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Holomorphic versus algebraic equivalence for

deformations of real-algebraic Cauchy–Riemann

manifolds

Bernhard Lamel and Nordine Mir

We consider (small) algebraic deformations of germs of real-
algebraic Cauchy–Riemann submanifolds in complex space and
study the biholomorphic equivalence problem for such deforma-
tions. We show that two algebraic deformations of minimal
holomorphically nondegenerate real-algebraic CR submanifolds are
holomorphically equivalent if and only if they are algebraically
equivalent.

1. Introduction

Since Poincaré’s celebrated paper [19] published in 1907, there has been a
growing literature concerned with the equivalence problem for real submani-
folds in complex space (see e.g., [4, 6, 7, 11, 13, 14, 22] for some recent works
as well as the references therein). One interesting phenomenon, observed by
Webster for biholomorphisms of Levi nondegenerate hypersurfaces [23], is
that the biholomorphic equivalence of some types of real-algebraic subman-
ifolds of a complex space implies their algebraic equivalence.

In this paper, we show that this very phenomenon holds for algebraic
deformations of germs of minimal holomorphically nondegenerate real-
algebraic CR submanifolds in complex space. Let us recall that a germ of a
real-algebraic CR submanifold (M, p) ⊂ (Cn, p) is minimal if there exists no
proper CR submanifold N ⊂ M through p of the same CR dimension as M .
It is holomorphically nondegenerate if there exists no nontrivial holomorphic
vector field tangent to M near p (see [21]).

An algebraic deformation of (M, p) is a real-algebraic family of germs at p
of real-algebraic CR submanifolds (Ms, p)s∈Rk in C

n, defined for s ∈ R
k near

0, such that M0 = M . We say that two such deformations (Ms, p)s∈Rk and
(Nt, p

′)t∈Rk are biholomorphically equivalent if there exists a germ of a real-
analytic diffeomorphism ϕ : (Rk, 0) → (Rk, 0) and a holomorphic submersion
B : (Cn

z × C
k
u, (p, 0)) → (Cn, p′) such that z �→ B(z, s) is a biholomorphism

sending (Ms, p) to (Nϕ(s), p
′) for all s ∈ R

k close to 0. We shall say that such
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a pair (B, ϕ) is a biholomorphism between the two deformations1. We also
say that they are algebraically equivalent if one can choose ϕ and B to be
furthermore algebraic. Our main result is as follows.

Theorem 1.1. Two algebraic deformations of minimal holomorphically
nondegenerate real-algebraic CR submanifolds of C

n are algebraically equiv-
alent if and only if they are biholomorphically equivalent.

For a completely trivial deformation (i.e., k = 0), Theorem 1.1 is actu-
ally a consequence of the algebraicity theorem of Baouendi et al. [2], where
they prove that every local biholomorphism sending holomorphically nonde-
generate and minimal real-algebraic generic submanifolds of C

n must neces-
sarily be algebraic. This is not necessarily true for biholomorphisms between
deformations, even for constant ones, as the following example shows.

Example 1.1. Consider the Lewy hypersurface M in C
2
(z,w) defined by

Im w = |z|2, and consider the trivial deformation Ms = M for s ∈ R
k.

A biholomorphic map of (Ms, 0)s∈Rk to itself which is not algebraic is e.g.,
given by ϕ(s) = s, B(z, w, s) = (esz, e2sw).

The main point of this example is that one cannot expect a biholomor-
phism between two deformations to be algebraic. However, in Example 1.1,
all the “fibers” Ms of the deformations are the same. It is not difficult to
show, by using the mentioned result of [2], that the conclusion of Theo-
rem 1.1 holds when all the fibers of the deformation are algebraically equiv-
alent. One approach which has been successful for more general deformations
is to approximate a given biholomorphism by algebraic ones; Theorem 1.1
is a consequence of such an approximation statement.

Theorem 1.2. Let (Ms, p)s∈Rk and (Nt, p
′)t∈Rk be algebraic deformations

of real-algebraic holomorphically nondegenerate minimal CR submanifolds
of C

n, and assume that (B, ϕ) is a biholomorphism between (Ms, p)s∈Rk and
(Nt, p

′)t∈Rk . Then for every integer � > 0 there exists an algebraic biholo-
morphism (B�, ϕ�) between (Ms, p)s∈Rk and (Nt, p

′)t∈Rk which agrees with
(B, ϕ) up to order � at (p, 0).

Under the stronger hypothesis that (M0, p) is “finitely nondegenerate”,
Theorem 1.2 was proved by Baouendi et al. (see [7]). However, the weakening
of the nondegeneracy assumption makes it impossible to use their methods.

1By slight abuse of language, we shall always identify the map ϕ : (Rk, 0) →
(Rk, 0) with its complexification from (Ck, 0) to (Ck, 0).
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Let us restate our results in a more geometric fashion. For this, we use
the following notation. We say that two germs of real-algebraic CR subman-
ifolds (M, p) and (M ′, p′) of C

N are biholomorphically equivalent, and write
(M, p) ∼h (M ′, p′) if there exists a germ of a biholomorphism H : (CN , p) →
(CN , p′) and a neighborhood U of p in C

N such that H(M ∩ U) ⊂ M ′

(we shall abbreviate this by writing H(M) ⊂ M ′). We say that (M, p) and
(M ′, p′) are algebraically equivalent, and write (M, p) ∼a (M ′, p′), if there
exists such a biholomorphism which is furthermore algebraic.

Let us recall that if M ⊂ C
N is a real-algebraic CR submanifold, for

every q ∈ M there exists a unique germ of a real-algebraic submanifold Wq

through q with the property that every (small) piecewise differentiable curve
starting at q, whose tangent vectors are in the complex tangent space, has
its image contained in Wq (see [2]). Wq is referred to as the local CR orbit
of q. We shall say that (M, p) has constant orbit dimension if dimWq is
constant for q close by p. The geometric counterpart of Theorem 1.1 can
now be stated as follows.

Theorem 1.3. Let (M, p) be a germ of a holomorphically nondegenerate
real-algebraic CR submanifold, which is in addition of constant orbit dimen-
sion. Assume (M ′, p′) is a germ of a real-algebraic submanifold of C

N for
which (M, p) ∼h (M ′, p′). Then (M, p) ∼a (M ′, p′).

Also Theorem 1.3 is a consequence of an approximation theorem, which
can be stated as follows.

Theorem 1.4. Let (M, p) ⊂ C
N be a germ of a real-algebraic CR subman-

ifold which is holomorphically nondegenerate and of constant orbit dimen-
sion. Then for every real-algebraic CR submanifold M ′ ⊂ C

N and every pos-
itive integer �, if h : (CN , p) → C

N is the germ of a biholomorphic map sat-
isfying h(M) ⊂ M ′, there exists an algebraic biholomorphism h� : (CN , p) →
C

N satisfying h�(M) ⊂ M ′ which agrees with h up to order � at p.

Let us briefly recall why a CR submanifold of constant orbit dimension
is a deformation of its CR orbits: for a germ of a real-algebraic CR man-
ifold (M, p) which is of constant orbit dimension, there exists an integer
k ∈ {0, . . . , N} and a real-algebraic submersion S : (M, p) → (Rk, 0) such
that S−1(S(q)) = Wq =: MS(q) for all q ∈ M near p. The level sets of S
therefore foliate M by minimal real-algebraic CR submanifolds, and thus
M is an algebraic deformation of M0 (see [7] or Lemma 2.1). In addition,
a local biholomorphism sending two such real-algebraic CR submanifolds is
also a biholomorphism of the associated deformations, since CR orbits of the
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source manifold are mapped to CR orbits of the target manifold (see e.g., [3]).
On the other hand, given an algebraic deformation (Ms)s∈Rk of a mini-
mal, real-algebraic CR submanifold (M0, 0) ⊂ (Cn, 0), the manifold (M, 0) ⊂
(Cn+k, 0) defined by M = {(z, w) ∈ (Cn+k, 0) : z ∈ MRe w, Im w = 0} is a
real-algebraic CR submanifold of constant orbit dimension. Hence the state-
ments given by Theorem 1.2 and Theorem 1.4 are equivalent.

If one removes the assumption about holomorphic nondegeneracy in The-
orem 1.4, we can still show that the conclusion of the theorem holds if we
assume a certain “mild” form of holomorphic degeneracy. We shall say that
a point p in a real-analytic CR submanifold M ⊂ C

N is a regular point of the
holomorphic foliation on M if there exists an integer k ∈ {0, . . . , N − 1} and
a holomorphically nondegenerate real-analytic CR submanifold ̂M ⊂ C

N−k

such that (M, p) ∼h (̂M × C
k, 0). (This notion is motivated by the structure

of the holomorphic foliation arising in holomorphically degenerate CR sub-
manifolds, that is discussed in detail in Section 5). We have the following
result:

Theorem 1.5. Let M ⊂ C
N be a connected real-algebraic CR submanifold.

Then the following holds:

(i) The set of all points p ∈ M such that p is a regular point of the holo-
morphic foliation on M and (M, p) is of constant orbit dimension is
the complement of a closed proper real-algebraic subvariety ΣM of M .

(ii) For every point p ∈ M \ ΣM , for every real-algebraic CR submani-
fold M ′ ⊂ C

N and for every positive integer �, if h : (M, p) → M ′ is
the germ of a biholomorphic map satisfying h(M) ⊂ M ′, there exists
an algebraic biholomorphism h� : (M, p) → M ′ satisfying h�(M) ⊂ M ′

which agrees with h up to order � at p.

The proof of Theorem 1.4 is based on a careful study of some algebraic
properties of local biholomorphic mappings sending (nowhere minimal) real-
algebraic CR submanifolds into each other. Given (M, p) as in Theorem 1.4,
we may assume without loss of generality that p = 0 and that M is generic
in C

N . As already explained, M can be viewed as a deformation of its CR
orbits and therefore we identify M with a deformation (Ms)s∈Rk of a certain
minimal holomorphically nondegenerate real-algebraic generic submanifold
M0 ⊂ C

N−k
z passing through 0. The first step of the proof is to determine the

dependence of a given biholomorphic map h = h(z, u) with respect to the
“parameter” u ∈ C

k. Indeed, by the algebraicity theorem proved in [2], one
already knows that for every fixed s ∈ R

k small enough, the map z �→ h(z, s)
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is algebraic. We prove that there exists an integer m0 such the holomorphic
map (z, u) �→ h(z, u) depends algebraically on the functions z, u and H(u) :=
((∂γh)(0, u); |γ| ≤ m0). This kind of parameter dependence result can not
be obtained by using the techniques of [2, 7]. It is obtained as a combination
of some previous results of the second author [17, 18] and a key algebraic
property, Proposition 3.1, proved in Section 3.

Once Proposition 4.1 is combined with Proposition 3.1, one obtains a
system of (holomorphic) polynomial equations over C

N−k
z × C

k
u satisfied by

the mappings h and H. At this point one could apply Artin’s approxima-
tion theorem [1] to approximate (h,H) by algebraic mappings. However,
the sequence of algebraic mappings approximating h need not send M to
M ′. This problem is overcome by constructing another polynomial system
of real-algebraic equations over R

k fulfilled by the mapping H. An appli-
cation of a more refined version of Artin’s approximation theorem due to
Popescu [20] to the new polynomial system coupled with the first one (more
precisely to its restriction to R

N ) provides the desired conclusion.
To derive Theorem 1.5, one needs to study holomorphically degenerate

real-analytic CR manifolds and understand the structure of the holomorphic
foliation (with singularities) arising from the existence of holomorphic vector
fields tangent to them. This is done in Section 5 where we, in addition, show
that if the manifolds are algebraic, the holomorphic foliation is algebraic.

The paper is organized as follows. Section 3 is devoted to the proof of an
algebraic property for certain holomorphic mappings whose restriction on
a nowhere minimal real-algebraic CR manifold satisfy some special type of
polynomial identity. In Section 4, we prove the main approximation result of
the paper, Theorem 4.1; Theorems 1.1 and 1.2 to 1.4 are direct consequences
of this result. In Section 5, we recall several basic facts about the structure of
the holomorphic foliation (with singularities) on a (holomorphically degen-
erate) real-analytic CR submanifold M ⊂ C

N . If M is real-algebraic and
connected, we show that this foliation is algebraic; in particular, the sin-
gular locus of this foliation, which coincides with the complement of the
set of regular points of the foliation, is a closed proper real-algebraic sub-
variety of M . We then deduce in Section 6 Theorem 1.5 from Theorem 4.1
and the results of Section 5. The basic background on CR analysis needed
throughout the paper may be found e.g., in the books [3, 9].

2. Preliminaries and notation

We start by recalling some basic facts and introducing our notation.
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2.1. Algebraic functions and mappings

Throughout the paper, C{x} denotes the ring of convergent power series
with complex coefficients in the variables x = (x1, . . . , xr), r ≥ 1. The ring
C{x} can be identified with the ring of germs of holomorphic functions at
0 in C

r, and we shall do so freely. Given any convergent power series η =
η(x) ∈ C{x}, we denote by η̄ = η̄(x) the convergent power series obtained
from η by taking complex conjugates of its coefficients.

An element f ∈ C{x} is algebraic (or Nash) if it satisfies a nontrivial
polynomial identity with polynomial coefficients, i.e., if it is algebraic over
the subring C[x] ⊂ C{x}. We denote the subring of C{x} of all algebraic
power series by N{x}. To be completely explicit, this means that f ∈ N{x}
if f ∈ C{x} and there exist polynomials pj ∈ C[x] for j = 0, . . . , m with pm 
=
0 such that

m
∑

j=0

pj(x)f(x)j = 0.

Given nonnegative integers k and s, a germ of a holomorphic map (Ck, 0) →
C

s is algebraic if all of its components are algebraic. We also have to consider
the ring of germs at 0 in R

r of (complex-valued) real-algebraic functions.
This ring will be denoted by NR{x} and coincides with the ring of germs at
0 in R

r of (complex-valued) real-analytic functions whose complexification
belongs to N{x}.

2.2. CR orbits, normal coordinates and iterated Segre mappings

Let M ⊂ C
N be a real-analytic CR submanifold and T 0,1M its CR bundle.

We denote by GM the Lie algebra generated by the sections of T 0,1M and
its conjugate T 1,0M , and by GM (p) ⊂ CTpM the space of the evaluations at
p of these sections. By a theorem of Nagano (see e.g., [3, 8]), for every point
p ∈ M , there is a well-defined unique germ at p of a real-analytic submanifold
Wp satisfying CTqWp = GM (q) for all q ∈ Vp. This unique submanifold is
necessarily CR and called the local CR orbit of M at p. Note that this
definition coincides with the one given in the introduction using piecewise
differentiable curves running in complex tangential directions (see e.g., [3]).
Since M is real-analytic (resp. real-algebraic), it is easy to see that if M is
connected, the dimension of the local CR orbits is constant except possibly
on a closed proper real-analytic (resp. real-algebraic) subvariety Σ1

M of M
(see e.g., [6, 7]). If dimWp = dimM for some point p ∈ M , we say that M
is minimal (or also of finite type) at p.
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Let M be a generic real-algebraic submanifold of C
N of CR dimension

n and codimension d. We recall that a point p ∈ M is of constant orbit
dimension if it has an open neighborhood U in M such that dimWq is
constant for q ∈ U . In this case, one may describe the obtained algebraic
foliation by CR orbits in terms of normal coordinates as follows. First recall
that coordinates Z = (z, η) ∈ C

n × C
d are normal coordinates for (M, p) if

p = 0 and there exists a map Θ(z, χ, η) defined in a neighborhood of 0 ∈
C

2n+d and satisfying the normality conditions

(2.1) Θ(z, 0, η) = Θ(0, χ, η) = η,

such that M is given by η = Θ(z, z̄, η̄). The map Θ also satisfies the reality
condition

(2.2) Θ(z, χ, Θ̄(χ, z, η)) = η.

Lemma 2.1. ([6, Proposition 3.4] and [7, Lemma 3.4.1]). Let (M, p) ⊂
C

N be a germ of a generic real-algebraic submanifold which is of constant
orbit dimension at p, and denote by c ∈ {0, . . . , d} the codimension of the
CR orbits close by p in M . Then there exist normal algebraic coordinates
Z = (z, η) ∈ C

n × C
d, Z = (z, w, u) ∈ C

n × C
d−c × C

c, such that M is given
near the origin by an equation of the form

(2.3) η = (w, u) = Θ(z, z̄, η̄) := (Q(z, z̄, w̄, ū), ū),

where Q(z, χ, τ, u) is a C
d−c-valued algebraic map near 0 ∈ C

n+N . Further-
more, there exist neighborhoods U, V of the origin in R

c and C
N−c respec-

tively such that for every u ∈ U , the real-algebraic submanifold given by

(2.4) Mu := {(z, w) ∈ V : w = Q(z, z̄, w̄, u)}

is generic and minimal at 0.

A real-analytic submanifold M , given by η = Θ(z, z̄, η̄), can be “com-
plexified”; its complexification, which we denote by M, is the germ at 0 of
the complex submanifold of C

2N given by

(2.5) {(Z, ζ) ∈ (CN × C
N , 0) : σ = Θ̄(χ, z, η)},

where Z = (z, η) ∈ C
n × C

d and ζ = (χ, σ) ∈ C
n × C

d.
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In the whole paper, we always choose coordinates for our germ (M, p)
according to Lemma 2.1. We also need to recall the iterated Segre mappings
vj attached to (M, p) (see e.g., [6]), which we define as follows. First, to
simplify notation, for any positive integer j, we denote by tj a variable lying
in C

n and also introduce the variable t[j] := (t1, . . . , tj) ∈ C
nj . For j = 1, we

set v1(t1, u) := (t1, Θ(t1, 0, (0, u))) for t1 ∈ C
n and u ∈ C

c sufficiently close
to 0; for j > 1 we inductively define vj : (Cnj × C

c, 0) → C
N as follows:

(2.6) vj(t[j], u) := (tj , Θ(tj , v̄j−1(t[j−1], u))).

Define v0(u) := (0, u) ∈ C
N , so that (2.6) also holds for j = 1. From the

construction, each iterated Segre mapping vj defines an algebraic map in a
neighborhood of 0 in C

nj × C
c. From (2.2) one obtains the identities

(2.7) vj(0, u) = (0, u), vj+2(t[j+2], u)|tj+2=tj = vj(t[j], u), j ≥ 0.

Furthermore, for every j ≥ 1, the germ at 0 of the holomorphic map (vj , v̄j−1)
takes its values in M, where M is the complexification of M as defined
by (2.5).

3. A key algebraic property for holomorphic mappings

3.1. Statement of the algebraicity property

In this section, we assume that f : (CN , 0) → (CN ′
, 0), where N ≥ 2, N ′ ≥ 1,

is a germ of a holomorphic mapping and that (M, 0) ⊂ C
N is a germ of a

real-algebraic generic submanifold of CR dimension n and codimension d.
We also assume that 0 is a point of constant orbit dimension in M , and
that coordinates for (M, 0) have been chosen according to Lemma 2.1; M
denotes the complexification of M defined in Section 2.2. For every integer
�, we define the subring Rf

� of C{Z, ζ} to consist of power series which can
be written in the form

C(Z, ζ, (∂γ f̄(ζ))|γ|≤�),

for some C ∈ N{Z, ζ}[(Λγ)|γ|≤�], where for each γ ∈ N
N , Λγ ∈ C

N ′
. Let IM

be the ideal of C{Z, ζ} of those convergent power series that vanish on M.
Denote by C{M} the coordinate ring of M, i.e., quotient ring C{Z, ζ}/IM
and let πM : C{Z, ζ} → C{M} be the natural projection. We identify a
convergent power series J(Z) or L(ζ) with its image in C{M} via πM (πM is
injective on C{Z} since M is assumed to be generic). Define Sf

� := πM(Rf
� ).
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We now say that f satisfies assumption (♣), if there exists a positive integer
�0 such that each component of the power series mapping f (considered as
an element of the ring C{M}) is algebraic over the quotient field of Sf

�0
. To

be more concrete, this means that

(♣) there exists an integer �0, integers k1, . . . , kN ′ , and a family of algebraic
power series δr,s = δr,s

(

Z, ζ, (Λγ)|γ|≤�0

) ∈ N{Z, ζ}[(Λγ)|γ|≤�0 ], r ∈
{1, . . . , ks}, s = 1, . . . , N ′, such that

(3.1)
ks

∑

r=0

δr,s

(

Z, ζ, (∂γ f̄(ζ))|γ|≤�0

)

(fs(Z))r = 0

holds for (Z, ζ) ∈ M near the origin, with δks,s

(

Z, ζ, (∂γ f̄(ζ))|γ|≤�0

) 
≡
0 on M.

Our goal in this section is to prove that if (♣) is fulfilled, then the mapping
f is necessarily algebraic over a certain field of convergent power series that
are partially algebraic. To be more precise, we need to define the following
rings.

Definition 3.1. Let (z, w, u) ∈ C
n × C

d−c × C
c be our fixed chosen nor-

mal coordinates. For every nonnegative integer �, let Af
� be the subring of

C{z, w, u} consisting of those convergent power series T = T (z, w, u) which
can be written in the form A(z, w, u, (∂|α|f(0, u))|α|≤�) for some
A(z, w, u, (Λα)|α|≤�) ∈ N{z, w, u}[(Λα)|α|≤�]. We furthermore consider the
ring Af defined by

(3.2) Af :=
∞
⋃

j=0

Af
j .

Note that the rings Af
� depend on the (fixed) choice of normal coordi-

nates. We can now state the main result of this section.

Proposition 3.1. Let (M, 0) ⊂ C
N be a real-algebraic generic submanifold

which is of constant orbit dimension at 0, and f : (CN , 0) → (CN ′
, 0) be a

germ of a holomorphic mapping. If f satisfies (♣), then each component of
the mapping f is algebraic over the quotient field of Af .

The rest of this section is devoted to the proof of Proposition 3.1.
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3.2. Algebraic dependence over quotient fields of certain rings

The first step in the proof of Proposition 3.1 is given by the following lemma.
Its proof is very similar to the proof of [18, Proposition 5.2].

Lemma 3.1. Let M, f be as in Proposition 3.1. Then, for every multiindex
μ ∈ N

N , each component of the mapping ∂μf is algebraic over the quotient
field of Sf

�0+|μ|.

Proof. For μ = 0, this is the content of assumption (♣). Differentiating (3.1)
once, each first-order derivative of each component of the mapping f is alge-
braic over the quotient field of the subring of C{M} generated by f and
Sf

�0+1 (this follows from the chain rule; see [18, Proposition 5.2] for exactly
similar arguments). Since (each component of) the mapping f is already
algebraic over the quotient field of Sf

�0
⊂ Sf

�0+1, this proves the proposition
for all multiindices μ of length one. The conclusion for multiindices of arbi-
trary length follows in the same way by induction. �

3.3. Iterated Segre mappings and associated rings

Our next step is to use the iterated Segre mappings as introduced in Sec-
tion 2.2. For this, we need to introduce even more subrings. Let j be a
nonnegative integer. Recall that tj denotes a variable lying in C

n and t[j]

stands for (t1, . . . , tj). For every such j and every integer �, we let B̄f
j,� be

the subring of C{t[j+1], u} consisting of the convergent power series of the
form

K(t[j+1], u, ((∂|α|f̄) ◦ v̄j(t[j], u))|α|≤�),

for some K ∈ N{t[j+1], u}[(Λα)|α|≤�]. Similarly to before, we also set

(3.3) B̄f
j := ∪∞

�=0B̄f
j,�,

For every integer �, define also the ring D̄f
j,� to be the subring of

C{t[j+1], u} consisting of those power series of the form

A(t[j+1], u, ((∂|α|f̄)(0, u))|α|≤�),

for some A ∈ N{t[j+1], u}[(Λα)|α|≤�] and we also set D̄f
j := ∪∞

�=0D̄f
j,�.
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Analogously, define the ring Df
j,� as the subring of C{t[j+1], u} consisting

of the power series of the form

R(t[j+1], u, ((∂|α|f)(0, u))|α|≤�),

for some R ∈ N{t[j+1], u}[(Λα)|α|≤�] and set Df
j := ∪∞

�=0Df
j,�.

Our next step is to prove the following result.

Lemma 3.2. Let M, f be as in Proposition 3.1. With the above notation,
for every multiindex μ ∈ N

N and every integer j, each component of the
mapping (∂μf) ◦ vj+1 is algebraic over the quotient field of B̄f

j .

In order to prove Lemma 3.2, we need the following lemma which is a
kind of “step-down” procedure for algebraicity over the rings B̄f

j+1; it can
be seen as an adaptation of [18, Lemma 5.4] to our situation.

Lemma 3.3. Assume that we are in the setting of Lemma 3.2, and let j
be a positive integer. Assume that g : (CN , 0) → C is a holomorphic function
such that g ◦ vj+2 is algebraic over the quotient field of B̄f

j+1. Then g ◦ vj is
algebraic over the quotient field of B̄f

j−1.

In what follows, to shorten the notation, we write vj instead of vj(t[j], u).

Proof of Lemma 3.3. By assumption, there exist positive integers e and �,
and a family of power series δr ∈ N{t[j+2], u}[(Λα)|α|≤�], r = 0, . . . , e, such
that

(3.4)
e

∑

r=0

δr

(

t[j+2], u, ((∂|α|f̄) ◦ v̄j+1)|α|≤�

)

(g ◦ vj+2)r = 0,

with δe(t[j+2], u, ((∂|α|f̄) ◦ v̄j+1)|α|≤�) 
≡ 0. Let ν ∈ N
n be a multiindex of

minimal length with respect to the property that there exists r ∈ {1, . . . , e}
satisfying

∂|ν|

∂(tj+2)ν

[

δr

(

t[j+2], u, ((∂|α|f̄) ◦ v̄j+1)|α|≤�

)]

∣

∣

∣

∣

tj+2=tj


≡ 0.

Applying ∂|ν|

∂(tj+2)ν to (3.4), evaluating for tj+2 = tj , and using the second
identity in (2.7), we obtain that

(3.5)
e

∑

r=0

∂|ν|

∂(tj+2)ν

[

δr

(

t[j+2], u, ((∂|α|f̄) ◦ v̄j+1)|α|≤�

)]

∣

∣

∣

∣

tj+2=tj

(g ◦ vj)r = 0.
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We write

˜δr(t[j+1], u, ((∂|α|f̄) ◦ v̄j+1)|α|≤�))

(3.6) :=
∂|ν|

∂(tj+2)ν

[

δr

(

t[j+2], u, ((∂|α|f̄) ◦ v̄j+1)|α|≤�

)]

∣

∣

∣

∣

tj+2=tj

,

and observe that by our choice of ν, there exists r̃ ∈ {1, . . . , e} such that

˜δr

(

t[j+1], u, ((∂|α|f̄) ◦ v̄j+1)|α|≤�)
)


≡ 0.

Hence, if we choose β ∈ N
n such that

∂|β|

∂(tj+1)β

[

˜δr

(

t[j+1], u, ((∂|α|f̄) ◦ v̄j+1)|α|≤�)
)]

tj+1=tj−1

≡ 0,

and for 0 ≤ r ≤ e write

̂δr :=
∂|β|

∂(tj+1)β

[

˜δr

(

t[j+1], u, ((∂|α|f̄) ◦ v̄j+1)|α|≤�)
)]

∣

∣

∣

∣

tj+1=tj−1

,

we see that each ̂δr ∈ B̄f
j−1,�+|β| and that the nontrivial relation

e
∑

r=0

̂δr(g ◦ vj)r = 0

provides the desired result. The proof of the lemma is complete. �
Proof of Lemma 3.2. By Lemma 3.1, for every multiindex μ and every inte-
ger s ∈ {1, . . . , N ′}, there exists an integer e(μ, s), a family of power series
Δμ

r,s

(

Z, ζ, (Λγ)|γ|≤�0+|μ|
) ∈ N{Z, ζ}[(Λγ)|γ|≤�0+|μ|], r ∈ {0, . . . , e(μ, s)}, such

that for all (Z, ζ) ∈ M (near the origin)

(3.7)
e(μ,s)
∑

r=0

Δμ
r,s

(

Z, ζ, (∂γ f̄(ζ))|γ|≤�0+|μ|
)

(∂μfs(Z))r = 0

with

(3.8) Δμ
e(μ,s),s

(

Z, ζ, (∂γ f̄(ζ))|γ|≤�0+|μ|
) 
≡ 0 on M,

and where �0 is given by condition (♣). For every integer j, the algebraic
map (vj+1, v̄j) takes its values in M and therefore, from (3.7), we have the
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following identities

(3.9)
e(μ,s)
∑

r=0

Δμ
r,s

(

vj+1, v̄j , ((∂γ f̄) ◦ v̄j)|γ|≤�0+|μ|
)

((∂μfs) ◦ vj+1)
r = 0.

In order to see that (3.9) implies that (∂μf) ◦ vj+1 is algebraic over the
quotient field of B̄f

j for all j ≥ 0, we note that by Lemma 3.3 it is enough to
check this for all j ≥ d + 1. Now, if j ≥ d + 1, we claim that the map

(Cn(j+1) × C
c, 0) � (t[j+1], u) �→ (vj+1(t[j+1], u), v̄j(t[j], u)),

which takes values in M, has generic rank N + n = dimM; from this we
conclude that for these j, by (3.8), the relation (3.9) is nontrivial.

We now turn to the proof of this last claim, which is a consequence of
the finite type criterion in [2]. Let M0 be the real-algebraic generic sub-
manifold given by (2.4). Since M0 is of finite type, by the finite type crite-
rion in [2], the map (Cn(d+1), 0) � t[d+1] �→ vd+1(t[d+1], 0) is of generic rank
n + d − c, where d, c are as in Lemma 2.1. Therefore, for any j ≥ d + 1,
the mapping (Cnj × C

c, 0) � (t[j], u) �→ vj(t[j], u) is of generic rank n + d −
c + c =N . Hence for all such j’s, the generic rank of the mapping (Cn(j+1) ×
C

c, 0) � (t[j+1], u) �→ (vj+1(t[j+1], u), v̄j(t[j], u)) is equal to N + n = dimM.
The proof of Lemma 3.2 is complete. �

3.4. Proof of Proposition 3.1

An application of Lemma 3.2 for j = 0 yields that for all multiindices μ ∈
N

N , each component of the mapping ∂μf ◦ v1 is algebraic over the quotient
field of B̄f

0 = D̄f
0 . which coincides with the quotient field of D̄f

0 since = B̄f
0 .

Therefore, the conjugate mapping ∂μf̄ ◦ v̄1 is algebraic over the quotient
field of Df

0 ; since for all ν ∈ N
N , each component of the mapping ∂νf ◦ v2 is

algebraic over the quotient field of B̄f
1 by Lemma 3.2, the transitivity of being

algebraic implies that each component of the mapping ∂νf ◦ v2 is algebraic
over the quotient field of Df

1 . Proceeding inductively, we see that for every
multiindex β ∈ N

N and every even integer j, the components of the map
∂βf ◦ vj are all algebraic over the quotient field of Df

j−1 and for every odd
integer j the same algebraicity property holds over the quotient field of D̄f

j−1.
Hence for j = 2(d + 1), there exists positive integers b, e, convergent power
series Ψν ∈ N{t[2(d+1)], u}[(Λγ)|γ|≤b], ν ∈ {0, . . . , e}, such that a nontrivial
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relation of the following form
(3.10)

e
∑

ν=0

Ψν

(

t[2(d+1)], u, ((∂γf)(0, u))|γ|≤b)
)

(f ◦ v2(d+1)(t
[2(d+1)], u))ν = 0

holds for all (t[2(d+1)], u) sufficiently close to the origin.
In order to see that (3.10) implies that each component of f is alge-

braic over the quotient field of Af , we need to invert the map v2(d+1).
By the minimality criterion given in [2, 3], there exists points arbitrarily
close to the origin in C

2(d+1)n such that t[2(d+1)] �→ v2(d+1)(t[2(d+1)], 0) is of
rank N − c at those points with image the origin in C

N . Pick a point T 0 ∈
C

2(d+1)n with the above property and such that (3.10) holds near (T 0, 0) ∈
C

2(d+1)n × C
c. From the rank theorem, there exists an algebraic mapping

θ : (CN , 0) → (CN−c, T 0) such that v2(d+1)(θ(z, w, u), u) = (z, w, u). Com-
posing (3.10) with the obtained left inverse for v2(d+1), we obtain an identity
of the following form

(3.11)
e

∑

ν=0

Ψν

(

θ(z, w, u), u, ((∂γf)(0, u))|γ|≤b)
)

(f(z, w, u))ν = 0,

for (z, w, u) ∈ C
N sufficiently close to the origin. Furthermore, it is not dif-

ficult to see that it is possible to choose the mapping θ so that the obtained
relation (3.11) is still nontrivial. Hence (3.11) shows that f is algebraic over
the quotient field of Af . This finishes the proof of Proposition 3.1.

4. Proof of Theorems 1.1 and 1.2 to 1.4

The goal of this section is to prove the following approximation theorem;
Theorem 1.4 (and therefore also Theorems 1.1, 1.2, 1.3) are a direct conse-
quence of this more general theorem, from which we will also deduce Theo-
rem 1.5 in Section 6.

Theorem 4.1. Let (M, p) ⊂ C
N be a germ of a holomorphically nondegen-

erate real-algebraic generic submanifold, which is of constant orbit dimen-
sion at p. Assume that M ′ ⊂ C

N is a real-algebraic generic submanifold,
and that h : (CN , p) → C

N is a germ of a holomorphic map with h(M) ⊂ M ′

and Jac h 
≡ 0. Then for every positive integer �, there exists a germ of an
algebraic mapping h� : (CN , p) → C

N satisfying h�(M) ⊂ M ′ and that agrees
with h at p up to order �.
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In order to prove Theorem 4.1, we assume without loss of generality
that p = 0, p′ = h(p) = 0, and that normal coordinates Z = (z, w, u) have
been chosen for M near 0 as in Lemma 2.1. We let h : (CN , 0) → (CN , 0)
be a germ of a holomorphic map of generic full rank as in the statement of
Theorem 4.1. We will need the following result from [18] that follows from
an inspection of the proof of [18, Proposition 4.6].

Proposition 4.1. Let M , M ′ and h be as above. Then the mapping h
satisfies assumption (♣) given in Section 3.

Combining Proposition 4.1 and Proposition 3.1 we get that each com-
ponent of the mapping h is algebraic over the quotient field of the ring Ah

defined in Definition 3.1, i.e., there exists an integer m0 and, for every inte-
ger s ∈ {1, . . . , N}, an integer ks, and a family of convergent power series
Pr,s(Z, (Λα)|α|≤m0

) ∈ N{Z}[(Λα)|α|≤m0
], 0 ≤ r ≤ ks, such that

(4.1)
ks

∑

r=0

Pr,s(Z, (∂|α|h(0, u))|α|≤m0
)(hs(Z))r = 0,

with

(4.2) Pks,s(Z, (∂|α|h(0, u))|α|≤m0
) 
≡ 0.

For ease of notation, we write H(u) := (∂|α|h(0, u))|α|≤m0
. Note that

(4.1) simply means that the convergent power series mapping (h,H) satisfies
a certain polynomial system with algebraic coefficients; however, solutions
of this system need not necessarily give rise to holomorphic mappings send-
ing (M, 0) to (M ′, 0). The goal of the subsequent paragraphs is to build up
an additional system of polynomial equations with real-algebraic coefficients
satisfied by the mapping H that will allow us to approximate the mapping
h by algebraic mappings in the Krull topology.

4.1. Construction of an appropriate system of
polynomial equations

In what follows, we use the following notation to denote coordinates on
jet spaces: with m0 as given above, we write Λ = (Λα)|α|≤m0

where each
Λα ∈ C

N for α ∈ N
N . Similarly, we write Γ = (Γα)|α|≤m0

with Γα ∈ C
N . Let

us also recall that coordinates in the source space C
N split as Z = (z, w, u) ∈

C
n × C

d−c × C
c and similarly for ζ ∈ C

N , where we write ζ = (χ, τ, v) ∈
C

n × C
d−c × C

c.
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The following lemma will allow us to construct a suitable system of poly-
nomial equations satisfied by the power series H(u). Its proof is analogous
to that of [16, Lemma 6.2].

Lemma 4.1. For every real-valued polynomial r′ = r′(Z ′, Z̄ ′), Z ′ ∈ C
N ,

there exists a nontrivial polynomial

K = K(Z, ζ,Λ, Γ; X) =
δ

∑

ν=0

Bν(Z, ζ,Λ, Γ)Xν ∈ N{Z, ζ}[Λ, Γ][X]

with the following properties:

(i) Bδ(Z, ζ,H(u), H̄(v)) 
≡ 0 for (Z, ζ) ∈ M near the origin.

(ii) for every pair of convergent power series mappings S(u) =
(Sα(u))|α|≤m0

and F (Z) = (F1(Z), . . . , FN (Z)) which satisfies

(4.3)
ks

∑

r=0

Pr,s(Z, S(u))(Fs(Z))r = 0

for every s ∈ {1, . . . , N}, with

(4.4) Pks,s(Z, S(u)) 
≡ 0,

we have that

(4.5) K(Z, ζ, S(u), S̄(v); r′(F (Z), F̄ (ζ))) ≡ 0,

for (Z, ζ) ∈ C
2N sufficiently close to the origin.

Proof. For every s ∈ {1, . . . , N}, denote by Ts and Ys new indeterminates
and consider

(4.6) Qs(Z, Λ; Ts) :=
ks

∑

r=0

Pr,s(Z, Λ)T r
s , Rs(ζ, Γ; Ys) :=

ks
∑

r=0

P̄r,s(ζ, Γ)Y r
s .

Qs and Rs are polynomials with algebraic coefficients. Let Δ be a sufficiently
small polydisc in C

N centered at the origin so that each Pr,s is holomorphic
in Δ × C

κ, where κ := NCard {α ∈ N
N : |α| ≤ m0}. For each s = 1, . . . , N ,

denote by Ls (resp. L̄s) the zero set of Pks,s (resp. P̄ks,s) in Δ × C
κ and let

E := ∪N
s=1(Ls ∪ L̄s). For every (Z, Λ) ∈ (Δ × C

κ) \ E, every (ζ, Γ) ∈ (Δ ×
C

κ) \ E and every s ∈ {1, . . . , N}, denote by σ
(s)
1 (Z, Λ), . . . , σ(s)

ks
(Z, Λ) the ks
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roots of the polynomial Qs (viewed as a polynomial in Ts). Hence, for every
(ζ, Γ) ∈ (Δ × C

κ) \ E and every s ∈ {1, . . . , N}, σ̄
(s)
1 (ζ, Γ), . . . , σ̄(s)

ks
(ζ, Γ) are

the ks roots of the polynomial Rs.
As in [16, Lemma 6.2], consider for (Z, Λ) ∈ (Δ × C

κ) \ E and (ζ, Γ) ∈
(Δ × C

κ) \ E the following polynomial in X

(4.7) W (Z, ζ,Λ, Γ; X) :=
∏

1≤lj≤kj

1≤nj≤Nj

(

X − r′
(

σ(1)
n1

(Z, Λ), . . . , σ(N)
nN

(Z, Λ), σ(1)
l1

(ζ, Γ), . . . , σ(N)
lN

(ζ, Γ)
)

)

.

By Newton’s theorem on symmetric polynomials, it follows that (4.7)
can be rewritten as

(4.8) W (Z, ζ,Λ, Γ; X) = Xδ +
∑

ν<δ

Aν(Z, Λ, ζ, Γ)Xν ,

where δ :=
∏N

j=1 k2
i and where Aν is of the following form

(4.9) Aν(Z, ζ,Λ, Γ) := Cν

⎛

⎝

(

Pr,s(Z, Λ)
Pks,s(Z, Λ)

,
P̄r,s(ζ, Γ)
P̄ks,s(ζ, Γ)

)

1≤r≤ks

1≤s≤N

⎞

⎠ ,

where each Cν is a polynomial of its arguments depending only on r′. Let

(4.10) I(Z, Λ, Λ, Γ) :=
N
∏

s=1

Pks,s(Z, Λ)Pks,s(ζ, Γ).

For a suitable integer �, K(Z, ζ,Λ, Γ; X) := I� · W ∈ N{Z, ζ}[Λ, Γ][X]. We
claim that the obtained polynomial K satisfies all desired properties. The
construction of the polynomial K implies (ii). To prove statement (i), we
note that the term Bδ is a sufficiently high power of the function I defined
in (4.10). Hence if Bδ(Z, ζ,H(u), H̄(v)) ≡ 0 for (Z, ζ) ∈ M near 0, then there
exists s ∈ {1, . . . , N} such that either Pks,s(Z,H(u)) ≡ 0 for Z ∈ C

N close
to 0, or P̄ks,s(ζ, H̄(v)) ≡ 0 for ζ ∈ C

N close to 0, which is not the case by
(4.2). The proof of Lemma 4.1 is complete. �

Next, since M ′ is a real-algebraic generic submanifold of codimension
d through the origin, we may choose d real-valued polynomials (r′1, . . . , r′d)
such that M ′ is given near the origin by the zero set of these d polynomi-
als. Applying Lemma 4.1 for each polynomial r′j , j = 0, . . . , d, we obtain a
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corresponding polynomial

Kj(Z, ζ,Λ, Γ; X) :=
δj

∑

ν=0

Bj
νX

ν

with each Bj
ν(Z, ζ,Λ, Γ) ∈ N{Z, ζ}[Λ, Γ][X], 1 ≤ ν ≤ δj .

For every j ∈ {1, . . . , d}, define

(4.11) νj
0 = min{ν ∈ {0, . . . , δj} : Bj

ν(Z, ζ,H(u), H̄(v)) 
≡ 0 on M near 0}.

Since each polynomial Kj satisfies conclusion (i) of Lemma 4.1, we know that
such a νj

0 exists (it can be shown that each νj
0 > 0 but this is not needed in

what follows).
Using Lemma 2.1, we choose a real-algebraic parameterization

(R2N−d−c × R
c, 0) � (y, u) �→ ϕ(y, u) ∈ C

N of M near 0 which satisfies that
for each fixed u ∈ R

c sufficiently close to the origin, the mapping
(R2N−d−c, 0) � y �→ ϕ(y, u) parameterizes the manifold Mu as defined in
(2.4) near the origin. Hence for all (y, u) ∈ R

2N−d−c × R
c sufficiently close

to the origin, we have
(4.12)

Bj
ν(ϕ(y, u), ϕ(y, u),H(u),H(u)) = 0, j = 0, . . . , d, ν = 0, . . . , νj

0 − 1.

For every j ∈ {0, . . . , d}, for every ν < νj
0, and for every multiindex γ ∈

N
2N−d−c, define

(4.13)

Θj
γ,ν(u, Λ, Λ) :=

∂|γ|

∂yγ

[

Bj
ν

(

ϕ(y, u), ϕ(y, u), Λ, Λ
)]

∣

∣

∣

∣

y=0

∈ NR{u}[Λ, Λ].

Since the ring NR{u}[Λ, Λ] is noetherian, there exists an integer n0 such
that the ideal generated by the Θj

γ,ν(u, Λ, Λ) for γ ∈ N
2N−d−c, ν < νj

0, j ∈
{0, . . . , d} coincides with that generated by the Θj

γ,ν(u, Λ, Λ) for |γ| ≤ n0,
ν < νj

0, j ∈ {0, . . . , d}. We observe that by the construction of the mappings
Θj

γ,ν the following lemma holds.

Lemma 4.2. For γ ∈ N
2N−d−c, ν < νj

0, j ∈ {0, . . . , d}, let Θj
γ,ν be defined

as above. Then if (Rc, 0) � u �→ S(u) ∈ C
κ is the germ of a real-analytic

mapping satisfying

Θj
γ,ν(u, S(u), S(u)) = 0
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for u ∈ R
c close to the origin and |γ| ≤ n0, ν < νj

0, j ∈ {0, . . . , d}, then S
satisfies

Bj
ν(Z, Z, S(u), S(u)) = 0, ν = 0, . . . νj

0 − 1, j = 0, . . . , d,

for all Z = (z, w, u) ∈ M sufficiently close to the origin.

We can now define the crucial system of complex-valued real-analytic
equations near the origin in R

n
x × R

d−c
t × R

c
u to carry out the approximation:

(4.14)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ks
∑

r=0

Pr,s(x, t, u, Λ) T r
s = 0, s = 1, . . . , N

Θj
γ,ν(u, Λ, Λ) = 0, |γ| ≤ n0, ν < νj

0, j ∈ {0, . . . , d}.

This system is obviously polynomial in T = (T1, . . . , TN ) and (Λ, Λ) with
coefficients that are real-algebraic functions in R

N . Furthermore, using (4.1)
to (4.13), we know that

T = (T1, . . . , TN ) = (h1(x, t, u), . . . , hN (x, t, u)) = h(x, t, u),

Λ = H(u) = (∂|α|h(0, u))|α|≤m0

is a complex-valued real-analytic solution of system (4.14).

4.2. Appropriate solutions of the system and end of the
proof of Theorem 4.1

At this point, the next natural step would be to apply an approximation
theorem due to Artin [1] providing, for every integer �, complex-valued real-
algebraic solutions h�(x, t, u) and W �(x, t, u) of system (4.14), that agree up
to order � at the origin with the mappings h(x, t, u) and H(u), respectively.
This strategy is not sufficient because in order to show that the complex-
ification of the obtained mappings h� sends a neighborhood of 0 in M to
M ′, we need the mappings W � to be independent of (x, t) (as is the case
for the original solution). The question whether this kind of approximation
is possible actually dates back to Artin’s paper [1]; it became known as the
“subring condition”. A positive answer in the algebraic case has been pro-
vided by Popescu [20], and this theorem allows us to get solution mappings
W � which depend only on u. We shall only state a version of Popescu’s
theorem needed for the purpose of this paper.
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Theorem 4.2. (Popescu [20]) Let (ω, ξ) ∈ R
k × R

q, k, q ≥ 1, and a polyno-
mial mapping Φ(X, Y ) = (Φ1(X, Y ), . . . ,Φr(X, Y )) with Φj(X, Y ) ∈
NR{ω, ξ}[X, Y ] for j = 1, . . . , r, X = (X1, . . . , Xp), Y = (Y1, . . . , Ym). Sup-
pose that there exists formal power series mappings x(ω) ∈
(R[[ω]])p, y(ω, ξ) ∈ (R[[ω, ξ]])m safisfying Φ(x, y) = 0. Then for every inte-
ger �, there exists x� ∈ (NR{ω})p, y� ∈ (NR{ω, ξ})m satisfying Φ(x�, y�) = 0
such that x� and y� agree at 0 up to order � with x and y respectively.

Remark 4.1. The fact that the system of polynomial equations has alge-
braic coefficients in the above result is of fundamental importance. Indeed,
the analogous statement for polynomial systems with analytic coefficients
does not hold in general, as a well-known example due to Gabrielov [10]
shows.

Applying Theorem 4.2 to the real equations associated to the system
of polynomial equations given by (4.14), we obtain, for every positive inte-
ger �, a real-analytic C

N -valued algebraic mapping h� = h�(x, t, u) and a
real-analytic C

κ-valued algebraic mapping W � = W �(u), both defined in a
neighborhood of 0 ∈ R

N (depending on �) and agreeing with h(x, t, u) and
H(u) up to order � at 0 respectively. We complexify the mappings h� and
W � without changing the notation. Since each mapping h� = h�(Z) is alge-
braic and agrees with the mapping h = h(Z) up to order � at 0, the proof
of Theorem 4.1 is completed by the following lemma.

Lemma 4.3. In the above setting and with the above notation, for � suffi-
ciently large, the holomorphic map h� sends a neighborhood of 0 in M to M ′.

Proof of Lemma 4.3. Recall first that (r′1, . . . , r′d) are d real-valued polyno-
mials such that M is given near the origin by the zero set of these d poly-
nomials. Suppose, by contradiction, that the conclusion of the lemma does
not hold. Considering a subsequence if necessary, we may assume, without
loss of generality, that for every integer �,

(4.15) r′1(h
�(Z), h�(ζ)) 
≡ 0, (Z, ζ) ∈ M, near 0.

Let

(4.16) K1(Z, ζ,Λ, Γ; X) =
δ1

∑

ν=0

B1
ν(Z, ζ,Λ, Γ)Xν

be the polynomial given by Lemma 4.1 associated to the real polynomial r′1.
Since (h�, W �) satisfies the system of equations (4.14) for every integer �, we
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have for all Z ∈ C
N sufficiently close to the origin

ks
∑

r=0

Pr,s(Z, W �(u)) (h�
s(Z))r = 0, s = 1, . . . , N.

Since K1 satisfies property (ii) of Lemma 4.1, we therefore obtain

(4.17) K1(Z, ζ, W �(u), W �(v); r′1(h
�(Z), h�(ζ))) ≡ 0,

for (Z, ζ) ∈ C
2N close to the origin. In what follows, we shall restrict (4.17) to

the complexification M. Since W � satisfies the second equation of the system
(4.14), Lemma 4.2 implies that B1

ν(Z, Z, W �(u), W �(u)) = 0, for 0 ≤ ν < ν1
0 ,

and for all Z = (z, w, u) ∈ M sufficiently close to the origin. Equivalently,
we have for (Z, ζ) ∈ M near 0

(4.18) B1
ν(Z, ζ, W �(u), W �(v)) = 0, 0 ≤ ν < ν1

0 .

Hence (4.16) to (4.18) imply that
(4.19)

δ1
∑

ν=ν1
0

B1
ν(Z, ζ, W �(u), W �(v))

(

r′1(h
�(Z), h�(ζ))

)ν

= 0, (Z, ζ) ∈ M, near 0.

Using (4.15), (4.19) yields that for (Z, ζ) ∈ M sufficiently close to 0,

− B1
ν1
0
(Z, ζ, W �(u), W �(v))

(4.20) =
δ1

∑

ν=ν1
0+1

B1
ν(Z, ζ, W �(Z), W �(ζ))

(

r′1(h
�(Z), h�(ζ))

)ν−ν1
0

.

Since h sends a neighborhood of M to M ′ and since, for every integer �, the
mapping h� agrees with h up to order � at 0, it follows that r′1(h�(Z), h�(ζ))|M
vanishes at least to order � at the origin. Hence from (4.20), the same prop-
erty holds for B1

ν1
0
(Z, ζ, W �(u), W �(v))|M. But also W � agrees with H up to

order � at the origin, so for every integer �, the germ at 0 of the holomor-
phic function B1

ν1
0
(Z, ζ,H(u),H(v))|M vanishes at least up to order �. As a

consequence,

B1
ν1
0
(Z, ζ,H(u),H(v)) ≡ 0, for (Z, ζ) ∈ M near 0,

which contradicts the definition of ν1
0 by (4.11). This completes the proof of

Lemma 4.3 and therefore the proof of Theorem 4.1. �
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5. Holomorphic foliations in CR manifolds

The main goal of this section is to study the holomorphic foliation (with
singularities) arising from the existence of holomorphic vector fields tangent
to a real-analytic (resp. real-algebraic) CR submanifold in complex space.
The main result of this section is given by Proposition 5.2 and shows that
the holomorphic foliation of a real-algebraic holomorphically degenerate CR
submanifold of C

N is in fact algebraic. The results of this section will be
used to derive Theorem 1.5 from Theorem 4.1 in Section 6.

5.1. The real-analytic case

Let M ⊂ C
N be a real-analytic generic submanifold of CR dimension n and

codimension d so that N = n + d ≥ 2. In what follows, for a point p ∈ C
N ,

we denote by Op the ring of germs of holomorphic functions at p and by
Mp its quotient field of meromorphic functions at p; these are the stalks
of the sheaf of holomorphic (resp. meromorphic) functions, which we will
accordingly denote by O and M, respectively.

A holomorphic (resp. meromorphic) vector field on an open set U ⊂ C
N

is a holomorphic (resp. meromorphic) section of T (1,0)
C

N over U , i.e., an
expression of the form

X =
N

∑

j=1

aj(Z)
∂

∂Zj
, aj ∈ O(U) (M(U) respectively).

Again the stalks of these sheaves at p ∈ C
N , i.e., expressions of the form

X =
N

∑

j=1

aj(Z)
∂

∂Zj
, aj ∈ Op (Mp respectively),

will be referred to as germs of holomorphic (respectively meromorphic) vec-
tor fields. We identify the sheaf of holomorphic (resp. meromorphic) vector
fields with O

N (MN , respectively), and the germs of holomorphic (resp.
meromorphic) vector fields at a point p ∈ C

N with (Op)N (resp. (Mp)N ).
For p ∈ M , let Tp (resp. Sp) be the set of all germs at p of holomor-

phic (resp. meromorphic) vector fields that are tangent to M . Tp is an Op-
submodule of the free module (Op)N ; Sp carries the structure of a finite
dimensional vector space over Mp. As in [5], for all p ∈ M , define

(5.1) λM (p) := dimMp
Sp ∈ {0, . . . , N − 1}.
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We recall from [5, Section 4] a known characterization of λM (p) through
local coordinates. For an arbitrary point p ∈ M we may choose (see e.g., [3])
local holomorphic coordinates Z = (z, η) ∈ C

n × C
d, vanishing at p, such

that M is given near the origin by a vector-valued equation of the form

(5.2) η = Θ(z, z̄, η̄),

where Θ = Θ(z, χ, σ) is a C
d-valued holomorphic map near 0 satisfying the

reality condition

(5.3) Θ(z, χ, Θ̄(χ, z, η)) ≡ η,

and

(5.4) Θ(z, 0, η) = Θ(0, χ, η) = η;

such coordinates are commonly referred to as normal coordinates for M at
p. If M is furthermore assumed to be real-algebraic, we may choose these
local holomorphic coordinates as well as the mapping Θ to be algebraic.

Recall also that such a choice of normal coordinates can be made for
points q ∈ M nearby p in such a way that the mapping Θ depends real-
analytically on q (and real-algebraically if M is real-algebraic, see [3]). We
expand the mapping Θ̄ into a Taylor series as follows:

(5.5) Θ̄(χ, z, η) :=
∑

β∈Nn

Θ̄β(z, η)χβ .

In what follows, we keep the above notation and choice of coordinates for
a given fixed point p ∈ M . We also write the coordinates Z = (Z1, . . . , ZN ).
We need to recall the following slight generalization of a known criterion
(see e.g., [5, Lemma 4.5]).

Lemma 5.1. In the above setting, the followings holds :

(i) a germ of a holomorphic vector field X =
∑N

j=1 aj(Z) ∂
∂Zj

with aj ∈ O0

is tangent to M if and only if

(5.6)
N

∑

j=1

aj(Z)
∂Θ̄β

∂Zj
(Z) ≡ 0, for all β ∈ N

n;

the same holds for germs of meromorphic vector fields with O0 replaced
by M0.
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(ii) there exists a neighborhood U of 0 in C
N such that for every point

q ∈ M ∩ U , a germ of a holomorphic vector field Y =
∑N

j=1 bj(Z) ∂
∂Zj

with bj ∈ Oq is tangent to M (near q) if and only if

(5.7)
N

∑

j=1

bj(Z)
∂Θ̄β

∂Zj
(Z) ≡ 0, for all β ∈ N

n,

for all Z ∈ C
N sufficiently close to q.

Proof. It is enough to prove (ii). We fix a polydisc U1 ⊂ C
n and U2 ⊂ C

d

both containing the origin such that Θ̄ is holomorphic in U1 × U1 × U2.
Let U := U1 × U2. Given q = (zq, ηq) ∈ M ∩ U , it is easy to see that a germ
at q of a holomorphic vector field Y is tangent to M near q if and only
Y (Θ̄(χ, Z)) = 0 for all Z in some connected neighborhood Uq ⊂ C

N of q

and for all χ in some neighborhood ˜U1 ⊂ C
n of z̄q. Since

Y (Θ̄(χ, Z)) =
N

∑

j=1

bj(Z)
∂Θ̄
∂Zj

(χ, Z),

the map Y (Θ̄(χ, Z)) is in fact holomorphic in U1 × Uq and vanishes on ˜U1 ×
Uq. Hence Y (Θ̄(χ, Z)) vanishes identically in U1 × Uq. From this, the desired
conclusion (5.7) follows. �

We have the following result (see [5]).

Lemma 5.2. Let M ⊂ C
N be a real-analytic generic submanifold with

N ≥ 2, p ∈ M , and (z, η) normal coordinates for M near p. Then the fol-
lowing identity holds:

(5.8) λM (p) + rM (p) = N,

where rM (p) is the generic rank of the holomorphic map (CN , 0) � (z, η) �→
(Θ̄β(z, η))β∈Nn defined by (5.5).

Proof. Choose an integer �0 large enough so that the generic rank of the map-
ping (z, η) �→ (Θ̄β(z, η))|β|≤�0 equals rM (p). Consider the M0 linear mapping
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L : (M0)N → (M0)c0 given by

L(a1, . . . , aN ) :=

⎛

⎝

N
∑

j=1

aj
∂Θ̄β

∂Zj

⎞

⎠

|β|≤�0

,

where c0 = Card {β ∈ N
n : |β| ≤ �0}. By Lemma 5.1 (i), S0 = KerL and

therefore, by the rank theorem, N = λM (0) + dimM0 ImL. But the rank of

the M0-linear mapping L coincides with the rank of the matrix
(

∂Θ̄β

∂Zj

)

1≤j≤N,

|β|≤�0

with entries in the field M0. This rank is exactly the generic rank of the (germ
of the) holomorphic map (z, η) �→ (Θ̄β(z, η))|β|≤�0 . The proof of Lemma 5.2
is complete. �

A first consequence of Lemma 5.2 is that rM (p) is independent of the
choice of normal coordinates. Another useful consequence of Lemma 5.2 is
the following (see [5] for the hypersurface case).

Lemma 5.3. Let M ⊂ C
N be a real-analytic generic submanifold. Then the

functions λM and rM are constant on any connected component of M .

Proof. Pick an arbitrary point p ∈ M . We first note that the definition of
λM implies that λM is lower semi-continuous. Next, let rM (p) be as defined
in Lemma 5.2. Since we may choose normal coordinates for points q ∈ M
nearby p in such a way that the mapping Θ depends real-analytically on
q, it follows that for all points q sufficiently close to p, rM (q) ≥ rM (p).
Hence by (5.8), we have that λM (q) ≤ λM (p) for all such q’s. This latter
fact together with the lower semi-continuity of λM implies that λM is con-
stant in a neighborhood of p. Since the choice of p is arbitrary, we obtain
the desired statement. �

In what follows, given a positive integer r, we shall denote by Er
h the set

of all germs through the origin in C
r of holomorphically nondegenerate real-

analytic CR submanifolds. Recall also that given a positive integer r and two
germs of real submanifolds (M, p) and (M ′, p′) in C

r we write (M1, p) ∼h

(M2, p
′) if there exists a germ of a biholomorphism of C

r at p which maps
the germ (M, p) to (M ′, p′).

The following result provides a precise description of the holomorphic
foliation on a (holomorphically degenerate) real-analytic CR submanifold.
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Proposition 5.1. Let M ⊂ C
N be a connected real-analytic CR submani-

fold with N ≥ 2. Then there exists a well-defined integer λM ∈ {0, . . . ,
N − 1} and a closed proper real-analytic subvariety ΥM ⊂ M such that

M \ ΥM = {p ∈ M : (M, p) ∼h (CλM × ˜M, 0), where ˜M ∈ EN−λM

h }.

Furthermore, the real-analytic subvariety ΥM is locally given by the inter-
section of germs of complex-analytic subvarieties with M .

Proof. We first treat the case where M is a generic submanifold of C
N . Let

λM ∈ {0, . . . , N − 1} be the integer defined by (5.1) and Lemma 5.3. Set

Ωh
M := {p ∈ M : (M, p) ∼h (CλM × ˜M, 0), where ˜M ∈ EN−λM

h }.

In what follows we shall say that a point p ∈ M satisfies property (♠) if
there exists Y1, . . . , YλM

∈ Tp and a sufficiently small neighborhood W of p
in C

N such that these λM holomorphic vector fields are defined and linearly
independent at every point q ∈ W . We first note that if a point p ∈ ΩM then
clearly p satisfies property (♠). Conversely, if p satisfies property (♠), then
by straigthening the flows of Y1, . . . , YλM

, we see that the germ (M, p) is
biholomorphically equivalent to the germ at the origin of a submanifold of
the form C

λM × ˜M where ˜M is a germ through the origin of a real-analytic
generic submanifold. Furthermore, ˜M must necessarily be holomorphically
nondegenerate since otherwise we could find λM + 1 holomorphic vector
fields tangent to M near p and generically linearly independent in a neigh-
borhood of p, which contradicts the definition of λM .

Pick an arbitrary point p ∈ M . Since the ring Op is noetherian, it follows
that Tp is a finitely generated submodule of (Op)N . Hence, there exists
a connected neighborhood U of p in C

N and r holomorphic vector fields
X1, . . . , Xr defined in U such that Tp is generated by the germs at p of the
vector fields X1, . . . , Xr. In fact, we need a stronger property than that, and
using Lemma 5.1 (ii) and Oka’s theorem (see e.g., [12, Theorem 6.4.1]), it is
possible (after shrinking U if necessary) to assume that for every point q ∈
M ∩ U , the germs at q of the vector fields X1, . . . , Xr generate Tq. We also
may assume that U is chosen sufficiently small so that M ∩ U is connected. It
is not difficult to see that the generic rank of (X1, . . . , Xr) over U equals λM

as defined above. Setting μ(q) = Rk (X1(q), . . . , Xr(q)) for all q ∈ M ∩ U ,
we now claim that

(5.9) {q ∈ M ∩ U : q satisfies (♠)} = {q ∈ M ∩ U : μ(q) = λM}.
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Note that we trivially have {q ∈ M ∩ U : μ(q) = λM} ⊂ {q ∈ M ∩ U :
q satisfies (♠)}. Conversely, if q ∈ M ∩ U satisfies (♠), there exists
Y1, . . . , YλM

∈ Tq and a sufficiently small neighborhood W ⊂ U of q in C
N

such that these λM holomorphic vector fields are defined and linearly inde-
pendent at every point q ∈ W . Since the germs at q of X1, . . . , Xr generate
the Oq-module Tq and since Y1, . . . , YλM

are linearly independent at every
point q ∈ W , it follows that the rank of (X1, . . . , Xr) equals λM at every
point of W and hence at q. This shows the claim (5.9).

Using the first part of the proof, we therefore obtain that Ωh
M ∩ U =

{q ∈ M ∩ U : μ(q) = λM} and hence ΥM ∩ U is given by the vanishing of
a finite number of real-analytic functions on U (namely the restriction to
M ∩ U of the minors of size λM of the Jacobian matrix of (X1, . . . , Xr)).
This shows that ΥM is a closed proper real-analytic subvariety of M locally
defined by the intersection of M with a complex-analytic subvariety.

The case where M is not generic follows from the generic case, after
noticing that there exists an integer s ∈ {1, . . . , N − 1} such that for every
point p0 ∈ M , the germ (M, p0) is locally biholomorphically equivalent to
a germ at the origin of a submanifold of the form {0} × M1 ⊂ C

s × C
N−s

with M1 being a real-analytic generic submanifold in C
N−s. We leave the

remaining details to the reader. The proof of Proposition 5.1 is complete. �

Remark 5.1. It is clear that the integer λM in Proposition 5.1 is unique
and may be defined as follows. If M is as in Proposition 5.1, for every
point p ∈ M , let Xp ⊂ C

N be the intrinsic complexification of M at p (see
e.g., [3]). Then Xp is the germ at p of a complex submanifold (of smallest
dimension) containing the germ of M at p. Consider the field Kp of germs
at p of meromorphic functions in Xp and Sp the Kp vector space of all germs
at p of meromorphic vector fields of Xp tangent to M . Then it follows from
Lemma 5.3 that M � p �→ dimKp

Sp is constant and is the desired integer λM .

5.2. The real-algebraic case

We shall now establish the algebraic version of Proposition 5.1 when the
submanifold M is furthermore assumed to be real-algebraic. Analogously to
the real analytic case, for a given positive integer r, we denote by Er

a the
set of all germs through the origin in C

r of holomorphically nondegenerate
real-algebraic CR submanifolds. We also recall that given two germs of real
submanifolds (M, p) and (M ′, p′) in C

r, we write (M, p) ∼a (M ′, p′) if there
exists a germ of an algebraic biholomorphism of C

r at p which sends the
germ (M, p) to (M ′, p′).
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We are now ready to state the algebraic version of Proposition 5.1.

Proposition 5.2. Let M ⊂ C
N be a connected real-algebraic CR subman-

ifold, N ≥ 2. Let λM and ΥM be the associated integer and real-analytic
subvariety of M given by Proposition 5.1. Then ΥM is in fact a proper real-
algebraic subvariety of M and the following holds:

(5.10) M \ ΥM = {p ∈ M : (M, p) ∼a (CλM × ˜M, 0), where ˜M ∈ EN−λM
a }.

Furthermore, the real-algebraic subvariety ΥM is locally given by the inter-
section of germs of complex-algebraic subvarieties with M .

In order to prove Proposition 5.2, we shall need the following observation.

Lemma 5.4. Let M be a germ of a real-algebraic CR submanifold in C
N

and M ′ be a germ of a real-analytic CR submanifold in C
N ′

, both through
the origin, with 1 ≤ N ′ < N . Assume that

(5.11) (M, 0) ∼h (M ′ × C
N−N ′

, 0).

Then there exists a germ of a real-algebraic CR submanifold ̂M ⊂ C
N ′

through the origin such that

(5.12) (M, 0) ∼a (̂M × C
N−N ′

, 0).

Proof of Lemma 5.4. First note that if M is not generic in C
N , then there

exists a positive integer r ∈ {1, . . . , N − 1} and a real-algebraic generic sub-
manifold M1 ⊂ C

N−r through the origin such that (M, 0) ∼a ({0} × M1, 0)
(see e.g., [3]). From this fact, we see that we may assume in what follows
that M is generic in C

N .
Let n be the CR dimension of M and d its codimension. Choose normal

coordinates Z = (Z1, . . . , ZN ) = (z, η) ∈ C
n × C

d as in Section 5.1, where
Θ: (Cn+N , 0) → (Cd, 0) is an algebraic holomorphic map of its arguments.

We first note that, by a usual straightening argument, (5.11) is equiv-
alent to say that there exists a neighborhood V of 0 in C

N and N − N ′

holomorphic vector fields L1, . . . , LN−N ′ tangent to M ∩ V such that these
N − N ′ vector fields are linearly independent at every point of V . Let
ϕ1(t, Z) be the complex flow of the vector field L1, flow that is defined for
(t, Z) ∈ C × C

N sufficiently close to the origin. Recall that for sufficiently
small t, (CN , 0) � Z �→ ϕ1(t, Z) ∈ (CN , 0) is a germ at 0 of a biholomor-
phism sending (M, 0) to itself. Furthermore, writing L1 =

∑N
j=1 aj(Z) ∂

∂Zj
,
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we know that ϕ1 = (ϕ1
1, . . . , ϕ

1
N ) satisfies

(5.13)
∂ϕ1

j

∂t
(t, Z) = aj(ϕ1(t, Z)), j = 1, . . . , N, and ϕ1(0, Z) = Z,

for (t, Z) ∈ C × C
N sufficiently close to the origin. Since L1 is tangent to M

(near 0), using the notation defined in (5.5) and Lemma 5.1 (i), we have

(5.14)
N

∑

j=1

aj(ϕ1(t, Z))
∂Θ̄β

∂Zj
(ϕ1(t, Z)) = 0, ∀β ∈ N

n,

for (t, Z) ∈ C × C
N sufficiently close to the origin. Combining (5.13) and

(5.14), we obtain that near the origin in C
N+1

∂

∂t

(

Θ̄β(ϕ1(t, Z))
)

≡ 0, ∀β ∈ N
n.

We therefore have the following identity (that is contained, in the hypersur-
face case, in the statement of [5, Proposition 5.2])

(5.15) Θ̄β(ϕ1(t, Z)) = Θ̄β(Z), ∀β ∈ N
n,

for all (t, Z) ∈ C × C
N sufficiently close to the origin. In what follows, we

may assume without loss of generality that a1(0) 
= 0. Consider now the
C

N -valued holomorphic mapping Ψ defined in a neighborhood of the origin
in C

N by Ψ(w1, . . . , wN ) = ϕ1(w1, 0, w2, . . . , wN ). It is a standard fact that
Ψ is a local biholomorphism at the origin and that Ψ∗( ∂

∂w1
) = L1. Hence,

since L1 is tangent to M near 0, the vector field ∂
∂w1

is tangent to the germ
of the real-analytic generic submanifold Ψ−1(M). Therefore the germ of
Ψ−1(M) at 0 is of the form ˜M × C where ˜M is a germ at 0 of a real-analytic
generic submanifold in C

N−1. We now claim that ˜M is in fact real-algebraic
and that (˜M × C, 0) ∼a (M, 0). To prove the claim, we note that it follows
from (5.15) that for all β ∈ N

n, Θ̄β(Ψ(w)) = Θ̄β(0, w2, . . . , wN ) =: Cβ(w) ∈
(N{w})d. The system of algebraic equations

(5.16) Θ̄β(Z) = Cβ(w)

has a convergent solution Z = Ψ(w) and therefore, from an approximation
theorem due to Artin [1], there exists an algebraic solution ̂Ψ: (CN , 0) →
(CN , 0) of (5.16) that agrees with Ψ up to order one at 0. Hence ̂Ψ is a local
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algebraic biholomorphism. Furthermore, since Ψ sends (˜M × C, 0) to (M, 0)
and since for all β ∈ N

n

Θ̄β(Ψ(w)) = Θ̄β(̂Ψ(w)),

it follows from [4, Lemma 14.3] that ̂Ψ sends also (˜M × C, 0) to (M, 0),
which proves the claim.

Since (˜M × C, 0) ∼a (M, 0), there exists a neighborhood W of 0 in C
N−1

and N − N ′ − 1 holomorphic vector fields tangent to ˜M ∩ W such that these
N − N ′ − 1 vector fields are linearly independent at every point of W . We
can therefore apply the above reasoning to the real-algebraic generic sub-
manifold ˜M ⊂ C

N−1 and, by induction, we reach the desired conclusion. �

Proof of Proposition 5.2. We note that if λM = 0 (i.e., M is holomorphically
nondegenerate), there is nothing to prove, and therefore assume that λM >
0. Lemma 5.4 leads immediately to (5.10). It remains to show that ΥM is a
real-algebraic subvariety of M . In order to show this, we pick an arbitrary
point p ∈ M choose associated normal coordinates, in which p = 0. We note
that as in the proof of Proposition 5.1, we can choose a positive integer
�0 such that in a neighborhood U of 0, a germ at q ∈ U of a holomorphic
vector field is tangent to M if and only if

∑N
j=1

∂Θ̄β

∂Zj
(Z) aj(Z) = 0 near q

for all β with |β| ≤ �0. Thus, we have realized the holomorphic vector fields
tangent to M ∩ U as a subsheaf of O

N |U given by the relations between the
(∂Θ̄β

∂Z1
, . . . , ∂Θ̄β

∂ZN
) with |β| ≤ �0. Oka’s Theorem then implies that we can find

a finite number of holomorphic generators of T0 which also generate Tq for
q near 0.

We now claim that we can actually choose these generators algebraic if
all the Θ̄β are algebraic; the remainder of the proof is then verbatim to the
proof of Proposition 5.1.

First note that the sheaf of algebraic functions on C
N is coherent. This

can be seen by applying the Weierstrass division theorem for algebraic power
series in the proof of Oka’s Theorem as found in e.g., [12]. In particular, the
sheaf of algebraic relations between the (∂Θ̄β

∂Z1
, . . . , ∂Θ̄β

∂ZN
) for |β| ≤ �0 is locally

finitely generated, i.e., shrinking U if necessary, there exist algebraic vector
fields (X1, . . . , Xr) defined over U and tangent to M , such that every germ
at a point q ∈ M ∩ U of an algebraic vector field tangent to M near q can
be written as an algebraic linear combination of X1, . . . , Xr.

Now for every point q ∈ U , the ring of convergent power series C{x − q}
centered at q is a flat algebra over the ring of germs at q of algebraic func-
tions N{x − q}. We can thus apply the “equational criterion for flatness”
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(see e.g.[15, Theorem 7.6]) to see that every X ∈ Tq can (in the sense of
germs at q) be written as a linear combination with coefficients in C{x − q}
of holomorphic vector fields tangent to M with algebraic coefficients in
N{x − q}. Since we have already observed that all germs at q of algebraic
vector fields tangent to M are generated by X1, . . . , Xr, we see that the claim
is proved and, as noted before, this finishes the proof of Proposition 5.2. �

Remark 5.2. The authors thank Clemens Bruschek for pointing out the
simple proof by applying the flatness criterion in the second half of the proof
of Proposition 5.2.

Remark 5.3. (i) In [7], the authors have considered another proper real-
algebraic subvariety ˜ΥM attached to any connected real-algebraic CR sub-
manifold M ⊂ C

N . This subvariety ˜ΥM is defined as follows: M \ ˜ΥM :=
{p ∈ M : (M, p) ∼a (CλM × ˜M, 0), where ˜M ∈ ˜EN−λM

a }, where ˜EN−λM
a

denotes the set of germs of all real-algebraic finitely nondegenerate real-
analytic CR submanifolds in C

N−λM through the origin (see e.g., [3, 6] for
the definition). Since we always have the strict inclusion ˜EN−λM

a ⊂ EN−λM
a ,

the subvariety ΥM given by Proposition 5.2 is in general strictly smaller
than ˜ΥM .

(ii) The reader should observe that the real-algebraic subvariety ΥM

given by Proposition 5.2 can also be defined as follows: M \ ΥM consists of all
points p in M for which there exists an integer k, 0 ≤ k ≤ N − 1, such that
(M, p) ∼a (Ck × ˜M, 0), where ˜M ∈ EN−k

h . Indeed, note that if there exists
k ∈ {0, . . . , N − 1} such that (M, p) ∼h (Ck × ˜M, 0) where ˜M ∈ EN−k

h , then
we must necessarily have k = λM in view of the definition of λM .

6. Proof of Theorem 1.5

By definition ΣM = Σ1
M ∪ Σ2

M where Σ1
M is the set of points that are not of

constant orbit dimension and Σ2
M is the set of points that are not regular for

the foliation on M . By Proposition 5.2, Σ2
M is a closed proper real-algebraic

subvariety of M and since Σ1
M possesses clearly also the same property (see

e.g. [3]), conclusion (i) of the theorem follows.
To prove (ii), we may assume that M is a generic submanifold in C

N

since the non-generic case can easily be reduced to the generic case. Let p ∈
M \ ΣM . Let also M ′ ⊂ C

N be another real-algebraic generic submanifold,
p′ ∈ M ′ and let h : (CN , p) → (CN , p′) be a local biholomorphic map sending
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M to M ′. If M is holomorphically nondegenerate, the desired conclusion
follows immediately from Theorem 4.1.

If not, there exists an integer k ∈ {1, . . . , N − 1} such that (M, p) ∼a

(˜M × C
k, 0) where ˜M is a holomorphically nondegenerate real-algebraic

generic submanifold through the origin in C
N−k. Furthermore, since

(M ′, p′) ∼h (M, p), it follows from Lemma 5.4 that (M ′, p′) ∼a (˜M ′ × C
k, 0),

where ˜M ′ is a real-algebraic generic submanifold through the origin in
C

N which is also necessarily holomorphically nondegenerate. In order to
prove Theorem 1.5, we may therefore assume that (M, p) = (˜M × C

k, 0)
and that (M ′, p′) = (˜M ′ × C

k, 0). We also write the mapping h : (CN−k
˜Z

×
C

k
̂Z
, 0) → (CN−k

˜Z′ × C
k
̂Z′ , 0), where h(Z) = h( ˜Z, ̂Z) = (h1( ˜Z, ̂Z), h2( ˜Z, ̂Z)) ∈

C
N−k × C

k. We claim that h1 is independent of ̂Z = ( ̂Z1, . . . , ̂Zk). Indeed,
consider the holomorphic vector V = h∗( ∂

∂ ̂Zj

) where j = 1, . . . , k. We have

V =
∂h1

∂ ̂Zj

(h−1(Z ′)) · ∂

∂ ˜Z ′ +
∂h2

∂ ̂Zj

(h−1(Z ′)) · ∂

∂ ̂Z ′ .

Since the vector field ∂
∂ ̂Zj

is tangent to ˜M × C
k near 0, V is tangent to

˜M ′ × C
k near 0. This implies that for every ̂Z ′ ∈ C

k sufficiently close to the
origin, the holomorphic vector field in C

N−k

∂h1

∂ ̂Zj

(h−1( ˜Z ′, ̂Z ′)) · ∂

∂ ˜Z ′

is tangent to ˜M ′ near 0. Since ˜M ′ is holomorphically nondegenerate, we
must necessarily have ∂h1

∂ ̂Zj

(h−1( ˜Z ′, ̂Z ′)) ≡ 0 near 0 ∈ C
N for all j = 1, . . . , k,

which proves the claim.
We can thus write h( ˜Z, ̂Z) = (h1( ˜Z), h2( ˜Z, ̂Z)) where h1 : (CN−k, 0) →

(CN−k, 0) is a local biholomorphism sending (˜M, 0) to (˜M ′, 0). Since ˜M

is holomorphically nondegenerate and because the local CR orbits of ˜M
must also be of constant dimension in a neighborhood of 0, we may apply
Theorem 4.1 to conclude that for every integer � there exists a local algebraic
biholomorphism h�

1 : (CN−k, 0) → (CN−k, 0) sending (˜M, 0) to (˜M ′, 0) that
agrees with h1 up to order � at 0. For every integer �, define h�

2 to be the �th
order Taylor polynomial of h2 at 0. Then the local algebraic biholomorphism
h� := (h�

1, h
�
2) satisfies all the required conditions. The proof of Theorem 1.5

is complete.
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