Ifl?e™dV < oo} .
Q

Write ||f|q,, for the L?-norm of f with respect to e™%.
We use the convention ||f|lq = ||f|lao and L3(Q) = L3(Q,0).

Denote the Lelong number of a plurisubharmonic function ¢
at z = a by

o (2m)~tAp(B(a,r))
o) = lim 2L DS D)
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In 1984, J. Wiegerinck showed two things:

» The Bergman space of a domain in the complex plane must
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P For each natural number k, there exists a Reinhardt domain
Q C C? whose Bergman space has dimension k.

“Does there exist a pseudoconvex domain whose Bergman
space is nontrivial and finite-dimensional?”
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» The dimension of L2(f2) is preserved under biholomorphic
mappings.

> (Carleson 1983) L2(€2) is nontrivial for Q C C if and only if
Q¢ has positive logarithmic capacity.
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What's Next After The Complex Plane?

» For a domain G C CM and function ¢, set
D<,0(G) = {(27 w) € G X chN . lw]| < eﬂP(Z)}.

» D,(G) is pseudoconvex if and only if ¢ is plurisubharmonic
and G is pseudoconvex.

> Every f € [7(D,(G)) has a decomposition

f(z,w) = Z fo(z)w®.
aEZﬁ

» The f, are holomorphic functions on G with

I05,(6) = Comllalle e
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The Wiegerinck Problem on Hartogs Domains

The case of complete N-circled Hartogs domains with
one-dimensional base was largely solved by P. Jucha (2012):

> If G C CM is bounded, then L2(D,(G)) has infinite
dimension.

» If G C C has nonpolar complement, then L?(D,(G)) has
infinite dimension.

» If Ap # 0 on some open set U C G C C with v(p,-) =0 on
U, then L2(D,(G)) has infinite dimension.

» The Wiegerinck problem was solved for domains D, (C). In
fact, a necessary and sufficient condition was given for the
nontriviality of D,(C) in terms of the Riesz measure Agp.

Problem
Show that L2(Dy,(G)) is trivial or infinite-dimensional whenever
G C C has polar complement and ¢ is harmonic on G.
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Other Reasons We Like Hartogs Domains

» A balanced domain is a domain of the form
{z € C" : h(z) < 1}, where h(Az) = |A|h(z), for A € C.
» {z e C": h(z) <1} \ {z, = 0} is biholomorphic to the
complete 1-circled Hartogs domain Do h(z@l)((C”_l) via

/
(Z.20) <§z> .
n

» It follows that the Bergman space of {z € C : h(z) < 1} is
isomorphic to the Bergman space of Do, ,,(2/71)(@”*1).

» Pflug and Zwonek (2017) used this isomorphism to show that
a balanced pseudoconvex domain in C? has trivial Bergman
space if it is either C2 or h is of the form h(z) = |Az|t|Bz|*~¢,
where A, B : C?> — C are nontrivial linear mappings and
t € [0,1].
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Hartogs Domains With Base in CY, M > 1

Theorem

Let G C CM be pseudoconvex and ¢ € PSH(G). Assume that

U C G is an open set such that ¢ — c| - |2 is plurisubharmonic on
U for some ¢ >0, and v(ip, -) =0 on U. Then L3(Dy,(G)) has
infinite dimension.

Theorem (Gallagher, Harz, Herbort (2017))

Let G C CM be a pseudoconvex domain and let & € PSH(G).
Assume that
» U C G is open such that ® — c| - |? is plurisubharmonic on U
for some ¢ > 0, and
> ve L%O 1)(G, ®) is a smooth form such that v = 0 and
supp v C U.

Then there exists a smooth form u : G — C such that du = v and

1
HUH%;,cb < EHV|2G,¢-
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Theorem (Shortened Version)
Jc > 03 ¢ —c| - |2 € PSH(U) implies dim L2(D,(G)) = oo.

Sketch of Proof.
> Set v(z) := dx(z — p), and

&, :=2(N+|a])p+ M- x(z—p)log|z — p|.

» Hormander's estimate above yields a smooth function u, such
that du, = v and ”Ua”2c,q>a < ||VH%7¢Q.

» exp(—®P,) is not integrable near p, so uy(p) = 0.

» Setting f, := x(z — p) — ua(2) yields a nontrivial member of
L2(G,2(N + |a])¢). O
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A similar theorem, with the restriction on G replaced by a
restriction on ¢, is

Theorem

Suppose that G C CM is pseudoconvex and p € PSH(G) N C?(G).
Further suppose that there exists a complex hyperplane A ¢ CM
such that

inf Hy(o, N,) >0
Inf, (¢, Np) >0,

where Ny, is the unit complex normal vector to A at p € A. Then

dim L2(Dy,(G)) = oo whenever L2(Dy|anc(AN G)) has infinite
dimension.

Problem
Is it possible to replace the hyperplane in the above theorem with a
hypersurface?
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A previous theorem implies that if dim D,(CM) < oo, then the
Monge-Ampére operator of ¢ is a sum of point-masses.

Problem

Are there necessary and sufficient conditions on the weights of the

point-masses which yields the nontrivial or infinite-dimensionality
M

of D,(C™)?

This is still not known in the case where ¢ is smooth:

Problem

Give necessary and sufficient conditions for a domain D@((CM ) to
have trivial or infinite-dimensional Bergman space when ¢ is
smooth.



Thank you!



