Algebraic degree of the Bergman kernel

Hang Xu joint work with P. Ebenfelt and M. Xiao

(Postdoc at) Department of Mathematics, University of California, San Diego

October 12, 2021

UCSanDiego

Roadmap

- Background on the Bergman kernel.
- Main results (in \mathbb{C}^{2}).
- Algebraic degree of the Bergman kernel.
- Total degree of the Bergman kernel.
- Some generalization and question in higher dimensional case.

Introduction

- Let Ω be a bounded domain in \mathbb{C}^{n}.
- Let $L^{2}(\Omega)$ denote the Hilbert space with the inner product

$$
(f, g)=\int_{\Omega} f \cdot \bar{g} d V_{E}
$$

Introduction

- Let Ω be a bounded domain in \mathbb{C}^{n}.
- Let $L^{2}(\Omega)$ denote the Hilbert space with the inner product

$$
(f, g)=\int_{\Omega} f \cdot \bar{g} d V_{E}
$$

- Let $A^{2}(\Omega) \subset L^{2}(\Omega)$ be the subspace of holomorphic functions.
- The Bergman projection is the orthogonal projection

$$
\Pi: L^{2}(\Omega) \rightarrow A^{2}(\Omega) .
$$

The Bergman kernel

- The Bergman kernel K_{Ω} is the distribution kernel of Π :

$$
\Pi(f)(x)=\int_{\Omega} f(y) \cdot K_{\Omega}(x, y) d V_{E}
$$

- If $\left\{\varphi_{k}\right\}$ is an ONB for $A^{2}(\Omega)$, then

$$
K_{\Omega}(x, \bar{y})=\sum_{k} \varphi_{k}(x) \cdot \overline{\varphi_{k}(y)} .
$$

The Bergman kernel

- The Bergman kernel K_{Ω} is the distribution kernel of Π :

$$
\Pi(f)(x)=\int_{\Omega} f(y) \cdot K_{\Omega}(x, y) d V_{E}
$$

- If $\left\{\varphi_{k}\right\}$ is an ONB for $A^{2}(\Omega)$, then

$$
K_{\Omega}(x, \bar{y})=\sum_{k} \varphi_{k}(x) \cdot \overline{\varphi_{k}(y)} .
$$

- The Bergman metric is

$$
\omega_{\Omega}=i \partial \bar{\partial} \log K_{\Omega}(x, \bar{x})>0 .
$$

The Bergman kernel

- The Bergman kernel K_{Ω} is the distribution kernel of Π :

$$
\Pi(f)(x)=\int_{\Omega} f(y) \cdot K_{\Omega}(x, y) d V_{E}
$$

- If $\left\{\varphi_{k}\right\}$ is an ONB for $A^{2}(\Omega)$, then

$$
K_{\Omega}(x, \bar{y})=\sum_{k} \varphi_{k}(x) \cdot \overline{\varphi_{k}(y)} .
$$

- The Bergman metric is

$$
\omega_{\Omega}=i \partial \bar{\partial} \log K_{\Omega}(x, \bar{x})>0 .
$$

- Remark. The Bergman kernel for polarized Kähler manifold* (in the talks by Bayraktar and Coman) is related to but different from the one here.

Some important results

A broad question: Characterize model domains by their Bergman kernels.

- Q. Lu: Let Ω be a bounded domain in \mathbb{C}^{n}. If the Bergman metric is complete and has constant holomorphic sectional curvature, then Ω is biholomorphic to \mathbb{B}^{n}.

Some important results

A broad question: Characterize model domains by their Bergman kernels.

- Q. Lu: Let Ω be a bounded domain in \mathbb{C}^{n}. If the Bergman metric is complete and has constant holomorphic sectional curvature, then Ω is biholomorphic to \mathbb{B}^{n}.
- Cheng-Yau: For any bounded pseudoconvex domain with C^{2} boundary, there exists a unique complete KE metric with Ricci curvature -1 .
- Yau's question: Classify pseudoconvex domains whose Bergman metrics are KE.

Some important results

A broad question: Characterize model domains by their Bergman kernels.

- Q. Lu: Let Ω be a bounded domain in \mathbb{C}^{n}. If the Bergman metric is complete and has constant holomorphic sectional curvature, then Ω is biholomorphic to \mathbb{B}^{n}.
- Cheng-Yau: For any bounded pseudoconvex domain with C^{2} boundary, there exists a unique complete KE metric with Ricci curvature -1 .
- Yau's question: Classify pseudoconvex domains whose Bergman metrics are KE.
- Cheng's conjecture: Let Ω be a bounded domain in \mathbb{C}^{n} with smooth and strictly pseudoconvex boundary. Then, the Bergman metric of Ω is KE $\Longleftrightarrow \Omega$ is biholomorphic to \mathbb{B}^{n}.
- Cheng's conjecture is confirmed by Fu-Wong and Nemirovski-Shafikov for $n=2$, and by Huang-Xiao for $n \geq 3$.

Algebraic Bergman kernel

Theorem 1 (Ebenfelt, Xiao and ~, 2020)

Let $\Omega \subset \mathbb{C}^{2}$ be a bounded domain with smooth, strongly pseudoconvex boundary. Then, K_{Ω} is algebraic (rational) $\Longleftrightarrow \Omega$ is algebraically (rationally) biholomorphic to \mathbb{B}^{2}.

Algebraic Bergman kernel

Theorem 1 (Ebenfelt, Xiao and ~, 2020)

Let $\Omega \subset \mathbb{C}^{2}$ be a bounded domain with smooth, strongly pseudoconvex boundary. Then, K_{Ω} is algebraic (rational) $\Longleftrightarrow \Omega$ is algebraically (rationally) biholomorphic to \mathbb{B}^{2}.

Some further questions:

- What if the boundary is pseudoconvex?
- Some characterization on the biholomorphism?
- How about the higher dimensional case $n \geq 3$?

Algebraic degree and the total degree

Suppose the Bergman kernel $K(z, \bar{z})$ of Ω is algebraic. Let

$$
P_{\min }(z, \bar{z}, t)=\alpha_{d}(z, \bar{z}) t^{d}+\ldots+\alpha_{0}(z, \bar{z}) \in \mathbb{C}[z, \bar{z}, t]
$$

be the minimal polynomial of K.
(i) We define the algebraic degree of K to be d.
(ii) We define the total degree of K to be the degree of $P_{\min }$ in (z, \bar{z}, t).

Algebraic degree and the total degree

Suppose the Bergman kernel $K(z, \bar{z})$ of Ω is algebraic. Let

$$
P_{\min }(z, \bar{z}, t)=\alpha_{d}(z, \bar{z}) t^{d}+\ldots+\alpha_{0}(z, \bar{z}) \in \mathbb{C}[z, \bar{z}, t]
$$

be the minimal polynomial of K.
(i) We define the algebraic degree of K to be d.
(ii) We define the total degree of K to be the degree of $P_{\min }$ in (z, \bar{z}, t).

Remark.

- K is rational \Longleftrightarrow the algebraic degree of K is 1 .
- In this case, we can write $K(z, \bar{z})=\frac{p(z, \bar{z})}{q(z, \bar{z})}$ with $\operatorname{gcd}(p, q)=1$. Then $q t-p$ is a minimal polynomial of K, and the total degree of K is $\max \{\operatorname{deg} q+1, \operatorname{deg} p\}$.

Roadmap

(1) Background on the Bergman kernel.
(2) Main results (in \mathbb{C}^{2}).
(1) - Algebraic degree of the Bergman kernel.
(2) - Total degree of the Bergman kernel.
(3) Some generalization and question in higher dimensional case.

Main result on the algebraic degree

Theorem 2 (Ebenfelt, Xiao and ~, 2021)

Let $\Omega \subset \mathbb{C}^{2}$ be a smoothly bounded pseudoconvex domain. Assume the Bergman kernel K of Ω is algebraic. Then the boundary $\partial \Omega$ is real algebraic and therefore of finite type. Moreover, if we write d for the algebraic degree of K and $r(\xi)$ for the type of $\partial \Omega$ at $\xi \in \partial \Omega$,

$$
\max _{\xi \in \partial \Omega} r(\xi) \leq 2 d
$$

Main result on the algebraic degree

Theorem 2 (Ebenfelt, Xiao and ~, 2021)

Let $\Omega \subset \mathbb{C}^{2}$ be a smoothly bounded pseudoconvex domain. Assume the Bergman kernel K of Ω is algebraic. Then the boundary $\partial \Omega$ is real algebraic and therefore of finite type. Moreover, if we write d for the algebraic degree of K and $r(\xi)$ for the type of $\partial \Omega$ at $\xi \in \partial \Omega$,

$$
\max _{\xi \in \partial \Omega} r(\xi) \leq 2 d
$$

Remark. This inequality is sharp in the following sense.

- Consider the unit ball \mathbb{B}^{2}.
- \mathbb{B}^{2} is strongly pseudoconvex $\Longrightarrow r(\xi) \equiv 2$.
- $K_{\mathbb{B}^{2}}(z, \bar{z})=\frac{2}{\pi^{2}} \frac{1}{\left(1-|z|^{2}\right)^{3}}$ is rational $\Longrightarrow d=1$.

Remark. (cont.)

- Consider the egg domains $E_{d}=\left\{|z|^{2}+|w|^{2 d} \leq 1\right\}$ for any $d \geq 2$.
- E_{d} has type $2 d$ for points with $w=0$.
- D'Angelo's formula.

$$
K((z, w), \overline{(z, w)})=\sum_{k=0}^{2} c_{k} \frac{\left(1-|z|^{2}\right)^{-2+\frac{k}{d}}}{\left(\left(1-|z|^{2}\right)^{\frac{1}{d}}-|w|^{2}\right)^{1+k}},
$$

with $c_{0}=0, c_{1}=\frac{1}{\pi^{2}} \cdot \frac{d-1}{d}$, and $c_{2}=\frac{1}{\pi^{2}} \cdot \frac{2}{d}$.

- K is of algebraic degree d.

A corollary

Corollary 1

Let $\Omega \subset \mathbb{C}^{2}$ be a smoothly bounded pseudoconvex domain. If the Bergman kernel K_{Ω} is rational, then $r(\xi)=2$ for all $\xi \in \partial \Omega$, i.e., $\partial \Omega$ is strongly pseudoconvex. In this case, there is a rational biholomorphism from Ω to the unit ball \mathbb{B}^{2}.

A corollary

Corollary 1

Let $\Omega \subset \mathbb{C}^{2}$ be a smoothly bounded pseudoconvex domain. If the Bergman kernel K_{Ω} is rational, then $r(\xi)=2$ for all $\xi \in \partial \Omega$, i.e., $\partial \Omega$ is strongly pseudoconvex. In this case, there is a rational biholomorphism from Ω to the unit ball \mathbb{B}^{2}.

Remark.

- The condition "smoothly" (i.e., smooth boundary) cannot be dropped, because the bidisk $D(0,1) \times D(0,1)$ also has rational Bergman kernel. (More examples like generalized Hartogs triangles, certain class of elementary Reinhardt domains by the work of Chakrabarti, Edholm, Huo, Zeytuncu...)

A corollary

Corollary 1

Let $\Omega \subset \mathbb{C}^{2}$ be a smoothly bounded pseudoconvex domain. If the Bergman kernel K_{Ω} is rational, then $r(\xi)=2$ for all $\xi \in \partial \Omega$, i.e., $\partial \Omega$ is strongly pseudoconvex. In this case, there is a rational biholomorphism from Ω to the unit ball \mathbb{B}^{2}.

Remark.

- The condition "smoothly" (i.e., smooth boundary) cannot be dropped, because the bidisk $D(0,1) \times D(0,1)$ also has rational Bergman kernel. (More examples like generalized Hartogs triangles, certain class of elementary Reinhardt domains by the work of Chakrabarti, Edholm, Huo, Zeytuncu...)
- The condition "rational" cannot be relaxed to "algebraic", because the egg domain E_{d} has algebraic Bergman kernel.

Main ingredients for the improvement

- The Fefferman/Boute de Monvel-Sjöstrand Asymptotics. If $\Omega=\{\rho>0\} \Subset \mathbb{C}^{n}$ has smooth, strongly pseudoconvex boundary, then $\exists \phi, \psi \in C^{\infty}(\bar{\Omega})$ such that

$$
K_{\Omega}=\frac{\phi}{\rho^{n+1}}+\psi \log \rho .
$$

Main ingredients for the improvement

- The Fefferman/Boute de Monvel-Sjöstrand Asymptotics. If $\Omega=\{\rho>0\} \Subset \mathbb{C}^{n}$ has smooth, strongly pseudoconvex boundary, then $\exists \phi, \psi \in C^{\infty}(\bar{\Omega})$ such that

$$
K_{\Omega}=\frac{\phi}{\rho^{n+1}}+\psi \log \rho .
$$

- Hsiao and Savale's generalization to pseudoconvex domains of finite type in \mathbb{C}^{2}.
Given $\xi \in \partial \Omega$ of type r, the Bergman kernel $K(z, \bar{z})$ has the following asymptotic expansion when $z \rightarrow \xi$ along a transversal direction:

$$
K(z, \bar{z})=\rho^{-2-\frac{2}{r}}\left(\sum_{j=0}^{N} c_{j} \rho^{\frac{j}{r}}+O\left(\rho^{\frac{N+1}{r}}\right)\right)+\psi \log \rho .
$$

Sketch of the proof of Theorem 2

- Algebraicity.

$$
\alpha_{d}(z, \bar{z}) K^{d}+\cdots+\alpha_{0}(z, \bar{z}) \equiv 0, \quad\left(\alpha_{d} \not \equiv 0\right) .
$$

$\Longrightarrow{ }^{*} a_{d}(z, \bar{z})=0$ on $\partial \Omega \Longrightarrow \partial \Omega$ is algebraic \Longrightarrow finite type.

Sketch of the proof of Theorem 2

- Algebraicity.

$$
\alpha_{d}(z, \bar{z}) K^{d}+\cdots+\alpha_{0}(z, \bar{z}) \equiv 0, \quad\left(\alpha_{d} \not \equiv 0\right) .
$$

$\Longrightarrow{ }^{*} a_{d}(z, \bar{z})=0$ on $\partial \Omega \Longrightarrow \partial \Omega$ is algebraic \Longrightarrow finite type.

- Hsiao and Savale's asymptotics.

Take $N=0$. On a transversal line $L(t)$,

$$
\left.K\right|_{L}=\rho^{-2-\frac{2}{r}}\left(c_{0}+O\left(\rho^{\frac{1}{r}}\right)\right)+\psi \log \rho=\rho^{-2-\frac{2}{r}}\left(c_{0}+O\left(\rho^{\frac{1}{r}}\right)\right) .
$$

\Longrightarrow

$$
\alpha_{d}(t)\left(c_{0}^{d}+O\left(t^{\frac{1}{r}}\right)\right)+\alpha_{d-1}(t) t^{2} t^{\frac{2}{r}}\left(c_{0}^{d-1}+O\left(t^{\frac{1}{r}}\right)\right)+\cdots+\alpha_{0}(t) t^{2 d} t^{\frac{2 d}{r}}=0 .
$$

Sketch of the proof of Theorem 2

- Fu-Wong's type lemma. If

$$
\sum_{j=0}^{r-1} \beta_{j}(t) t^{\frac{j}{r}}\left(c_{0}^{j}+o(1)\right) \equiv 0 \quad \text { on }(0, \varepsilon)
$$

then each $\beta_{j}(t)$ for $0 \leq j \leq r-1$ vanishes to infinite order at 0 .

Sketch of the proof of Theorem 2

- Fu-Wong's type lemma. If

$$
\sum_{j=0}^{r-1} \beta_{j}(t) t^{\frac{j}{r}}\left(c_{0}^{j}+o(1)\right) \equiv 0 \quad \text { on }(0, \varepsilon)
$$

then each $\beta_{j}(t)$ for $0 \leq j \leq r-1$ vanishes to infinite order at 0 .

- Conclusion. Assume $2 d<r$.

Then $\alpha_{d} \equiv 0$ and this is a contradiction.

Roadmap

(1) Background on the Bergman kernel.
(2) Main results (in \mathbb{C}^{2}).
(1) - Algebraic degree of the Bergman kernel.
(2) - Total degree of the Bergman kernel.
(3) Some generalization and question in higher dimensional case.

Main result on the total degree

Theorem 3 (Ebenfelt, Xiao and ~, 2021)

Let $\Omega \subset \mathbb{C}^{2}$ be a smoothly bounded pseudoconvex domain. Let K be the Bergman kernel of Ω. If K is algebraic, then
(a) The total degree of $K \geq 7$.
(b) The total degree of $K=7$ if and only if Ω is the unit ball up to a complex linear transformation. In this case, K is rational.

Main result on the total degree

Theorem 3 (Ebenfelt, Xiao and ~, 2021)

Let $\Omega \subset \mathbb{C}^{2}$ be a smoothly bounded pseudoconvex domain. Let K be the Bergman kernel of Ω. If K is algebraic, then
(a) The total degree of $K \geq 7$.
(b) The total degree of $K=7$ if and only if Ω is the unit ball up to a complex linear transformation. In this case, K is rational.

E.g.

- If $\Omega=\mathbb{B}^{2}$, then $K_{\mathbb{B}^{2}}(z, \bar{z})=\frac{2}{\pi^{2}} \frac{1}{\left(1-|z|^{2}\right)^{3}}$ and its minimal polynomial over $\mathbb{C}[z, \bar{z}]$ is

$$
\left(1-|z|^{2}\right)^{3} t-\frac{2}{\pi^{2}}=0 .
$$

So the total degree is 7 .

A corollary

Recall that if $K=\frac{p}{q}$ is rational, then the total degree is $\max \{\operatorname{deg} p, \operatorname{deg} q+1\}$. By this relation, we get

Corollary 2

Let $\Omega \subset \mathbb{C}^{2}$ be a smoothly bounded pseudoconvex domain. Let K be the Bergman kernel of Ω. If K is rational, by writing $K=\frac{p}{q}$ for some polynomials with $\operatorname{gcd}(p, q)=1$, we have
(a) $\max \{\operatorname{deg} p, \operatorname{deg} q\} \geq 6$.
(b) $\max \{\operatorname{deg} p, \operatorname{deg} q\}=6$ holds if and only if Ω is a the unit ball up to a complex linear transformation.

Sketch of the proof of Theorem 3.

- The Feffermen expansion nearby strongly pseudoconvex points. Let p be a strongly pseudoconvex point on $\partial \Omega$. Then we have the Fefferman expansion in a neighborhood U of p.

$$
K=\frac{\phi}{\rho^{3}}+\psi \log \rho \Longrightarrow \frac{1}{K}=\frac{\rho^{3}}{\phi+\psi \rho^{3} \log \rho}=O\left(\rho^{3}\right) .
$$

Sketch of the proof of Theorem 3.

- The Feffermen expansion nearby strongly pseudoconvex points. Let p be a strongly pseudoconvex point on $\partial \Omega$. Then we have the Fefferman expansion in a neighborhood U of p.

$$
K=\frac{\phi}{\rho^{3}}+\psi \log \rho \Longrightarrow \frac{1}{K}=\frac{\rho^{3}}{\phi+\psi \rho^{3} \log \rho}=O\left(\rho^{3}\right) .
$$

- Algebraicity.

$$
a_{d}=\frac{1}{K}\left(-a_{d-1}-a_{d-2} \frac{1}{K}-\cdots-a_{0} \frac{1}{K^{d-1}}\right)=O\left(\rho^{3}\right)
$$

Sketch of the proof of Theorem 3.

- The Feffermen expansion nearby strongly pseudoconvex points. Let p be a strongly pseudoconvex point on $\partial \Omega$. Then we have the Fefferman expansion in a neighborhood U of p.

$$
K=\frac{\phi}{\rho^{3}}+\psi \log \rho \Longrightarrow \frac{1}{K}=\frac{\rho^{3}}{\phi+\psi \rho^{3} \log \rho}=O\left(\rho^{3}\right) .
$$

- Algebraicity.

$$
a_{d}=\frac{1}{K}\left(-a_{d-1}-a_{d-2} \frac{1}{K}-\cdots-a_{0} \frac{1}{K^{d-1}}\right)=O\left(\rho^{3}\right)
$$

- $\mathcal{I}:=\{a \in \mathbb{C}[z, \bar{z}]: a \equiv 0$ on $\partial \Omega$, and $\bar{a}=a\} \subset \mathbb{R}[\operatorname{Re} z, \operatorname{Im} z]$. \mathcal{I} is a principal ideal and we take r as a generator. Then $\operatorname{deg} r \geq 2$.

Sketch of the proof of Theorem 3

- Compare the vanishing order.

$$
a_{d}=r^{3} q(z, \bar{z}) .
$$

- Count the degree.

$$
\text { total degree } \geq \operatorname{deg} a_{d}+d \geq 7
$$

Sketch of the proof of Theorem 3

- Compare the vanishing order.

$$
a_{d}=r^{3} q(z, \bar{z})
$$

- Count the degree.

$$
\text { total degree } \geq \operatorname{deg} a_{d}+d \geq 7
$$

- Equality. total degree of $K=7 \Longrightarrow \operatorname{deg} r=2, \operatorname{deg} q=0$ and $d=1$. Ω is a real ellipsoid by a complex linear transformation.
- By Theorem $1, \Omega$ biholomorphic to \mathbb{B}^{2}.

Then*, Ω is biholomorphic to \mathbb{B}^{2} by a complex linear transformation.

Sketch of the proof of Theorem 3

- Compare the vanishing order.

$$
a_{d}=r^{3} q(z, \bar{z}) .
$$

- Count the degree.

$$
\text { total degree } \geq \operatorname{deg} a_{d}+d \geq 7
$$

- Equality.
total degree of $K=7 \Longrightarrow \operatorname{deg} r=2, \operatorname{deg} q=0$ and $d=1$.
Ω is a real ellipsoid by a complex linear transformation.
- By Theorem $1, \Omega$ biholomorphic to \mathbb{B}^{2}.

Then*, Ω is biholomorphic to \mathbb{B}^{2} by a complex linear transformation.
Remark If the total degree ≤ 9, then $\operatorname{deg} r<3$ and we can still prove $\Omega=\mathbb{B}^{2}$. So there is a gap from the smallest total degree to the second smallest one.

Roadmap

(1) Background on the Bergman kernel.
(2) Main results (in \mathbb{C}^{2}).

- - Algebraic degree of the Bergman kernel.
(2) Total degree of the Bergman kernel.
(3) Some generalization and question in higher dimensional case.

Some generalization to higher dimensions

In the higher dimensional case, we can only prove a weaker result.

Theorem 4 (Ebenfelt, Xiao and ~, 2021)

Let $\Omega \subset \mathbb{C}^{n}(n \geq 2)$ be a smoothly bounded pseudoconvex domain. Let K be the Bergman kernel of Ω. If K is algebraic, then
(a) The total degree of $K \geq 2 n+3$.
(b) If the total degree of $K=2 n+3$, then Ω is a real ellipsoid up to a complex linear transformation in \mathbb{C}^{n}.

Some generalization to higher dimensions

In the higher dimensional case, we can only prove a weaker result.

Theorem 4 (Ebenfelt, Xiao and ~, 2021)

Let $\Omega \subset \mathbb{C}^{n}(n \geq 2)$ be a smoothly bounded pseudoconvex domain. Let K be the Bergman kernel of Ω. If K is algebraic, then
(a) The total degree of $K \geq 2 n+3$.
(b) If the total degree of $K=2 n+3$, then Ω is a real ellipsoid up to a complex linear transformation in \mathbb{C}^{n}.

We conjecture that part (b) can be improved to
Conjecture.
(b^{\prime}) The total degree of $K=2 n+3$ if and only if Ω is \mathbb{B}^{n} up to a complex linear transformation.

Some generalization to higher dimensions

This conjecture is confirmed if in addition we assume Ω is close to \mathbb{B}^{n} under the Hausdorff distance.

Theorem 5 (Ebenfelt, Xiao and ~, 2021)

Let $\Omega \subset \mathbb{C}^{n}(n \geq 2)$ be a smoothly bounded pseudoconvex domain. Suppose the Hausdorff distance $d_{H}\left(\Omega, \mathbb{B}^{n}\right)$ is sufficiently small. Let K be the Bergman kernel of Ω. If K is algebraic, then the total degree of $K=2 n+3$ if and only if Ω is the unit ball up to a complex linear transformation in \mathbb{C}^{n}.

Sketch of the proof of Theorem 5

- $\Omega=\Phi(E(A))$ by some complex linear transformation Φ and some ellipsoid $E(A)=\left\{|z|^{2}+\sum A_{j}\left(z_{j}^{2}+\bar{z}_{j}^{2}\right)<0\right\}$.
- $d_{H}\left(\Omega, \mathbb{B}^{n}\right)$ is small $\Longrightarrow A=\left(A_{1}, \cdots, A_{n}\right)$ is sufficiently small.

Sketch of the proof of Theorem 5

- $\Omega=\Phi(E(A))$ by some complex linear transformation Φ and some ellipsoid $E(A)=\left\{|z|^{2}+\sum A_{j}\left(z_{j}^{2}+\bar{z}_{j}^{2}\right)<0\right\}$.
- $d_{H}\left(\Omega, \mathbb{B}^{n}\right)$ is small $\Longrightarrow A=\left(A_{1}, \cdots, A_{n}\right)$ is sufficiently small.
- K_{Ω} is algebraic $\Longrightarrow K_{E_{A}}$ is algebraic $\Longrightarrow K_{E_{A}}$ has no log singularity in the Fefferman expansion.
- Ramadamov conjecture is true for E_{A} with small A by Hirachi.
$\Longrightarrow A=0$ and $E_{A}=\mathbb{B}^{n}$.

Sketch of the proof of Theorem 5

- $\Omega=\Phi(E(A))$ by some complex linear transformation Φ and some ellipsoid $E(A)=\left\{|z|^{2}+\sum A_{j}\left(z_{j}^{2}+\bar{z}_{j}^{2}\right)<0\right\}$.
- $d_{H}\left(\Omega, \mathbb{B}^{n}\right)$ is small $\Longrightarrow A=\left(A_{1}, \cdots, A_{n}\right)$ is sufficiently small.
- K_{Ω} is algebraic $\Longrightarrow K_{E_{A}}$ is algebraic $\Longrightarrow K_{E_{A}}$ has no log singularity in the Fefferman expansion.
- Ramadamov conjecture is true for E_{A} with small A by Hirachi. $\Longrightarrow A=0$ and $E_{A}=\mathbb{B}^{n}$.
Remark. The above conjecture is implied by the RC for ellipsoids.

Thank you for your attention!

