Algebraic degree of the Bergman kernel

Hang Xu joint work with P. Ebenfelt and M. Xiao

(Postdoc at) Department of Mathematics, University of California, San Diego

October 12, 2021

UC San Diego

Roadmap

- Background on the Bergman kernel.
- Main results (in \mathbb{C}^2).
 - Algebraic degree of the Bergman kernel.
 - Total degree of the Bergman kernel.
- Some generalization and question in higher dimensional case.

Introduction

- Let Ω be a bounded domain in \mathbb{C}^n .
- Let $L^2(\Omega)$ denote the Hilbert space with the inner product

$$(f,g)=\int_{\Omega}f\cdot\bar{g}\;dV_E.$$

Introduction

- Let Ω be a bounded domain in \mathbb{C}^n .
- Let $L^2(\Omega)$ denote the Hilbert space with the inner product

$$(f,g) = \int_{\Omega} f \cdot \bar{g} \, dV_E.$$

- Let $A^2(\Omega) \subset L^2(\Omega)$ be the subspace of holomorphic functions.
- The Bergman projection is the orthogonal projection

$$\Pi: L^2(\Omega) \to A^2(\Omega).$$

(4月) (1日) (日)

The Bergman kernel

• The *Bergman kernel* K_{Ω} is the distribution kernel of Π :

$$\Pi(f)(x) = \int_{\Omega} f(y) \cdot K_{\Omega}(x, y) \, dV_E.$$

• If $\{\varphi_k\}$ is an ONB for $A^2(\Omega)$, then

$$K_{\Omega}(x, \bar{y}) = \sum_{k} \varphi_k(x) \cdot \overline{\varphi_k(y)}.$$

The Bergman kernel

• The *Bergman kernel* K_{Ω} is the distribution kernel of Π :

$$\Pi(f)(x) = \int_{\Omega} f(y) \cdot K_{\Omega}(x, y) \, dV_E.$$

• If $\{\varphi_k\}$ is an ONB for $A^2(\Omega)$, then

$$K_{\Omega}(x, \bar{y}) = \sum_{k} \varphi_k(x) \cdot \overline{\varphi_k(y)}.$$

• The *Bergman metric* is

$$\omega_{\Omega} = i\partial\overline{\partial}\log K_{\Omega}(x,\bar{x}) > 0.$$

The Bergman kernel

• The *Bergman kernel* K_{Ω} is the distribution kernel of Π :

$$\Pi(f)(x) = \int_{\Omega} f(y) \cdot K_{\Omega}(x, y) \, dV_E.$$

• If $\{\varphi_k\}$ is an ONB for $A^2(\Omega)$, then

$$K_{\Omega}(x,ar{y}) = \sum_k arphi_k(x) \cdot \overline{arphi_k(y)}.$$

• The *Bergman metric* is

$$\omega_{\Omega} = i\partial\overline{\partial}\log K_{\Omega}(x,\bar{x}) > 0.$$

• **Remark.** The Bergman kernel for polarized Kähler manifold* (in the talks by Bayraktar and Coman) is related to but different from the one here.

・ロト ・ 同ト ・ ヨト ・ ヨト

Some important results

A broad question: Characterize model domains by their Bergman kernels.

Q. Lu: Let Ω be a bounded domain in Cⁿ. If the Bergman metric is complete and has constant holomorphic sectional curvature, then Ω is biholomorphic to Bⁿ.

Some important results

A broad question: Characterize model domains by their Bergman kernels.

- Q. Lu: Let Ω be a bounded domain in Cⁿ. If the Bergman metric is complete and has constant holomorphic sectional curvature, then Ω is biholomorphic to Bⁿ.
- Cheng-Yau: For any bounded pseudoconvex domain with *C*² boundary, there exists a unique complete KE metric with Ricci curvature -1.
- Yau's question: Classify pseudoconvex domains whose Bergman metrics are KE.

・ロト ・ 四ト ・ ヨト ・ ヨト

Some important results

A broad question: Characterize model domains by their Bergman kernels.

- Q. Lu: Let Ω be a bounded domain in Cⁿ. If the Bergman metric is complete and has constant holomorphic sectional curvature, then Ω is biholomorphic to Bⁿ.
- Cheng-Yau: For any bounded pseudoconvex domain with *C*² boundary, there exists a unique complete KE metric with Ricci curvature -1.
- Yau's question: Classify pseudoconvex domains whose Bergman metrics are KE.
- Cheng's conjecture: Let Ω be a bounded domain in Cⁿ with smooth and strictly pseudoconvex boundary. Then, the Bergman metric of Ω is KE
 ⇔ Ω is biholomorphic to Bⁿ.
- Cheng's conjecture is confirmed by Fu-Wong and Nemirovski-Shafikov for n = 2, and by Huang-Xiao for $n \ge 3$.

Algebraic Bergman kernel

Theorem 1 (Ebenfelt, Xiao and \sim , 2020)

Let $\Omega \subset \mathbb{C}^2$ be a bounded domain with smooth, strongly pseudoconvex boundary. Then, K_{Ω} is algebraic (rational) $\iff \Omega$ is algebraically (rationally) biholomorphic to \mathbb{B}^2 .

不得下 イヨト イヨ

Algebraic Bergman kernel

Theorem 1 (Ebenfelt, Xiao and \sim , 2020)

Let $\Omega \subset \mathbb{C}^2$ be a bounded domain with smooth, strongly pseudoconvex boundary. Then, K_{Ω} is algebraic (rational) $\iff \Omega$ is algebraically (rationally) biholomorphic to \mathbb{B}^2 .

Some further questions:

- What if the boundary is pseudoconvex?
- Some characterization on the biholomorphism?
- How about the higher dimensional case $n \ge 3$?

Algebraic degree and the total degree

Suppose the Bergman kernel $K(z, \overline{z})$ of Ω is algebraic. Let

$$P_{\min}(z,\bar{z},t) = \alpha_d(z,\bar{z})t^d + \ldots + \alpha_0(z,\bar{z}) \in \mathbb{C}[z,\bar{z},t]$$

be the minimal polynomial of *K*.

- (i) We define the *algebraic degree* of *K* to be *d*.
- (ii) We define the *total degree* of *K* to be the degree of P_{\min} in (z, \overline{z}, t) .

Algebraic degree and the total degree

Suppose the Bergman kernel $K(z, \overline{z})$ of Ω is algebraic. Let

$$P_{\min}(z,\bar{z},t) = \alpha_d(z,\bar{z})t^d + \ldots + \alpha_0(z,\bar{z}) \in \mathbb{C}[z,\bar{z},t]$$

be the minimal polynomial of *K*.

- (i) We define the *algebraic degree* of *K* to be *d*.
- (ii) We define the *total degree* of *K* to be the degree of P_{\min} in (z, \overline{z}, t) . **Remark.**
 - *K* is rational \iff the algebraic degree of *K* is 1.
 - In this case, we can write K(z, z̄) = ^{p(z,z̄)}/_{q(z,z̄)} with gcd(p,q) = 1. Then qt − p is a minimal polynomial of K, and the total degree of K is max{deg q + 1, deg p}.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Roadmap

- Background on the Bergman kernel.
- **2** Main results (in \mathbb{C}^2).
 - Algebraic degree of the Bergman kernel.
 - Total degree of the Bergman kernel.
- Some generalization and question in higher dimensional case.

Main result on the algebraic degree

Theorem 2 (Ebenfelt, Xiao and \sim , 2021)

Let $\Omega \subset \mathbb{C}^2$ be a smoothly bounded pseudoconvex domain. Assume the Bergman kernel K of Ω is algebraic. Then the boundary $\partial \Omega$ is real algebraic and therefore of finite type. Moreover, if we write d for the algebraic degree of K and $r(\xi)$ for the type of $\partial \Omega$ at $\xi \in \partial \Omega$,

 $\max_{\xi\in\partial\Omega} r(\xi) \leq 2d.$

Main result on the algebraic degree

Theorem 2 (Ebenfelt, Xiao and \sim , 2021)

Let $\Omega \subset \mathbb{C}^2$ be a smoothly bounded pseudoconvex domain. Assume the Bergman kernel K of Ω is algebraic. Then the boundary $\partial \Omega$ is real algebraic and therefore of finite type. Moreover, if we write d for the algebraic degree of K and $r(\xi)$ for the type of $\partial \Omega$ at $\xi \in \partial \Omega$,

 $\max_{\xi\in\partial\Omega} r(\xi) \leq 2d.$

Remark. This inequality is sharp in the following sense.

- Consider the unit ball \mathbb{B}^2 .
 - \mathbb{B}^2 is strongly pseudoconvex $\implies r(\xi) \equiv 2$.
 - $K_{\mathbb{B}^2}(z, \overline{z}) = \frac{2}{\pi^2} \frac{1}{(1-|z|^2)^3}$ is rational $\Longrightarrow d = 1$.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Remark. (cont.)

- Consider the egg domains $E_d = \{|z|^2 + |w|^{2d} \le 1\}$ for any $d \ge 2$.
 - E_d has type 2*d* for points with w = 0.
 - D'Angelo's formula.

$$K((z,w),\overline{(z,w)}) = \sum_{k=0}^{2} c_k \frac{(1-|z|^2)^{-2+\frac{k}{d}}}{\left((1-|z|^2)^{\frac{1}{d}}-|w|^2\right)^{1+k}},$$

with $c_0 = 0, c_1 = \frac{1}{\pi^2} \cdot \frac{d-1}{d}$, and $c_2 = \frac{1}{\pi^2} \cdot \frac{2}{d}$. • *K* is of algebraic degree *d*.

Corollary 1

Let $\Omega \subset \mathbb{C}^2$ be a smoothly bounded pseudoconvex domain. If the Bergman kernel K_{Ω} is rational, then $r(\xi) = 2$ for all $\xi \in \partial \Omega$, i.e., $\partial \Omega$ is strongly pseudoconvex. In this case, there is a rational biholomorphism from Ω to the unit ball \mathbb{B}^2 .

Corollary 1

Let $\Omega \subset \mathbb{C}^2$ be a smoothly bounded pseudoconvex domain. If the Bergman kernel K_{Ω} is rational, then $r(\xi) = 2$ for all $\xi \in \partial \Omega$, i.e., $\partial \Omega$ is strongly pseudoconvex. In this case, there is a rational biholomorphism from Ω to the unit ball \mathbb{B}^2 .

Remark.

• The condition "smoothly" (i.e., smooth boundary) cannot be dropped, because the bidisk $D(0,1) \times D(0,1)$ also has rational Bergman kernel. (More examples like generalized Hartogs triangles, certain class of elementary Reinhardt domains by the work of Chakrabarti, Edholm, Huo, Zeytuncu...)

Corollary 1

Let $\Omega \subset \mathbb{C}^2$ be a smoothly bounded pseudoconvex domain. If the Bergman kernel K_{Ω} is rational, then $r(\xi) = 2$ for all $\xi \in \partial \Omega$, i.e., $\partial \Omega$ is strongly pseudoconvex. In this case, there is a rational biholomorphism from Ω to the unit ball \mathbb{B}^2 .

Remark.

- The condition "smoothly" (i.e., smooth boundary) cannot be dropped, because the bidisk $D(0,1) \times D(0,1)$ also has rational Bergman kernel. (More examples like generalized Hartogs triangles, certain class of elementary Reinhardt domains by the work of Chakrabarti, Edholm, Huo, Zeytuncu...)
- The condition "rational" cannot be relaxed to "algebraic", because the egg domain E_d has algebraic Bergman kernel.

Main ingredients for the improvement

• The Fefferman/Boute de Monvel-Sjöstrand Asymptotics. If $\Omega = \{\rho > 0\} \Subset \mathbb{C}^n$ has smooth, strongly pseudoconvex boundary, then $\exists \phi, \psi \in C^{\infty}(\overline{\Omega})$ such that

$$K_{\Omega} = \frac{\phi}{\rho^{n+1}} + \psi \log \rho.$$

Main ingredients for the improvement

• The Fefferman/Boute de Monvel-Sjöstrand Asymptotics. If $\Omega = \{\rho > 0\} \Subset \mathbb{C}^n$ has smooth, strongly pseudoconvex boundary, then $\exists \phi, \psi \in C^{\infty}(\overline{\Omega})$ such that

$$K_{\Omega} = \frac{\phi}{\rho^{n+1}} + \psi \log \rho.$$

Hsiao and Savale's generalization to pseudoconvex domains of finite type in C².
 Given ξ ∈ ∂Ω of type *r*, the Bergman kernel K(z, z̄) has the following asymptotic expansion when z → ξ along a transversal direction:

$$K(z,\bar{z}) = \rho^{-2-\frac{2}{r}} \left(\sum_{j=0}^{N} c_j \rho^{\frac{j}{r}} + O(\rho^{\frac{N+1}{r}}) \right) + \psi \log \rho.$$

(日) (同) (王) (日) (日)

• Algebraicity.

$$\alpha_d(z,\bar{z})K^d + \dots + \alpha_0(z,\bar{z}) \equiv 0, \quad (\alpha_d \neq 0).$$

 $\implies * a_d(z, \overline{z}) = 0$ on $\partial \Omega \implies \partial \Omega$ is algebraic \implies finite type.

• Algebraicity.

$$\alpha_d(z,\bar{z})K^d + \dots + \alpha_0(z,\bar{z}) \equiv 0, \quad (\alpha_d \neq 0).$$

 $\implies * a_d(z, \bar{z}) = 0 \text{ on } \partial \Omega \implies \partial \Omega \text{ is algebraic } \implies \text{ finite type.}$

• Hsiao and Savale's asymptotics. Take N = 0. On a transversal line L(t),

$$K|_{L} = \rho^{-2-\frac{2}{r}} \left(c_{0} + O(\rho^{\frac{1}{r}}) \right) + \psi \log \rho = \rho^{-2-\frac{2}{r}} \left(c_{0} + O(\rho^{\frac{1}{r}}) \right).$$

$$\alpha_d(t) \left(c_0^d + O(t^{\frac{1}{r}}) \right) + \alpha_{d-1}(t) t^2 t^{\frac{2}{r}} \left(c_0^{d-1} + O(t^{\frac{1}{r}}) \right) + \dots + \alpha_0(t) t^{2d} t^{\frac{2d}{r}} = 0.$$

• Fu-Wong's type lemma. If

$$\sum_{j=0}^{r-1} \beta_j(t) t^{\frac{j}{r}} \left(c_0^j + o(1) \right) \equiv 0 \quad \text{on } (0, \varepsilon),$$

then each $\beta_j(t)$ for $0 \le j \le r - 1$ vanishes to infinite order at 0.

• Fu-Wong's type lemma. If

$$\sum_{j=0}^{r-1} \beta_j(t) t^{\frac{j}{r}} \left(c_0^j + o(1) \right) \equiv 0 \quad \text{on } (0, \varepsilon),$$

then each $\beta_j(t)$ for $0 \le j \le r - 1$ vanishes to infinite order at 0.

• **Conclusion.** Assume 2d < r. Then $\alpha_d \equiv 0$ and this is a contradiction.

Roadmap

- Background on the Bergman kernel.
- **2** Main results (in \mathbb{C}^2).
 - Algebraic degree of the Bergman kernel.
 - Total degree of the Bergman kernel.
- Some generalization and question in higher dimensional case.

Main result on the total degree

Theorem 3 (Ebenfelt, Xiao and \sim , 2021)

Let $\Omega \subset \mathbb{C}^2$ be a smoothly bounded pseudoconvex domain. Let K be the Bergman kernel of Ω . If K is algebraic, then

- (a) The total degree of $K \ge 7$.
- (b) The total degree of K = 7 if and only if Ω is the unit ball up to a complex linear transformation. In this case, K is rational.

< 6 >

Main result on the total degree

Theorem 3 (Ebenfelt, Xiao and \sim , 2021)

Let $\Omega \subset \mathbb{C}^2$ be a smoothly bounded pseudoconvex domain. Let K be the Bergman kernel of Ω . If K is algebraic, then

- (a) The total degree of $K \ge 7$.
- (b) The total degree of K = 7 if and only if Ω is the unit ball up to a complex linear transformation. In this case, K is rational.

E.g.

• If $\Omega = \mathbb{B}^2$, then $K_{\mathbb{B}^2}(z, \bar{z}) = \frac{2}{\pi^2} \frac{1}{(1-|z|^2)^3}$ and its minimal polynomial over $\mathbb{C}[z, \bar{z}]$ is $(1-|z|^2)^3 t - \frac{2}{\pi^2} = 0.$

So the total degree is 7.

ヘロト 人間ト ヘヨト ヘヨト

Recall that if $K = \frac{p}{q}$ is rational, then the total degree is $\max\{\deg p, \deg q + 1\}$. By this relation, we get

Corollary 2

Let $\Omega \subset \mathbb{C}^2$ be a smoothly bounded pseudoconvex domain. Let K be the Bergman kernel of Ω . If K is rational, by writing $K = \frac{p}{q}$ for some polynomials with gcd(p,q) = 1, we have

- (a) $\max\{\deg p, \deg q\} \ge 6.$
- (b) $\max\{\deg p, \deg q\} = 6$ holds if and only if Ω is a the unit ball up to a complex *linear transformation.*

• The Feffermen expansion nearby strongly pseudoconvex points. Let p be a strongly pseudoconvex point on $\partial \Omega$. Then we have the Fefferman expansion in a neighborhood U of p.

$$K = \frac{\phi}{\rho^3} + \psi \log \rho \implies \frac{1}{K} = \frac{\rho^3}{\phi + \psi \rho^3 \log \rho} = O(\rho^3).$$

• The Feffermen expansion nearby strongly pseudoconvex points. Let p be a strongly pseudoconvex point on $\partial\Omega$. Then we have the Fefferman expansion in a neighborhood U of p.

$$K = \frac{\phi}{\rho^3} + \psi \log \rho \implies \frac{1}{K} = \frac{\rho^3}{\phi + \psi \rho^3 \log \rho} = O(\rho^3).$$

• Algebraicity.

.

$$a_d = \frac{1}{K} \left(-a_{d-1} - a_{d-2} \frac{1}{K} - \dots - a_0 \frac{1}{K^{d-1}} \right) = O(\rho^3)$$

• The Feffermen expansion nearby strongly pseudoconvex points. Let p be a strongly pseudoconvex point on $\partial\Omega$. Then we have the Fefferman expansion in a neighborhood U of p.

$$K = \frac{\phi}{\rho^3} + \psi \log \rho \implies \frac{1}{K} = \frac{\rho^3}{\phi + \psi \rho^3 \log \rho} = O(\rho^3).$$

• Algebraicity.

$$a_d = \frac{1}{K} \left(-a_{d-1} - a_{d-2} \frac{1}{K} - \dots - a_0 \frac{1}{K^{d-1}} \right) = O(\rho^3)$$

• $\mathcal{I} := \{a \in \mathbb{C}[z, \overline{z}] : a \equiv 0 \text{ on } \partial\Omega, \text{ and } \overline{a} = a\} \subset \mathbb{R}[\operatorname{Re} z, \operatorname{Im} z].$ \mathcal{I} is a principal ideal and we take *r* as a generator. Then deg $r \geq 2$.

・ロト ・ 同ト ・ ヨト ・ ヨト

• Compare the vanishing order.

$$a_d = r^3 q(z, \bar{z}).$$

• Count the degree.

total degree $\geq \deg a_d + d \geq 7$.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ Ξ ► < Ξ ►</p>

• Compare the vanishing order.

$$a_d = r^3 q(z, \bar{z}).$$

Count the degree.

```
total degree \geq \deg a_d + d \geq 7.
```

• Equality.

total degree of $K = 7 \implies \deg r = 2, \deg q = 0$ and d = 1. Ω is a real ellipsoid by a complex linear transformation.

By Theorem 1, Ω biholomorphic to B².
 Then*, Ω is biholomorphic to B² by a complex linear transformation.

・ロト ・ 同ト ・ ヨト ・ ヨト

• Compare the vanishing order.

$$a_d = r^3 q(z, \bar{z}).$$

Count the degree.

total degree
$$\geq \deg a_d + d \geq 7$$
.

• Equality.

total degree of $K = 7 \implies \deg r = 2, \deg q = 0$ and d = 1. Ω is a real ellipsoid by a complex linear transformation.

By Theorem 1, Ω biholomorphic to B².
 Then*, Ω is biholomorphic to B² by a complex linear transformation.

Remark If the total degree ≤ 9 , then deg r < 3 and we can still prove $\Omega = \mathbb{B}^2$. So there is a gap from the smallest total degree to the second smallest one.

・ロト ・ 同ト ・ ヨト ・ ヨト

Roadmap

- Background on the Bergman kernel.
- **2** Main results (in \mathbb{C}^2).
 - Algebraic degree of the Bergman kernel.
 - Total degree of the Bergman kernel.
- Some generalization and question in higher dimensional case.

Some generalization to higher dimensions

In the higher dimensional case, we can only prove a weaker result.

Theorem 4 (Ebenfelt, Xiao and \sim , 2021)

Let $\Omega \subset \mathbb{C}^n (n \ge 2)$ be a smoothly bounded pseudoconvex domain. Let K be the Bergman kernel of Ω . If K is algebraic, then

- (a) The total degree of $K \ge 2n + 3$.
- (b) If the total degree of K = 2n + 3, then Ω is a real ellipsoid up to a complex linear transformation in Cⁿ.

Some generalization to higher dimensions

In the higher dimensional case, we can only prove a weaker result.

Theorem 4 (Ebenfelt, Xiao and \sim , 2021)

Let $\Omega \subset \mathbb{C}^n (n \ge 2)$ be a smoothly bounded pseudoconvex domain. Let K be the Bergman kernel of Ω . If K is algebraic, then

- (a) The total degree of $K \ge 2n + 3$.
- (b) If the total degree of K = 2n + 3, then Ω is a real ellipsoid up to a complex linear transformation in Cⁿ.

We conjecture that part (b) can be improved to **Conjecture.**

(b') The total degree of K = 2n + 3 if and only if Ω is \mathbb{B}^n up to a complex linear transformation.

Some generalization to higher dimensions

This conjecture is confirmed if in addition we assume Ω is close to \mathbb{B}^n under the Hausdorff distance.

Theorem 5 (Ebenfelt, Xiao and \sim , 2021)

Let $\Omega \subset \mathbb{C}^n (n \geq 2)$ be a smoothly bounded pseudoconvex domain. Suppose the Hausdorff distance $d_H(\Omega, \mathbb{B}^n)$ is sufficiently small. Let K be the Bergman kernel of Ω . If K is algebraic, then the total degree of K = 2n + 3 if and only if Ω is the unit ball up to a complex linear transformation in \mathbb{C}^n .

- $\Omega = \Phi(E(A))$ by some complex linear transformation Φ and some ellipsoid $E(A) = \{|z|^2 + \sum A_j(z_j^2 + \overline{z_j}^2) < 0\}.$
- $d_H(\Omega, \mathbb{B}^n)$ is small $\implies A = (A_1, \cdots, A_n)$ is sufficiently small.

- $\Omega = \Phi(E(A))$ by some complex linear transformation Φ and some ellipsoid $E(A) = \{|z|^2 + \sum A_j(z_j^2 + \overline{z_j}^2) < 0\}.$
- $d_H(\Omega, \mathbb{B}^n)$ is small $\implies A = (A_1, \cdots, A_n)$ is sufficiently small.
- K_{Ω} is algebraic $\implies K_{E_A}$ is algebraic $\implies K_{E_A}$ has no log singularity in the Fefferman expansion.
- Ramadamov conjecture is true for E_A with small A by Hirachi. $\implies A = 0$ and $E_A = \mathbb{B}^n$.

- $\Omega = \Phi(E(A))$ by some complex linear transformation Φ and some ellipsoid $E(A) = \{|z|^2 + \sum A_j(z_j^2 + \overline{z_j}^2) < 0\}.$
- $d_H(\Omega, \mathbb{B}^n)$ is small $\implies A = (A_1, \cdots, A_n)$ is sufficiently small.
- K_{Ω} is algebraic $\implies K_{E_A}$ is algebraic $\implies K_{E_A}$ has no log singularity in the Fefferman expansion.
- Ramadamov conjecture is true for E_A with small A by Hirachi. $\implies A = 0$ and $E_A = \mathbb{B}^n$.

Remark. The above conjecture is implied by the RC for ellipsoids.

Thank you for your attention!

ヘロト ヘロト ヘヨト ヘヨト