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REGULARITY OF SECTIONS OF CR VECTOR BUNDLES
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(Communicated by Harold P. Boas)

Abstract. In this note, we show that every generalized section σ of a CR
vector bundle E over a CR manifold M has the property that near most
points of its singular support, there exists a proper abstract CR subbundle
F ⊂ E which has the property that every real subbundle of E which contains
the image of σ also contains F .

1. Introduction

One of the first basic theorems in complex analysis of one variable is the reflection
principle: If a holomorphic function is defined on a domain in the upper half plane
and extends to a real-valued function on the real line (for example, continuously),
then the extension is actually real-analytic. In the theory of several complex vari-
ables, there are obstructions to automatic analyticity and smoothness of CR maps
between real hypersurfaces; in particular, the authors’ recent works [7–9] identify
the existence of varieties tangent to the image of the boundary values of these maps
as one of the main obstructions. The same question naturally arises for CR maps
between abstract CR structures and is not yet well understood in this setting, see
[2, 5, 10].

In this note, we study the model case of sections of an abstract CR vector
bundle E (for definitions, see Section 2); while this case does not exhibit the typical
nonlinear constraints of CR mappings between CR manifolds here, the PDEs we
encounter do possess a considerably higher complexity than in the embedded case.
We shall show that every generalized section σ of a CR vector bundle E over a
CR manifold M has the property that near most points of its singular support,
there exists an abstract CR subbundle F ⊂ E which has the property that every
real subbundle of E which contains the image of σ also contains F . All of the
irregularity of a CR section is contained in its “F -component”.

In what follows all manifolds and vector bundles are assumed to be C∞-smooth
and we refer the reader to Section 2 or [3] for the basic notions used here. Our
main result is as follows.

Theorem 1. Let σ : M → E be a generalized CR section of a CR vector bundle over
the abstract CR manifold M , and assume that σ extends microlocally to a wedge
of edge M . Then for every point p in some dense open subset of (SingSuppσ)◦,
there exists a neighbourhood U and a nontrivial (smooth) abstract CR vector bundle
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F ⊂ E|U such that if R ⊂ E|U is any (smooth) real subbundle containing the image
of σ|U , then F ⊂ R. Furthermore, the section

σ̃ : U → E|U!F
is smooth.

A direct outcome of the construction is the following second main theorem,
which gives a nice sufficient condition for automatic regularity. In what follows,
given a CR vector bundle E over M , we say that a real subbundle R ⊂ E is CR
nondegenerate (at a point p ∈ M) if the CR derivatives of sections of R span E (at
p).

Theorem 2. Let M and E be as above and let R ⊂ E be a real subbundle that is
CR nondegenerate at a point p ∈ M . Then every generalized CR section σ of R
which extends microlocally to a wedge of edge M is smooth near p.

As an application, we prove regularity of infinitesimal deformations of nonde-
generate CR maps between abstract CR manifolds, extending the regularity result
for infinitesimal automorphisms of abstract CR structures obtained by Fürdös and
the first author in [4]. We refer the reader to Section 5 for the precise definitions.

Theorem 3. Let M and M ′ be abstract CR manifolds, and h : M → M ′ a smooth
CR immersion, finitely nondegenerate at p. Then every infinitesimal deformation
of h which extends microlocally near p is smooth near p.

The proofs of these theorems use a construction of “smoothness multiplier ideals”
whose properties might be interesting on their own merit. We therefore include a
discussion of an algorithm which can be used to construct these ideals.

2. Preliminaries

Most of the results in this paper will be local, and we therefore only define
the necessary notions in the local setting. This means that we will assume that
M ⊂ Rn

x × Rn
y × Rd

s is an open neighbourhood of 0, and that the CR structure V
is spanned by the n linearly independent vector fields L̄1, . . . , L̄n; we can assume
that they are chosen so that they commute (see, e.g., [11, Prop. I.5.1]). We are
going to assume that the coordinates (x, y, s) are a standard coordinate patch for
M ; this simply means that for every (x0, y0) ∈ π1(M) the submanifold N(x0,y0) :=
(π1|M )−1((x0, y0)) = {(x0, y0, s) ∈ M} of M is totally real and transverse to the
complex tangent directions T cM = Re V in M . It follows that T 0

p M ∼= T ∗
p Nπ1(p)

(induced by the restriction of evaluation of the forms) and we require that this
yields a well-defined identification T 0M ∼= π1(M) × Rd (for details as to why such
standard coordinates exist, see [10, Section 4.1]).

We are considering the vector bundle E = M ×Cr. A (generalized) section u of
E is therefore given by an r-tuple of smooth functions (distributions)

u =

⎛

⎜⎝
u1
...

ur

⎞

⎟⎠

on M . In our basis of CR vector fields L̄1, . . . , L̄n, a partial connection D is given
by

Dju = L̄ju + Aju,
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where A1, . . . , An are smooth matrix-valued functions on M . A section u is said
to be CR if Dju = 0 for j = 1, . . . , n, or equivalently, if

L̄juk = −
∑

ℓ

Aℓ
jkuℓ, j = 1, . . . , n, k = 1, . . . , r.

We say that this partial connection is CR provided that L̄jAk − L̄kAj = AjAk −
AkAj ; this is a formal integrability condition automatically satisfied if E has a
basis of CR sections, and when thinking about A as a matrix valued form it can be
compactly written as dA = A ∧ A when acting on CR vectors.

We will realize E∗ as row vectors, and consider the standard dual pairing by
matrix multiplication. The dual connection D∗ is then defined for row vectors
v = (v1, . . . , vr) by

D∗
j v = L̄jv − vAj ,

which is the choice that ensures

(1)

(D∗
j v)u + v(Dju) = (L̄jv − vAj)u + v(L̄ju + Aju)

= (L̄jv)u + v(L̄ju)

= L̄j(vu).

We will write D′(M, E) for the C∞(M)-module of generalized sections of E,
consisting in the local representation above of vectors whose components are dis-
tributions. The wavefront set of a generalized section σ = (σ1, . . . ,σr) is defined
by

WF(σ) =
r⋃

j=1

WF(σj),

where the wavefront set of a distribution is defined in the usual manner (see [1,11]).
Recall that T ′M = V⊥ and that the characteristic bundle of M , denoted T 0M , is
the set of all (real) forms annihilating V and V̄ . The elliptic regularity theorem
implies that if a section σ : M → E is CR (i.e. Dj̄σ = 0 for j = 1, . . . , n), then
WF(σ) ⊂ T 0M (see [1, 11]). Following [4], we say that σ extends microlocally to a
wedge of edge M if there exists a set Γ ⊂ T 0M such that for every p ∈ M , the fiber
Γp is a closed non-empty convex cone of T 0

p M \ {0} satisfying WF(σ) ⊂ Γ. For σ
as above, we recall that SingSupp σ is the closed subset of M consisting of those
points p ∈ M where σ is not C∞-smooth in any neighbourhood of p.

We say that a C∞(M)-submodule Ω of D′(M, E) is CR closed if it has the
property that Djσ ∈ Ω for every j = 1, . . . , n and for every σ ∈ Ω. In particular
any submodule Ω generated by CR sections is CR closed (see [3]). For a given
C∞(M)-submodule Ω ⊂ D′(M, E) we denote by Ω̂ its CR closure, the smallest
C∞(M)-submodule containing Ω which is CR closed. Note that

Ω̂ = ⟨Dj1 . . . Djrσ : r ∈ N,σ ∈ Ω⟩C∞ ,

where, here and in what follows, ⟨A⟩C∞ denotes the submodule generated by A over
C∞. We also set

SingSuppΩ = ∪σ∈Ω SingSupp σ.

From the definition, it is clear that M \ SingSuppΩ is the largest open subset of
M where all σ ∈ Ω are simultaneously smooth.

A CR subbundle of a CR vector bundle E is a subbundle F such that all of the
CR derivatives of sections of F are again sections of F , i.e. if Γ(M, F ) is CR closed.
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We note that F ⊂ E is a CR subbundle if and only if F⊥ ⊂ E∗ is a CR subbundle
with respect to the natural dual connection.

3. Smoothness multipliers

The goal of this section is to introduce a simple yet powerful tool to study
smoothness of generalized CR sections.

Definition 1. For a subset Ω ⊂ D′(M, E) we define its module of (vector) smooth-
ness multipliers by

S(Ω) = {λ ∈ Γ(M, E∗) : λ(σ) ∈ C∞(M), ∀σ ∈ Ω} .

Note that S(Ω) only depends on the C∞(M)-module generated by Ω, so we
will from now on only talk about modules of smoothness multipliers of C∞(M)-
modules. The usefulness of smoothness multipliers comes from the fact that they
are closed under CR derivatives and characterize smoothness; the reader can easily
check Lemmas 1 and 2.

Lemma 1. If Ω ⊂ D′(M, E) is a CR closed submodule, then S(Ω) is CR closed.

Lemma 2. A C∞(M)-submodule Ω ⊂ D′(M, E) satisfies Ω ⊂ C∞(M, E) if and
only if S(Ω) = Γ(M, E∗).

In a similar way, one can introduce scalar smoothness multipliers:

Definition 2. For a subset Ω ⊂ D′(M, E) we define its module of (scalar) smooth-
ness multipliers by

S̃(Ω) = {λ ∈ C∞(M) : λσ ∈ C∞(M, E)} .

By Cramer’s rule, we have the inclusion ΛrS(Ω) ⊂ S̃(Ω). On the other hand,
every scalar multiplier is a vector multiplier in a natural way.

We will use the following simple fact which is a consequence of the smooth version
of the edge of the wedge theorem.

Proposition 1. Let M and E be as above and Ω ⊂ D′(M, E) such that every
σ ∈ D′(M, E) extends microlocally to a wedge of edge M . If there exists a smooth
λ ∈ Γ(M, E∗) such that Reλ(σ) is smooth for all σ ∈ Ω, then λ ∈ S(Ω).

Proof. Let σ ∈ Ω. Then λ(σ) + λ(σ) = f ∈ C∞(M, E). Pick p ∈ M and Γp ⊂
T 0

p M \ {0}, a closed non-empty convex subcone, such that WF(σ)|p ⊂ Γp. Then
WF(σ̄)|p ⊂ (−Γp) and therefore WF(λ(σ))|p ⊂ Γp ∩ (−Γp) = ∅, and so λ(σ) is
smooth near every p ∈ M (see [10]). Hence λ ∈ S(Ω). !

4. The algorithm

In this section, we describe the algorithm to produce smoothness multipliers, and
use it to deduce regularity of generalized sections. For this, we start out with a CR
closed module Ω ⊂ D′(M, E) such that every σ ∈ D′(M, E) extends microlocally
to a wedge of edge M . We then define

S0(Ω) := ⟨{λ ∈ Γ(M, E∗) : Reλ(σ) = 0, ∀σ ∈ Ω}⟩C∞(M) .

By Proposition 1, we have that S0(Ω) ⊂ S(Ω). Now, we define an increasing
sequence of C∞(M)-submodules of Γ(M, E∗) by setting, for each k ≥ 0,

Sk(Ω) = ⟨Sk−1(Ω), DjSk−1(Ω) : j = 1, . . . , n⟩C∞(M) .
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By Lemma 1, we have Sk(Ω) ⊂ S(Ω) for all k ≥ 0, and therefore also S∞(Ω) :=⋃
k≥0 Sk(Ω) ⊂ S(Ω). The main observation about these is that we can effectively

compute the modules Sk(Ω), and thus, if Sk(Ω) = Γ(M, E∗) for some k, we have
that Ω ⊂ C∞(M, E).

We next look at S∞(Ω) and the upper semicontinuous integer valued function
d : M → {0, . . . , r}, d(p) = r−dim S∞(Ω)(p). For s ∈ {0, . . . , r}, consider the open
sets

(d−1({s}))◦ = Ms
Ω

and note that the open subset of M

MΩ =
r⋃

j=0

M j
Ω =: M0

Ω ∪ NΩ

is dense in M . We now have the following characterization of the behaviour of Ω
on MΩ (see [10] for a somewhat analogous approach in a different context).

Theorem 4. Let E be CR vector bundle over the CR manifold M , Ω a CR closed
module of D′(M, E) such that every σ ∈ D′(M, E) extends microlocally to a wedge
of edge M . With the notation introduced above, we have M0

Ω ⊂ M \ SingSuppΩ,
and NΩ ∩ (SingSuppΩ)◦ is dense in (SingSuppΩ)◦. Furthermore, for any k ≥ 1,
there exists a smooth CR closed subbundle Fk ⊂ E|Mk

Ω
of rank k such that:

(i) for any real subbundle R ⊂ E with Ω|Mk ⊂ D′(Mk, R), we have Fk ⊂ R;

(ii) for every σ ∈ Ω, the section σ̃ : Mk
Ω → E|Mk

Ω!Fk
is smooth.

Proof. For any p ∈ M0
Ω, dim S∞(Ω)(p) = r, so every σ ∈ Ω is smooth on M0

Ω.
Hence, M0

Ω ⊂ M \SingSuppΩ. The density of NΩ∩(SingSuppΩ)◦ in (SingSuppΩ)◦

is then clear from the construction.
On the other hand, for k = 1, . . . , r, we have that dim S∞(Ω|Mk

Ω
)(p) = r − k for

any p ∈ Mk
Ω. We can thus write

(2) S∞(Ω|Mk
Ω
) = Γ(Mk

Ω, F⊥
k )

for a subbundle Fk ⊂ E∗∗|Mk
Ω

= E|Mk
Ω

of rank k. This bundle Fk is a CR subbundle

because S∞(Ω) is CR closed by construction. In particular, given any λ ∈ Γ(M, E∗)
such that Reλ(σ) = 0 for every σ ∈ Ω|Mk

Ω
, then λ ∈ S0(Ω|Mk

Ω
) ⊂ S∞(Ω|Mk

Ω
), and

so λ(ω) = 0 for every ω ∈ C∞(Mk
Ω, Fk). This proves (i) in the theorem. Finally, (2)

implies that S(Ω|Mk
Ω
) = Γ(Mk

Ω, E!Fk
) and hence (ii) follows. !

5. Proof of the main theorems and applications

We are now in a position to prove the two main theorems.

Proof of Theorem 1. Since σ is CR, the submodule generated by σ is CR closed,
and all its elements extend microlocally to wedge of edge M . Now observe that
(SingSupp⟨σ⟩C∞(M))

◦ = (SingSupp σ)◦, so the conclusion follows directly from The-
orem 4. !

Proof of Theorem 2. We again apply Theorem 4 to the submodule Ω generated by
σ. Under the given assumptions, we have p ∈ M0

Ω which implies that σ is smooth
near p. !
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We now come to the applications of our main theorems. First, we discuss infini-
tesimal deformations of CR maps between abstract CR manifolds. We work locally,
choosing coordinates x=(x1, . . . , x2n+d) ∈ R2n+d for M , and y=(y1, . . . , y2n′+d′) ∈
R2n′+d′

for M ′, with structure bundles V and V ′, respectively. A C1-smooth map
h = (h1, . . . , h2n′+d′) : M → M ′ is CR if h∗L̄p ∈ V ′

h(p) for every CR vector L̄p ∈ Vp,
and for every p ∈ M . Recall that the holomorphic cotangent bundles are defined
by T ′M = V⊥ and T ′M ′ = (V ′)⊥ (see e.g. [11]); in order to avoid using new ter-
minology, we shall (as is commonly done) refer to sections of these as holomorphic
forms. Then we see that h is CR if and only if

(3)
∑

j

ωj
h(p)L̄phj = 0, for any L̄p ∈ Vp, and ω =

∑
ωj

h(p)dyj ∈ T ′
h(p)M

′.

Now consider a deformation of a CR map h(x) = h0(x) by CR maps ht(x),
defined for t ∈ (−ε, ε), ε > 0. We write ḣ(x) = d

dt |t=0ht(x) for the infinitesimal
deformation associated to h(x, t) (regarding it as a section of h∗TM ′ in the natural
way) and let ω =

∑
ωj(y)dyj ∈ Γ(M ′, T ′M ′) be a holomorphic form on M ′, and L̄

a CR vector field on M . Differentiating the equation
∑

j ω
j(h(x, t))L̄hj(x, t) = 0

with respect to t, and evaluating at t = 0, one gets
(4)

0 =
∑

j,k

∂ωj

∂yk
(h(x))ḣk(x)L̄hj(x) +

∑

j

ωj(h(x))L̄ḣj(x)

= dωh(x)(ḣ(x), ((h∗)xL̄x)) +
∑

j,k

∂ωj

∂yk
(h(x))ḣj(x)L̄hk(x) +

∑

j

ωj(h(x))L̄ḣj(x)

= dωh(x)(ḣ(x), ((h∗)xL̄x)) + L̄x(ωh(·)(ḣ(·))).
Provided that h is an immersion, this equation suggests the introduction of a

CR vector bundle structure D on h∗T ′M ′ as follows. For a section η of h∗T ′M ′ and
p ∈ M , choose a small enough neighbourhood U of p so that h(U) is an embedded
submanifold of M ′, and a section ω of T ′M ′, defined in a neighbourhood of h(U)
such that η = h|∗Uω. Extend h∗L̄ to a vector field K̄ on M ′ and over h(U), we
define

DL̄η|U := DK̄ω,

where the last D is the natural CR structure on T ′M ′ given by

(DK̄ω)(X) = dω(K̄, X), K̄ ∈ Γ(M ′, V ′), ω ∈ Γ(M ′, T ′M ′).

It is easy to verify that this does not depend on the extension K̄, but only on L̄
(and U). With these definitions, (4) therefore reads

(5) DL̄η(ḣ) = L̄(η(ḣ)),

and as usual, the dual structure on (h∗T ′M ′)∗ ⊃ h∗T ′M is defined by

L̄η(X) = DL̄η(X) + η(D∗
L̄X).

We therefore have:

Lemma 3. With the natural CR bundle structures just introduced, any deformation
(ht) of a CR immersion h gives rise to a CR section ḣ of (h∗T ′M ′)∗. Furthermore
(since ḣ is a section of TM ′), for any characteristic form θ′ on M ′, we have
Im θ′(ḣ) = 0.
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We can now define what an infinitesimal deformation of a CR immersion h is.

Definition 3. We say that a generalized section X ∈ D′(M, h∗T ′M ′)∗ is an in-
finitesimal deformation of a CR immersion h : M → M ′ if, with the natural CR
connection defined above, we have

DL̄X = 0, L̄ ∈ Γ(M, V), and Im θ(X) = 0, θ ∈ Γ(M, h∗T 0M).

Let us recall the following definition which basically dates back to [6] (in the
smooth context, one can also consult [3]):

Definition 4. We say that an immersive CR map h : M → M ′ is k-nondegenerate
at p ∈ M if

Ek(p) = span
{
(DL̄1

· · · DL̄k
θ′)(p) : L̄j ∈ Γ(M, V), θ′ ∈ Γ(M, h∗T 0M ′)

}
= T ′

h(p)M
′,

with k being the smallest integer with this property. We say that h is finitely
nondegenerate at p if it is k-nondegenerate for some integer k.

Proof of Theorem 3. Since h is assumed to be finitely nondegenerate, we can apply
Theorem 2, with E = (h∗T ′M ′)∗ and R = (h∗T 0M ′)∗ (the latter being the real
dual, of course). !

Actually, we also obtain an interesting statement corresponding to the existence
of a non-smooth infinitesimal deformation in the spirit of Theorem 1, which we note
for completeness here:

Theorem 5. If h : M → M ′ is a CR immersion which has a non-smooth infini-
tesimal deformation, then for p in a dense, open subset of M , the bundle h∗T ′M ′

contains a nontrivial CR subbundle near p.
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