The range of the Killing operator

Michael Eastwood
[with Federico Costanza, Thomas Leistner, and Ben McMillan]

University of Adelaide

The Killing operator

- Riemannian manifold M with metric $g_{a b}$
- X^{a} a (locally defined) vector field on M

Lie derivative	Levi-Civita connection
$X^{b} \longmapsto \frac{1}{2} L$	$\left.{ }_{a} X_{b}+\stackrel{\downarrow}{\nabla_{b}} X_{a}\right) \equiv \nabla_{(a} X$

Euclidean three-space

$$
\text { Killing }=\mathcal{K}
$$

$$
X_{b} \longmapsto \partial_{a} X_{b}=\partial_{(a} X_{b)}+\partial_{[a} X_{b]} \quad \text { symmetric }+ \text { skew }
$$

Killing curl
$\{$ functions $\} \xrightarrow{\text { grad }}\left\{\begin{array}{c}\text { vector } \\ \text { fields }\end{array}\right\} \xrightarrow{\text { curl }}\left\{\begin{array}{c}\text { vector } \\ \text { fields }\end{array}\right\} \xrightarrow{\text { div }}\{$ functions $\}$ $\leadsto \leadsto \leadsto \leadsto$ de Rham complex

The Saint-Venant operator

curl (on $\left.\mathbb{R}^{3}\right) \quad X_{a} \longmapsto \epsilon_{a}{ }^{b c} \partial_{b} X_{c} \quad$ where $\epsilon_{a b c}=$ volume form
curlcurl $\left(\right.$ on $\left.\mathbb{R}^{3}\right) \quad h_{a b} \longmapsto \epsilon_{a}{ }^{c e} \epsilon_{b}{ }^{d f} \partial_{c} \partial_{d} h_{e f}$
Theorem (Saint-Venant 1864)

$$
\left\{\begin{array}{c}
\text { vector } \\
\text { fields }
\end{array}\right\} \xrightarrow{\text { Killing }}\left\{\begin{array}{c}
\text { symmetric } \\
\text { tensors }
\end{array}\right\} \xrightarrow{\text { curlcurl }}\left\{\begin{array}{c}
\text { symmetric } \\
\text { tensors }
\end{array}\right\}
$$

is locally exact
In particular, locally
div \downarrow
$\left\{\begin{array}{c}\text { vector } \\ \text { fields }\end{array}\right\}$

$$
h_{a b}=\partial_{(a} X_{b)} \Leftrightarrow \underbrace{\partial_{a} \partial_{c} h_{b d}-\partial_{b} \partial_{c} h_{a d}-\partial_{a} \partial_{d} h_{b c}+\partial_{b} \partial_{d} h_{a c}=0}_{\text {'integrability conditions' } \quad \text { Proof? }}
$$

Killing fields in flat space

$$
\begin{aligned}
\partial_{(a} X_{b)}=0 \quad \Leftrightarrow \quad \partial_{a} X_{b} & =\mu_{a b} \quad \text { skew } \\
\partial_{a} \mu_{b c} & =0 \quad \text { optional extra }
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{b c}=\partial_{b} X_{c} \Rightarrow \mu_{b c}=\partial_{[b} X_{c]} \Rightarrow \partial_{[a} \mu_{b c]}=0 \\
& \Leftrightarrow \partial_{a} \mu_{b c}=\partial_{c} \mu_{b a}-\partial_{b} \mu_{c a}=\partial_{c} \partial_{b} X_{a}-\partial_{b} \partial_{c} X_{a}=0
\end{aligned}
$$

Prolongation connection

$$
\widehat{\wedge}_{\stackrel{1}{\wedge^{2}}} \ni\left[\begin{array}{l}
X_{b} \\
\mu_{b c}
\end{array}\right] \longmapsto\left[\begin{array}{c}
\partial_{a} X_{b}-\mu_{a b} \\
\partial_{a} \mu_{b c}
\end{array}\right] \quad \text { Flat }
$$

$\therefore \operatorname{dim}\left\{\right.$ Killing fields on $\left.\mathbb{R}^{n}\right\}=\frac{n(n+1)}{2} \quad \begin{aligned} & \text { translations: } n \\ & \text { rotations: } n(n-1) / 2\end{aligned}$

Killing fields in curved space

$$
\begin{array}{rll}
\nabla_{(a} X_{b)}=0 \quad \Leftrightarrow \quad \nabla_{a} X_{b} & =\mu_{a b} \quad l & \text { skew } \\
\nabla_{a} \mu_{b c} & =R_{b c}{ }^{d}{ }_{a} X_{d} & \underline{\text { optional extra }}
\end{array}
$$

Prolongation connection

$$
\stackrel{\wedge^{1}}{\stackrel{\oplus}{\Lambda^{2}}} \ni\left[\begin{array}{l}
X_{b} \\
\mu_{b c}
\end{array}\right] \stackrel{D_{a}}{\longmapsto}\left[\begin{array}{c}
\nabla_{a} X_{b}-\mu_{a b} \\
\nabla_{a} \mu_{b c}-R_{b c}{ }^{d}{ }_{a} X_{d}
\end{array}\right]
$$

Curvature

$$
D_{[a} D_{b]}\left[\begin{array}{c}
X_{c} \\
\mu_{c d}
\end{array}\right]=\left[\begin{array}{c}
0 \\
R_{a b}{ }^{e}{ }_{[c} \mu_{d] e}+R_{c d}{ }^{e}\left[{ }_{[a} \mu_{b] e}-\frac{1}{2}\left(\nabla^{e} R_{a b c d}\right) X_{e}\right.
\end{array}\right]
$$

Flat $\Leftrightarrow R_{a b c d}=$ constant $\times\left(g_{a c} g_{b d}-g_{b c} g_{a d}\right)$
$\therefore \operatorname{dim}\{$ Killing fields on n-sphere $\}=n(n+1) / 2 \quad \mathfrak{s o}(n+1) \checkmark$

Proof of Saint-Venant (and more!)

de Rham complex coupled with prolongation connection

$$
\left.\begin{array}{cccccc}
E & D & \wedge^{1} \otimes E & \longrightarrow \Lambda^{2} \otimes E & \longrightarrow & \Lambda^{3} \otimes E
\end{array}\right] \cdots \cdots
$$

Diagram chasing \leadsto

$$
\begin{aligned}
& \wedge^{1} \xrightarrow{\mathcal{K}} \odot^{2} \wedge^{1} \\
& h_{a b} \stackrel{c}{c} \xrightarrow{\text { Calabi operator }} \\
& \nabla_{(a} \nabla_{c} h_{b d}-\nabla_{(b} \nabla_{c} h_{a d}-\nabla_{(a} \nabla_{d)} h_{b c}+\nabla_{(b} \nabla_{d)} h_{a c} \\
&-R_{a b}{ }^{e}\left[c h_{d] e}-R_{c d} e^{e} h_{b] e}\right.
\end{aligned}
$$

Locally symmetric spaces

Locally symmetric $\Leftrightarrow \nabla_{a} R_{b c d e}=0$
Example: Fubini-Study metric on complex projective space
F. Costanza, ME, T. Leistner, B. McMillan, arXiv:2112.00841

A Calabi operator for Riemannian locally symmetric spaces

$$
\nabla_{a} R_{b c d e}=0 \Rightarrow \quad \begin{aligned}
& \wedge^{1} \longrightarrow \boldsymbol{\mathcal { K }} \quad \mathcal{C} \mid \quad \text { commutes } \\
& \left.d\right|_{\downarrow} \quad \mathcal{R} \quad \boxminus \\
& \wedge^{2} \longrightarrow 2 R_{a b}{ }^{e}{ }_{[c} \mu_{d] e}+2 R_{c d}{ }^{e}{ }_{[a} \mu_{b] e}
\end{aligned}
$$

a complex of linear differential operators

$$
\square \xrightarrow{\mathcal{K}} \square \xrightarrow{\mathcal{L}} \bar{\boxplus} \equiv \square / \mathcal{R}\left(\wedge^{2}\right)
$$

Integrability conditions

Theorem (CELM) On an irreducible Riemannian locally symmetric space, the complex $\square \xrightarrow{\mathcal{K}} \square \xrightarrow{\mathcal{L}} \overline{\mathbb{B}}$ is locally exact

Example the round (unit) n-sphere: due to Calabi 1961 $\mathcal{R}: \wedge^{2} \rightarrow \Pi$ vanishes, $\Pi=\Pi$, and $\mathcal{L}=\mathcal{C}$ is given by

$$
\begin{array}{r}
h_{a b} \mapsto \nabla_{(a} \nabla_{c)} h_{b d}-\nabla_{(b} \nabla_{c)} h_{a d}-\nabla_{(a} \nabla_{d)} h_{b c}+\nabla_{(b} \nabla_{d)} h_{a c} \\
+g_{a c} h_{b d}-g_{b c} h_{a d}-g_{a d} h_{b c}+g_{b d} h_{a c}
\end{array}
$$

Example the Fubini-Study metric on $\mathbb{C P}_{n}$: Kähler form $J_{a b}$

$$
R_{a b c d}=\underbrace{g_{a c} g_{b d}-g_{b c} g_{a d}}_{\text {cf. sphere }}+\underbrace{J_{a c} J_{b d}-J_{b c} J_{a d}+2 J_{a b} J_{c d}}_{\text {new bits }}
$$

Complex projective space cont'd

What about $\mathcal{R}: \wedge^{2} \rightarrow \square$?
\boxplus splits into ten irreducible pieces (Tricerri-Vanhecke 1981)

Therefore (CELM)
two pieces
killed by \mathcal{R}
one piece injected by \mathcal{R}
$\square \xrightarrow{\mathcal{K}} \square \xrightarrow{\mathcal{L}} \bar{\square}=\square / C$ is locally exact
In fact, $\square \xrightarrow{\mathcal{K}} \square \longrightarrow \Xi_{\perp}$ is globally exact $\left\{\begin{array}{l}\text { E-Goldschmidt } \\ E-S l o v a ́ k\end{array}\right.$

Other (pseudo-)Riemannian metrics

Products of irreducible Riemannian locally symmetric spaces?
CELM: $\square \xrightarrow{\mathcal{K}} \square \xrightarrow{\mathcal{L}} \overline{\mathbb{T}}$ is locally exact unless there is

- at least one flat factor and
- at least one Hermitian factor

Examples

$$
S^{2} \times S^{2} \boldsymbol{\checkmark} \quad S^{1} \times S^{3} \boldsymbol{\cup} \quad \mathbb{C P}_{1} \times \mathbb{C P}_{5} \boldsymbol{V} \quad S^{1} \times S^{2} \times
$$

Warped products
Example Schwarzschild solution (Khavkine 2019)
Kerr solution
(Aksteiner, Andersson, Bäckdahl, Khavkine, Whiting 2021)

THE END

THANK YOU

