A natural invariant measure for polynomial semigroups, and its properties

Mayuresh Londhe
Indian Institute of Science

mayureshl@iisc.ac.in

Virtual East-West Several Complex Variables seminar

October 19, 2021

${ }_{1}$ Preliminaries

X a complex manifold; $f: X \rightarrow X$ a map (or a multi-valued map) that is holomorphic/meromorphic.

${ }_{1}$ Preliminaries

X a complex manifold; $f: X \rightarrow X$ a map (or a multi-valued map) that is holomorphic/meromorphic.

In holomorphic dynamics, one studies the behaviour of (for $x \in X$)

$$
x, f(x), f^{2}(x), \ldots, f^{n}(x), \ldots \quad[\text { These could be non-singleton sets]. }
$$

${ }_{1}$ Preliminaries

X a complex manifold;
$f: X \rightarrow X$ a map (or a multi-valued map) that is holomorphic/meromorphic.

In holomorphic dynamics, one studies the behaviour of (for $x \in X$)

$$
x, f(x), f^{2}(x), \ldots, f^{n}(x), \ldots \quad \text { [These could be non-singleton sets]. }
$$

Example: Let f be a rational map on the Riemann sphere $\widehat{\mathbb{C}}$. Based on the behaviour of the points $x \in \widehat{\mathbb{C}}$, we have the dichotomy:

- The Fatou set of $f:=$ the set of normality (or equicontinuity) of $\left\{f^{n}: n \in \mathbb{Z}_{+}\right\}$.
- The Julia set of $f:=$ the complement of the Fatou set of f in $\widehat{\mathbb{C}}$.

${ }_{1}$ Preliminaries

X a complex manifold;
$f: X \rightarrow X$ a map (or a multi-valued map) that is holomorphic/meromorphic.

In holomorphic dynamics, one studies the behaviour of (for $x \in X$)

$$
x, f(x), f^{2}(x), \ldots, f^{n}(x), \ldots \quad \text { [These could be non-singleton sets]. }
$$

Example: Let f be a rational map on the Riemann sphere $\widehat{\mathbb{C}}$. Based on the behaviour of the points $x \in \widehat{\mathbb{C}}$, we have the dichotomy:

- The Fatou set of $f:=$ the set of normality (or equicontinuity) of $\left\{f^{n}: n \in \mathbb{Z}_{+}\right\}$.
- The Julia set of $f:=$ the complement of the Fatou set of f in $\widehat{\mathbb{C}}$.

The dynamics on Fatou sets is tame and the structure of Fatou sets is well understood. On the other hand, the dynamics on Julia sets is chaotic and, in the generic case, Julia sets are fractals.

${ }_{2}$ Some pictures

Certain dynamically defined measures on Julia sets provide an essential tool to find patterns in complexity, e.g., to study the geometry of Julia sets.

Certain dynamically defined measures on Julia sets provide an essential tool to find patterns in complexity, e.g., to study the geometry of Julia sets.

These measures are important because:

- These measures have many interesting properties (we shall mention some of these properties later).

Certain dynamically defined measures on Julia sets provide an essential tool to find patterns in complexity, e.g., to study the geometry of Julia sets.

These measures are important because:

- These measures have many interesting properties (we shall mention some of these properties later).
- In higher dimensions, Montel's theorem on normal families is less helpful, and the theory of quasi-conformal maps is deficient.

Certain dynamically defined measures on Julia sets provide an essential tool to find patterns in complexity, e.g., to study the geometry of Julia sets.

These measures are important because:

- These measures have many interesting properties (we shall mention some of these properties later).
- In higher dimensions, Montel's theorem on normal families is less helpful, and the theory of quasi-conformal maps is deficient.
- There is considerable success in constructing analogues of the above-mentioned measures, even for multi-valued maps.

Certain dynamically defined measures on Julia sets provide an essential tool to find patterns in complexity, e.g., to study the geometry of Julia sets.

These measures are important because:

- These measures have many interesting properties (we shall mention some of these properties later).
- In higher dimensions, Montel's theorem on normal families is less helpful, and the theory of quasi-conformal maps is deficient.
- There is considerable success in constructing analogues of the above-mentioned measures, even for multi-valued maps.

Mission statement of this talk: To study these measures from potential-theoretic points of view for the case of polynomial semigroups.

${ }_{4}$ What conceptual framework do we have?

We study measures that describe the limiting distribution of the iterated pre-images of any point excluding, perhaps, a small set of exceptional points. In short, such a measure is the weak* limit of the sequence $\left\{\mu_{n}\right\}$ (if limit exists), where:

$$
\mu_{n}:=\frac{1}{\sharp\left(f^{-n}\{a\}\right)} \sum_{f^{n}(z)=a} \delta_{z} .
$$

${ }_{4}$ What conceptual framework do we have?

We study measures that describe the limiting distribution of the iterated pre-images of any point excluding, perhaps, a small set of exceptional points. In short, such a measure is the weak* limit of the sequence $\left\{\mu_{n}\right\}$ (if limit exists), where:

$$
\mu_{n}:=\frac{1}{\sharp\left(f^{-n}\{a\}\right)} \sum_{f^{n}(z)=a} \delta_{z} .
$$

For certain (X, f), such limiting measures exist \& satisfy interesting properties:

- invariance (in an appropriate sense), ergodicity, mixing;

${ }_{4}$ What conceptual framework do we have?

We study measures that describe the limiting distribution of the iterated pre-images of any point excluding, perhaps, a small set of exceptional points. In short, such a measure is the weak* limit of the sequence $\left\{\mu_{n}\right\}$ (if limit exists), where:

$$
\mu_{n}:=\frac{1}{\sharp\left(f^{-n}\{a\}\right)} \sum_{f^{n}(z)=a} \delta_{z} .
$$

For certain (X, f), such limiting measures exist \& satisfy interesting properties:

- invariance (in an appropriate sense), ergodicity, mixing;
- describe the limiting distribution of repelling periodic points;

${ }_{4}$ What conceptual framework do we have?

We study measures that describe the limiting distribution of the iterated pre-images of any point excluding, perhaps, a small set of exceptional points. In short, such a measure is the weak* limit of the sequence $\left\{\mu_{n}\right\}$ (if limit exists), where:

$$
\mu_{n}:=\frac{1}{\sharp\left(f^{-n}\{a\}\right)} \sum_{f^{n}(z)=a} \delta_{z} .
$$

For certain (X, f), such limiting measures exist \& satisfy interesting properties:

- invariance (in an appropriate sense), ergodicity, mixing;
- describe the limiting distribution of repelling periodic points;
- are the unique measures of maximal entropy.

${ }_{4}$ What conceptual framework do we have?

We study measures that describe the limiting distribution of the iterated pre-images of any point excluding, perhaps, a small set of exceptional points. In short, such a measure is the weak* limit of the sequence $\left\{\mu_{n}\right\}$ (if limit exists), where:

$$
\mu_{n}:=\frac{1}{\sharp\left(f^{-n}\{a\}\right)} \sum_{f^{n}(z)=a} \delta_{z} .
$$

For certain (X, f), such limiting measures exist \& satisfy interesting properties:

- invariance (in an appropriate sense), ergodicity, mixing;
- describe the limiting distribution of repelling periodic points;
- are the unique measures of maximal entropy.

What is an example of such a measure?

${ }_{5}$ Brolin's theorem

Result (Brolin, 1965)

Let g be a polynomial of degree $d \geq 2$ and a be any point in the complex plane with (perhaps) one exception.

${ }_{5}$ Brolin's theorem

Result (Brolin, 1965)

Let g be a polynomial of degree $d \geq 2$ and a be any point in the complex plane with (perhaps) one exception. Then

$$
\mu_{n}:=\frac{1}{d^{n}} \sum_{g^{n}(z)=a} \delta_{z} \xrightarrow{\text { weak }^{*}} \mu_{g} \text { as } n \rightarrow \infty
$$

${ }_{5}$ Brolin's theorem

Result (Brolin, 1965)

Let g be a polynomial of degree $d \geq 2$ and a be any point in the complex plane with (perhaps) one exception. Then

$$
\mu_{n}:=\frac{1}{d^{n}} \sum_{g^{n}(z)=a} \delta_{z} \xrightarrow{\text { weak }^{*}} \mu_{g} \text { as } n \rightarrow \infty
$$

where the measure μ_{g} is the equilibrium measure of the Julia set of g.

${ }_{5}$ Brolin's theorem

Result (Brolin, 1965)

Let g be a polynomial of degree $d \geq 2$ and a be any point in the complex plane with (perhaps) one exception. Then

$$
\mu_{n}:=\frac{1}{d^{n}} \sum_{g^{n}(z)=a} \delta_{z} \xrightarrow{\text { weak }^{*}} \mu_{g} \text { as } n \rightarrow \infty
$$

where the measure μ_{g} is the equilibrium measure of the Julia set of g.

- Roughly speaking, an equilibrium measure gives the distribution of a unit charge, in the absence of any external field, on a conductor that minimizes energy.

${ }_{5}$ Brolin's theorem

Result (Brolin, 1965)

Let g be a polynomial of degree $d \geq 2$ and a be any point in the complex plane with (perhaps) one exception. Then

$$
\mu_{n}:=\frac{1}{d^{n}} \sum_{g^{n}(z)=a} \delta_{z} \xrightarrow{\text { weak }^{*}} \mu_{g} \text { as } n \rightarrow \infty
$$

where the measure μ_{g} is the equilibrium measure of the Julia set of g.

- Roughly speaking, an equilibrium measure gives the distribution of a unit charge, in the absence of any external field, on a conductor that minimizes energy.
- (Lyubich, 1983) Let g be a rational map of degree $d \geq 2$ and a be any point in $\widehat{\mathbb{C}}$ with (perhaps) two exceptions. Then $\left\{\mu_{n}\right\}$ (as defined above) converges to a Borel probability measure μ_{g} with support $\mathbf{J}(g)$ [here μ_{g} has no potential-theoretic interpretation in general].

${ }_{6}$ Some terminology

A rational semigroup S is a semigroup consisting of non-constant rational maps on the Riemann sphere $\widehat{\mathbb{C}}$ with the function-composition as the semigroup operation.
(*) We assume in this talk (unless stated otherwise) that S has an element of degree ≥ 2.

${ }_{6}$ Some terminology

A rational semigroup S is a semigroup consisting of non-constant rational maps on the Riemann sphere $\widehat{\mathbb{C}}$ with the function-composition as the semigroup operation.
(*) We assume in this talk (unless stated otherwise) that S has an element of degree ≥ 2.

- The Fatou set of $S, \mathbf{F}(S):=$ the set of normality of S.
- The Julia set of $S, \mathbf{J}(S):=\widehat{\mathbb{C}} \backslash \mathbf{F}(S)$.

${ }_{\text {© Some terminology }}$

A rational semigroup S is a semigroup consisting of non-constant rational maps on the Riemann sphere $\widehat{\mathbb{C}}$ with the function-composition as the semigroup operation.
(*) We assume in this talk (unless stated otherwise) that S has an element of degree ≥ 2.

- The Fatou set of $S, \mathbf{F}(S):=$ the set of normality of S.
- The Julia set of $S, \mathbf{J}(S):=\widehat{\mathbb{C}} \backslash \mathbf{F}(S)$.

Observe that, $\mathbf{J}(\langle g\rangle)=$ the Julia set of g.

${ }_{6}$ Some terminology

A rational semigroup S is a semigroup consisting of non-constant rational maps on the Riemann sphere $\widehat{\mathbb{C}}$ with the function-composition as the semigroup operation.
(*) We assume in this talk (unless stated otherwise) that S has an element of degree ≥ 2.

- The Fatou set of $S, \mathbf{F}(S):=$ the set of normality of S.
- The Julia set of $S, \mathbf{J}(S):=\widehat{\mathbb{C}} \backslash \mathbf{F}(S)$.

Observe that, $\mathbf{J}(\langle g\rangle)=$ the Julia set of g.
It turns out that $\mathbf{J}(S)=\overline{\cup_{g \in S} \mathbf{J}(\langle g\rangle)}$.

.Some terminology

A rational semigroup S is a semigroup consisting of non-constant rational maps on the Riemann sphere $\widehat{\mathbb{C}}$ with the function-composition as the semigroup operation.
(*) We assume in this talk (unless stated otherwise) that S has an element of degree ≥ 2.

- The Fatou set of $S, \mathbf{F}(S):=$ the set of normality of S.
- The Julia set of $S, \mathbf{J}(S):=\widehat{\mathbb{C}} \backslash \mathbf{F}(S)$.

Observe that, $\mathbf{J}(\langle g\rangle)=$ the Julia set of g.
It turns out that $\mathbf{J}(S)=\overline{\cup_{g \in S} \mathbf{J}(\langle g\rangle)}$.
Example: $S=\left\langle z^{2}, z^{2} / 2\right\rangle$. Then $\mathbf{J}(S)=\{z: 1 \leq|z| \leq 2\}$.

${ }_{\text {© Some terminology }}$

A rational semigroup S is a semigroup consisting of non-constant rational maps on the Riemann sphere $\widehat{\mathbb{C}}$ with the function-composition as the semigroup operation.
(*) We assume in this talk (unless stated otherwise) that S has an element of degree ≥ 2.

- The Fatou set of $S, \mathbf{F}(S):=$ the set of normality of S.
- The Julia set of $S, \mathbf{J}(S):=\widehat{\mathbb{C}} \backslash \mathbf{F}(S)$.

Observe that, $\mathbf{J}(\langle g\rangle)=$ the Julia set of g.
It turns out that $\mathbf{J}(S)=\overline{\cup_{g \in S} \mathbf{J}(\langle g\rangle)}$.
Example: $S=\left\langle z^{2}, z^{2} / 2\right\rangle$. Then $\mathbf{J}(S)=\{z: 1 \leq|z| \leq 2\}$.
Consider a generating set \mathcal{G} of S. For $g \in S$, the expression $l(g)=n$ is the shorthand for the following implication:

$$
l(g)=n \Longrightarrow \exists g_{i_{1}}, \ldots, g_{i_{n}} \in \mathcal{G} \text { such that } g=g_{i_{n}} \circ \cdots \circ g_{i_{1}}
$$

${ }_{7}$ Measures associated with semigroups

Result (Boyd, 1999)

Let S be a finitely generated rational semigroup. Assume that every element of S is of degree at least 2. Let $\mathcal{G}=\left\{g_{1}, \ldots, g_{N}\right\}$ be a generating set and $D:=\sum_{i=1}^{N} \operatorname{deg}\left(g_{i}\right)$.

${ }_{7}$ Measures associated with semigroups

Result (Boyd, 1999)

Let S be a finitely generated rational semigroup. Assume that every element of S is of degree at least 2. Let $\mathcal{G}=\left\{g_{1}, \ldots, g_{N}\right\}$ be a generating set and $D:=\sum_{i=1}^{N} \operatorname{deg}\left(g_{i}\right)$. Then there exists a Borel probability measure $\mu_{\mathcal{G}}$ such that for every a outside some polar set

$$
\mu_{n}:=\frac{1}{D^{n}} \sum_{\substack{g(z)=a \\ l(g)=n}} \delta_{z} \xrightarrow{\text { weak }^{*}} \mu_{\mathcal{G}} \quad \text { as } n \rightarrow \infty .
$$

Moreover, $\operatorname{supp}\left(\mu_{\mathcal{G}}\right)=\mathbf{J}(S)$.

${ }_{7}$ Measures associated with semigroups

Result (Boyd, 1999)

Let S be a finitely generated rational semigroup. Assume that every element of S is of degree at least 2. Let $\mathcal{G}=\left\{g_{1}, \ldots, g_{N}\right\}$ be a generating set and $D:=\sum_{i=1}^{N} \operatorname{deg}\left(g_{i}\right)$. Then there exists a Borel probability measure $\mu_{\mathcal{G}}$ such that for every a outside some polar set

$$
\mu_{n}:=\frac{1}{D^{n}} \sum_{\substack{g(z)=a \\ l(g)=n}} \delta_{z} \xrightarrow{\text { weak }^{*}} \mu_{\mathcal{G}} \quad \text { as } n \rightarrow \infty .
$$

Moreover, $\operatorname{supp}\left(\mu_{\mathcal{G}}\right)=\mathbf{J}(S)$.

Boyd used techniques developed by Lyubich to prove the above result. Those methods do not work if the semigroup S has degree 1 elements.

${ }_{7}$ Measures associated with semigroups

Result (Boyd, 1999)

Let S be a finitely generated rational semigroup. Assume that every element of S is of degree at least 2. Let $\mathcal{G}=\left\{g_{1}, \ldots, g_{N}\right\}$ be a generating set and $D:=\sum_{i=1}^{N} \operatorname{deg}\left(g_{i}\right)$. Then there exists a Borel probability measure $\mu_{\mathcal{G}}$ such that for every a outside some polar set

$$
\mu_{n}:=\frac{1}{D^{n}} \sum_{\substack{g(z)=a \\ l(g)=n}} \delta_{z} \xrightarrow{\text { weak }^{*}} \mu_{\mathcal{G}} \quad \text { as } n \rightarrow \infty .
$$

Moreover, $\operatorname{supp}\left(\mu_{\mathcal{G}}\right)=\mathbf{J}(S)$.

Boyd used techniques developed by Lyubich to prove the above result. Those methods do not work if the semigroup S has degree 1 elements.

We use a result by Dinh-Sibony, stated for correspondences, for a version of the last result that allows degree 1 elements.

${ }_{8}$ Holomorphic correspondences
 Let X be compact k-dim'l. complex manifold.

${ }_{8}$ Holomorphic correspondences

Let X be compact k-dim'l. complex manifold. A holomorphic correspondence on X is just an analytic k-chain

$$
\Gamma=\sum_{i=1}^{N} m_{i} \Gamma_{i}
$$

(which means

${ }_{8}$ Holomorphic correspondences

Let X be compact k-dim'l. complex manifold. A holomorphic correspondence on X is just an analytic k-chain

$$
\Gamma=\sum_{i=1}^{N} m_{i} \Gamma_{i}
$$

- $\Gamma_{1}, \ldots, \Gamma_{N}$: distinct irred. complex subvarieties of $X \times X$ of dim. k;
- m_{i} 's are +ve integers)

${ }_{8}$ Holomorphic correspondences

Let X be compact k-dim'l. complex manifold. A holomorphic correspondence on X is just an analytic k-chain

$$
\Gamma=\sum_{i=1}^{N} m_{i} \Gamma_{i}
$$

- $\Gamma_{1}, \ldots, \Gamma_{N}$: distinct irred. complex subvarieties of $X \times X$ of dim. k;
- m_{i} 's are +ve integers)
with the following properties: for each Γ_{i},

${ }_{8}$ Holomorphic correspondences

Let X be compact k-dim'l. complex manifold. A holomorphic correspondence on X is just an analytic k-chain

$$
\Gamma=\sum_{i=1}^{N} m_{i} \Gamma_{i}
$$

- $\Gamma_{1}, \ldots, \Gamma_{N}$: distinct irred. complex subvarieties of $X \times X$ of dim. k;
- m_{i} 's are +ve integers)
with the following properties: for each Γ_{i},

${ }_{8}$ Holomorphic correspondences

Let X be compact k-dim'l. complex manifold. A holomorphic correspondence on X is just an analytic k-chain

$$
\Gamma=\sum_{i=1}^{N} m_{i} \Gamma_{i}
$$

(which means

- $\Gamma_{1}, \ldots, \Gamma_{N}$: distinct irred. complex subvarieties of $X \times X$ of dim. k;
- m_{i} 's are +ve integers)
with the following properties: for each Γ_{i},

$$
\begin{aligned}
& \left.\left.\pi_{1}\right|_{\Gamma_{i}} \& \pi_{2}\right|_{\Gamma_{i}} \text { are } \\
& \text { surjective; AND }
\end{aligned}
$$

${ }_{8}$ Holomorphic correspondences

Let X be compact k-dim'l. complex manifold. A holomorphic correspondence on X is just an analytic k-chain

$$
\Gamma=\sum_{i=1}^{N} m_{i} \Gamma_{i}
$$

(which means

- $\Gamma_{1}, \ldots, \Gamma_{N}$: distinct irred. complex subvarieties of $X \times X$ of dim. k;
- m_{i} 's are +ve integers)
with the following properties: for each Γ_{i},

$$
\begin{aligned}
& \left.\left.\pi_{1}\right|_{\Gamma_{i}} \& \pi_{2}\right|_{\Gamma_{i}} \text { are } \\
& \text { surjective; AND } \\
& \text { for } x \in X \text {, the set } \\
& \left(\pi_{1}^{-1}\{x\} \cap \Gamma_{i}\right) \text { and } \\
& \left(\pi_{2}^{-1}\{x\} \cap \Gamma_{i}\right) \text { are finite. }
\end{aligned}
$$

${ }_{8}$ Holomorphic correspondences

Let X be compact k-dim'l. complex manifold. A holomorphic correspondence on X is just an analytic k-chain

$$
\Gamma=\sum_{i=1}^{N} m_{i} \Gamma_{i}
$$

(which means

- $\Gamma_{1}, \ldots, \Gamma_{N}$: distinct irred. complex subvarieties of $X \times X$ of dim. k;
- m_{i} 's are +ve integers)
with the following properties: for each Γ_{i},

$$
\begin{aligned}
& \left.\left.\pi_{1}\right|_{\Gamma_{i}} \& \pi_{2}\right|_{\Gamma_{i}} \text { are } \\
& \text { surjective; AND } \\
& \text { for } x \in X, \text { the set } \\
& \left(\pi_{1}^{-1}\{x\} \cap \Gamma_{i}\right) \text { and } \\
& \left(\pi_{2}^{-1}\{x\} \cap \Gamma_{i}\right) \text { are finite. } \\
& \text { - } F(x)=\cup_{i} \pi_{2}\left(\pi_{1}^{-1}\{x\} \cap \Gamma_{i}\right) .
\end{aligned}
$$

${ }_{9}$ Composing two holomorphic correspondences

Given a holomorphic correspondence Γ, we denote by

$$
|\Gamma|:=\cup_{i=1}^{N} \Gamma_{i}
$$

the set underlying Γ. Now, $|\Gamma|$ is a relation on X.

${ }_{9}$ Composing two holomorphic correspondences

Given a holomorphic correspondence Γ, we denote by

$$
|\Gamma|:=\cup_{i=1}^{N} \Gamma_{i}
$$

the set underlying Γ. Now, $|\Gamma|$ is a relation on X.
If Γ and Γ^{\prime} are correspondences on X, we view $\Gamma \circ \Gamma^{\prime}$ as essentially the classical composition of two relations. Denote the latter operation by \star :

${ }_{9}$ Composing two holomorphic correspondences

Given a holomorphic correspondence Γ, we denote by

$$
|\Gamma|:=\cup_{i=1}^{N} \Gamma_{i}
$$

the set underlying Γ. Now, $|\Gamma|$ is a relation on X.
If Γ and Γ^{\prime} are correspondences on X, we view $\Gamma \circ \Gamma^{\prime}$ as essentially the classical composition of two relations. Denote the latter operation by \star :

$$
|\Gamma| \star\left|\Gamma^{\prime}\right|:=\left\{(x, z) \in X \times X: \exists y \text { s.t. }(x, y) \in\left|\Gamma^{\prime}\right|,(y, z) \in|\Gamma|\right\} .
$$

${ }_{9}$ Composing two holomorphic correspondences

Given a holomorphic correspondence Γ, we denote by

$$
|\Gamma|:=\cup_{i=1}^{N} \Gamma_{i}
$$

the set underlying Γ. Now, $|\Gamma|$ is a relation on X.
If Γ and Γ^{\prime} are correspondences on X, we view $\Gamma \circ \Gamma^{\prime}$ as essentially the classical composition of two relations. Denote the latter operation by \star :

$$
|\Gamma| \star\left|\Gamma^{\prime}\right|:=\left\{(x, z) \in X \times X: \exists y \text { s.t. }(x, y) \in\left|\Gamma^{\prime}\right|,(y, z) \in|\Gamma|\right\}
$$

To code the k-chain data into the above "composition" to define $\Gamma \circ \Gamma^{\prime}$, we need to do some work.

${ }_{9}$ Composing two holomorphic correspondences

Given a holomorphic correspondence Γ, we denote by

$$
|\Gamma|:=\cup_{i=1}^{N} \Gamma_{i}
$$

the set underlying Γ. Now, $|\Gamma|$ is a relation on X.
If Γ and Γ^{\prime} are correspondences on X, we view $\Gamma \circ \Gamma^{\prime}$ as essentially the classical composition of two relations. Denote the latter operation by \star :

$$
|\Gamma| \star\left|\Gamma^{\prime}\right|:=\left\{(x, z) \in X \times X: \exists y \text { s.t. }(x, y) \in\left|\Gamma^{\prime}\right|,(y, z) \in|\Gamma|\right\}
$$

To code the k-chain data into the above "composition" to define $\Gamma \circ \Gamma^{\prime}$, we need to do some work.

- We'll skip this step as it takes time (and is unnecessary for the correspondences in this talk).

${ }_{9}$ Composing two holomorphic correspondences

Given a holomorphic correspondence Γ, we denote by

$$
|\Gamma|:=\cup_{i=1}^{N} \Gamma_{i}
$$

the set underlying Γ. Now, $|\Gamma|$ is a relation on X.
If Γ and Γ^{\prime} are correspondences on X, we view $\Gamma \circ \Gamma^{\prime}$ as essentially the classical composition of two relations. Denote the latter operation by \star :

$$
|\Gamma| \star\left|\Gamma^{\prime}\right|:=\left\{(x, z) \in X \times X: \exists y \text { s.t. }(x, y) \in\left|\Gamma^{\prime}\right|,(y, z) \in|\Gamma|\right\} .
$$

To code the k-chain data into the above "composition" to define $\Gamma \circ \Gamma^{\prime}$, we need to do some work.

- We'll skip this step as it takes time (and is unnecessary for the correspondences in this talk).
- One can figure out the weight of each irred. component of $|\Gamma| \star\left|\Gamma^{\prime}\right|$ from the following example...
${ }_{10}$ Composing two holomorphic correspondences, cont'd.
We now consider a case of our interest:

Example. If

$$
\Gamma:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right) \quad \text { and } \quad \Gamma^{\prime}:=\sum_{1 \leq j \leq M} \operatorname{graph}\left(f_{j}\right),
$$

${ }_{10}$ Composing two holomorphic correspondences, cont'd.
We now consider a case of our interest:

Example. If

$$
\Gamma:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right) \quad \text { and } \quad \Gamma^{\prime}:=\sum_{1 \leq j \leq M} \operatorname{graph}\left(f_{j}\right)
$$

then we have

$$
\Gamma \circ \Gamma^{\prime}=\sum_{1 \leq i \leq N} \sum_{1 \leq j \leq M} \operatorname{graph}\left(g_{i} \circ f_{j}\right)
$$

${ }_{10}$ Composing two holomorphic correspondences, cont'd.

We now consider a case of our interest:

Example. If

$$
\Gamma:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right) \quad \text { and } \quad \Gamma^{\prime}:=\sum_{1 \leq j \leq M} \operatorname{graph}\left(f_{j}\right)
$$

then we have

$$
\Gamma \circ \Gamma^{\prime}=\sum_{1 \leq i \leq N} \sum_{1 \leq j \leq M} \operatorname{graph}\left(g_{i} \circ f_{j}\right) .
$$

- If it turns out that for some $i \neq i^{*}$ and $j \neq j^{*}, g_{i} \circ f_{j} \equiv g_{i^{*}} \circ f_{j^{*}}$, then in the standard presentation of $\Gamma \circ \Gamma^{\prime}, \operatorname{graph}\left(g_{i} \circ f_{j}\right)$ will have a weight ≥ 2.

${ }_{10}$ Composing two holomorphic correspondences, cont'd.

We now consider a case of our interest:

Example. If

$$
\Gamma:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right) \quad \text { and } \quad \Gamma^{\prime}:=\sum_{1 \leq j \leq M} \operatorname{graph}\left(f_{j}\right)
$$

then we have

$$
\Gamma \circ \Gamma^{\prime}=\sum_{1 \leq i \leq N} \sum_{1 \leq j \leq M} \operatorname{graph}\left(g_{i} \circ f_{j}\right)
$$

- If it turns out that for some $i \neq i^{*}$ and $j \neq j^{*}, g_{i} \circ f_{j} \equiv g_{i^{*}} \circ f_{j^{*}}$, then in the standard presentation of $\Gamma \circ \Gamma^{\prime}, \operatorname{graph}\left(g_{i} \circ f_{j}\right)$ will have a weight ≥ 2.
- Weights are essential in one more way: they result in the formula $d_{t o p}\left(\Gamma^{\circ n}\right)=d_{t o p}(\Gamma)^{n}$.

${ }_{10}$ Composing two holomorphic correspondences, cont'd.

We now consider a case of our interest:

Example. If

$$
\Gamma:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right) \quad \text { and } \quad \Gamma^{\prime}:=\sum_{1 \leq j \leq M} \operatorname{graph}\left(f_{j}\right)
$$

then we have

$$
\Gamma \circ \Gamma^{\prime}=\sum_{1 \leq i \leq N} \sum_{1 \leq j \leq M} \operatorname{graph}\left(g_{i} \circ f_{j}\right) .
$$

- If it turns out that for some $i \neq i^{*}$ and $j \neq j^{*}, g_{i} \circ f_{j} \equiv g_{i^{*}} \circ f_{j^{*}}$, then in the standard presentation of $\Gamma \circ \Gamma^{\prime}, \operatorname{graph}\left(g_{i} \circ f_{j}\right)$ will have a weight ≥ 2.
- Weights are essential in one more way: they result in the formula $d_{t o p}\left(\Gamma^{\circ n}\right)=d_{t o p}(\Gamma)^{n}$.

Note. $d_{\text {top }}(\Gamma)=\sum_{i=1}^{N} \operatorname{deg}\left(g_{i}\right)$ and $d_{t o p}\left({ }^{\dagger} \Gamma\right)=N$.

${ }_{11}$ Measures associated with correspondences

Result (Dinh-Sibony, 2006). Let Γ be a holomorphic correspondence on a k-dim'l. compact Kähler manifold (X, ω) and assume $d_{t o p}(\Gamma)>d_{k-1}(\Gamma)$.

${ }_{11}$ Measures associated with correspondences

Result (Dinh-Sibony, 2006). Let Γ be a holomorphic correspondence on a k-dim'l. compact Kähler manifold (X, ω) and assume $d_{t o p}(\Gamma)>d_{k-1}(\Gamma)$. There exists a pluripolar set $E \nsubseteq X$ and a regular Borel probability measure μ_{Γ} such that,

${ }_{11}$ Measures associated with correspondences

Result (Dinh-Sibony, 2006). Let Γ be a holomorphic correspondence on a k-dim'l. compact Kähler manifold (X, ω) and assume $d_{t o p}(\Gamma)>d_{k-1}(\Gamma)$. There exists a pluripolar set $E \nsubseteq X$ and a regular Borel probability measure μ_{Γ} such that, for each $y \in X \backslash E$

$$
\frac{1}{d_{t o p}(\Gamma)^{n}}\left(\Gamma^{\circ n}\right)^{*}\left(\delta_{y}\right) \xrightarrow{\text { weak }^{*}} \mu_{\Gamma} \text { as measures, as } n \rightarrow \infty .
$$

${ }_{11}$ Measures associated with correspondences

Result (Dinh-Sibony, 2006). Let Γ be a holomorphic correspondence on a k-dim'l. compact Kähler manifold (X, ω) and assume $d_{t o p}(\Gamma)>d_{k-1}(\Gamma)$. There exists a pluripolar set $E \nsubseteq X$ and a regular Borel probability measure μ_{Γ} such that, for each $y \in X \backslash E$

$$
\frac{1}{d_{t o p}(\Gamma)^{n}}\left(\Gamma^{\circ n}\right)^{*}\left(\delta_{y}\right) \xrightarrow{\text { weak* }} \mu_{\Gamma} \text { as measures, as } n \rightarrow \infty .
$$

μ_{Γ} places no mass on pluripolar sets, and satisfies $\Gamma^{*}\left(\mu_{\Gamma}\right)=d_{t o p}(\Gamma) \mu_{\Gamma}$. [When $k=1$, it turns out that $d_{k-1}(\Gamma)=d_{0}(\Gamma)=d_{\text {top }}\left({ }^{\dagger} \Gamma\right)$.]

${ }_{11}$ Measures associated with correspondences

Result (Dinh-Sibony, 2006). Let Γ be a holomorphic correspondence on a k-dim'l. compact Kähler manifold (X, ω) and assume $d_{t o p}(\Gamma)>d_{k-1}(\Gamma)$. There exists a pluripolar set $E \nsubseteq X$ and a regular Borel probability measure μ_{Γ} such that, for each $y \in X \backslash E$

$$
\frac{1}{d_{\text {top }}(\Gamma)^{n}}\left(\Gamma^{\circ n}\right)^{*}\left(\delta_{y}\right) \xrightarrow{\text { weak* }} \mu_{\Gamma} \text { as measures, as } n \rightarrow \infty .
$$

μ_{Γ} places no mass on pluripolar sets, and satisfies $\Gamma^{*}\left(\mu_{\Gamma}\right)=d_{t o p}(\Gamma) \mu_{\Gamma}$.
[When $k=1$, it turns out that $d_{k-1}(\Gamma)=d_{0}(\Gamma)=d_{\text {top }}\left({ }^{\dagger} \Gamma\right)$.]
$\Gamma^{*}\left(\delta_{y}\right)$: pullback in the sense of currents.

${ }_{11}$ Measures associated with correspondences

Result (Dinh-Sibony, 2006). Let Γ be a holomorphic correspondence on a k-dim'l. compact Kähler manifold (X, ω) and assume $d_{t o p}(\Gamma)>d_{k-1}(\Gamma)$. There exists a pluripolar set $E \nsubseteq X$ and a regular Borel probability measure μ_{Γ} such that, for each $y \in X \backslash E$

$$
\frac{1}{d_{\text {top }}(\Gamma)^{n}}\left(\Gamma^{\circ n}\right)^{*}\left(\delta_{y}\right) \xrightarrow{\text { weak* }} \mu_{\Gamma} \text { as measures, as } n \rightarrow \infty .
$$

μ_{Γ} places no mass on pluripolar sets, and satisfies $\Gamma^{*}\left(\mu_{\Gamma}\right)=d_{t o p}(\Gamma) \mu_{\Gamma}$.
[When $k=1$, it turns out that $d_{k-1}(\Gamma)=d_{0}(\Gamma)=d_{\text {top }}\left({ }^{\dagger} \Gamma\right)$.]
$\Gamma^{*}\left(\delta_{y}\right)$: pullback in the sense of currents.
(formal principle of the pullback: for a (p, p) current S

$$
\Gamma^{*}(S):=\left(\pi_{1}\right)_{*}\left(\pi_{2}^{*}(S) \wedge[\Gamma]\right)
$$

whenever the intersection of $\pi_{2}^{*}(S)$ with $[\Gamma]$ makes sense)

${ }_{11}$ Measures associated with correspondences

Result (Dinh-Sibony, 2006). Let Γ be a holomorphic correspondence on a k-dim'l. compact Kähler manifold (X, ω) and assume $d_{t o p}(\Gamma)>d_{k-1}(\Gamma)$. There exists a pluripolar set $E \nsubseteq X$ and a regular Borel probability measure μ_{Γ} such that, for each $y \in X \backslash E$

$$
\frac{1}{d_{\text {top }}(\Gamma)^{n}}\left(\Gamma^{\circ n}\right)^{*}\left(\delta_{y}\right) \xrightarrow{\text { weak* }} \mu_{\Gamma} \text { as measures, as } n \rightarrow \infty .
$$

μ_{Γ} places no mass on pluripolar sets, and satisfies $\Gamma^{*}\left(\mu_{\Gamma}\right)=d_{t o p}(\Gamma) \mu_{\Gamma}$.
[When $k=1$, it turns out that $d_{k-1}(\Gamma)=d_{0}(\Gamma)=d_{\text {top }}\left({ }^{\dagger} \Gamma\right)$.]
$\Gamma^{*}\left(\delta_{y}\right)$: pullback in the sense of currents.
(formal principle of the pullback: for a (p, p) current S

$$
\Gamma^{*}(S):=\left(\pi_{1}\right)_{*}\left(\pi_{2}^{*}(S) \wedge[\Gamma]\right)
$$

whenever the intersection of $\pi_{2}^{*}(S)$ with $[\Gamma]$ makes sense)

$$
\left\langle\Gamma^{*}\left(\delta_{y}\right), \varphi\right\rangle:=\sum_{1 \leq j \leq N} m_{j} \sum_{x:(x, y) \in \Gamma_{j}}^{\bullet} \varphi(x) .
$$

${ }_{11}$ Measures associated with correspondences

Result (Dinh-Sibony, 2006). Let Γ be a holomorphic correspondence on a k-dim'l. compact Kähler manifold (X, ω) and assume $d_{t o p}(\Gamma)>d_{k-1}(\Gamma)$. There exists a pluripolar set $E \nsubseteq X$ and a regular Borel probability measure μ_{Γ} such that, for each $y \in X \backslash E$

$$
\frac{1}{d_{t o p}(\Gamma)^{n}}\left(\Gamma^{\circ n}\right)^{*}\left(\delta_{y}\right) \xrightarrow{\text { weak* }} \mu_{\Gamma} \text { as measures, as } n \rightarrow \infty .
$$

μ_{Γ} places no mass on pluripolar sets, and satisfies $\Gamma^{*}\left(\mu_{\Gamma}\right)=d_{t o p}(\Gamma) \mu_{\Gamma}$.
[When $k=1$, it turns out that $d_{k-1}(\Gamma)=d_{0}(\Gamma)=d_{\text {top }}\left({ }^{\dagger} \Gamma\right)$.]
$\Gamma^{*}\left(\delta_{y}\right)$: pullback in the sense of currents.
(formal principle of the pullback: for a (p, p) current S

$$
\Gamma^{*}(S):=\left(\pi_{1}\right)_{*}\left(\pi_{2}^{*}(S) \wedge[\Gamma]\right)
$$

whenever the intersection of $\pi_{2}^{*}(S)$ with $[\Gamma]$ makes sense)

$$
\left\langle\Gamma^{*}\left(\delta_{y}\right), \varphi\right\rangle:=\sum_{1 \leq j \leq N} m_{j} \sum_{x:(x, y) \in \Gamma_{j}}^{\bullet} \varphi(x)
$$

- comes from dualising $\left(\pi_{1}\right)_{*}$,
- is the interpretation of " $\left(\pi_{2}^{*}(\Omega) \wedge[\Gamma]\right)$ " in this case.

${ }_{12} \mathrm{~A}$ question

Let S be a finitely generated rational semigroup with a generating set $\mathcal{G}=\left\{g_{1}, \ldots, g_{N}\right\}$ be a generating set. Consider $\Gamma_{\mathcal{G}}:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right)$.

Note: $d_{\text {top }}\left(\Gamma_{\mathcal{G}}\right)>d_{\text {top }}\left({ }^{\dagger} \Gamma_{\mathcal{G}}\right) \Longleftrightarrow \exists i \in\{1 \ldots N\}$ such that $\operatorname{deg}\left(g_{i}\right) \geq 2$.

${ }_{12} \mathrm{~A}$ question

Let S be a finitely generated rational semigroup with a generating set $\mathcal{G}=\left\{g_{1}, \ldots, g_{N}\right\}$ be a generating set. Consider $\Gamma_{\mathcal{G}}:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right)$.

Note: $d_{\text {top }}\left(\Gamma_{\mathcal{G}}\right)>d_{\text {top }}\left({ }^{\dagger} \Gamma_{\mathcal{G}}\right) \Longleftrightarrow \exists i \in\{1 \ldots N\}$ such that $\operatorname{deg}\left(g_{i}\right) \geq 2$.
Then there exists a Borel probability measure $\mu_{\mathcal{G}}$ such that for every a outside some polar set

$$
\mu_{n}:=\frac{1}{D^{n}} \sum_{\substack{g(z)=a \\ l(g)=n}} \delta_{z} \xrightarrow{\text { weak }^{*}} \mu_{\mathcal{G}} \quad \text { as } n \rightarrow \infty .
$$

${ }_{12} \mathrm{~A}$ question

Let S be a finitely generated rational semigroup with a generating set $\mathcal{G}=\left\{g_{1}, \ldots, g_{N}\right\}$ be a generating set. Consider $\Gamma_{\mathcal{G}}:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right)$.

Note: $d_{\text {top }}\left(\Gamma_{\mathcal{G}}\right)>d_{\text {top }}\left({ }^{\dagger} \Gamma_{\mathcal{G}}\right) \Longleftrightarrow \exists i \in\{1 \ldots N\}$ such that $\operatorname{deg}\left(g_{i}\right) \geq 2$.
Then there exists a Borel probability measure $\mu_{\mathcal{G}}$ such that for every a outside some polar set

$$
\mu_{n}:=\frac{1}{D^{n}} \sum_{\substack{g(z)=a \\ l(g)=n}} \delta_{z} \xrightarrow{\text { weak }^{*}} \mu_{\mathcal{G}} \quad \text { as } n \rightarrow \infty .
$$

Lyubich	\longrightarrow
Brolin	\longrightarrow

${ }_{12} \mathrm{~A}$ question

Let S be a finitely generated rational semigroup with a generating set $\mathcal{G}=\left\{g_{1}, \ldots, g_{N}\right\}$ be a generating set. Consider $\Gamma_{\mathcal{G}}:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right)$.

Note: $d_{\text {top }}\left(\Gamma_{\mathcal{G}}\right)>d_{\text {top }}\left({ }^{\dagger} \Gamma_{\mathcal{G}}\right) \Longleftrightarrow \exists i \in\{1 \ldots N\}$ such that $\operatorname{deg}\left(g_{i}\right) \geq 2$.
Then there exists a Borel probability measure $\mu_{\mathcal{G}}$ such that for every a outside some polar set

$$
\mu_{n}:=\frac{1}{D^{n}} \sum_{\substack{g(z)=a \\ l(g)=n}} \delta_{z} \xrightarrow{\text { weak }^{*}} \mu_{\mathcal{G}} \quad \text { as } n \rightarrow \infty .
$$

Question: If each element of S is a polynomial, then is $\mu_{\mathcal{G}}$ the equilibrium measure of $\mathbf{J}(S)$?

${ }_{13}$ Polynomial semigroups

Answer: No!

${ }_{13}$ Polynomial semigroups

Answer: No!

Consider $S=\left\langle z^{2}, z^{2} / 2\right\rangle$.

${ }_{13} \mathrm{Polynomial}$ semigroups

Answer: No!

Consider $S=\left\langle z^{2}, z^{2} / 2\right\rangle$.

We call a rational semigroup S a polynomial semigroup if

- every element of S is a polynomial;
- every degree 1 element in S have ∞ as an attracting fixed point.

${ }_{14}$ Logarithmic potentials

Let σ be a Borel probability measure on \mathbb{C} with compact support. Its logarithmic potential is the function $U^{\sigma}: \mathbb{C} \rightarrow(-\infty, \infty]$ defined by

$$
U^{\sigma}(z)=\int_{\mathbb{C}} \log \frac{1}{|z-t|} d \sigma(t)
$$

${ }_{14}^{14}$ Logarithmic potentials
Let σ be a Borel probability measure on \mathbb{C} with compact support. Its logarithmic potential is the function $U^{\sigma}: \mathbb{C} \rightarrow(-\infty, \infty]$ defined by

$$
U^{\sigma}(z)=\int_{\mathbb{C}} \log \frac{1}{|z-t|} d \sigma(t)
$$

Key Proposition (L., 2020)

Let S be a finitely generated polynomial semigroup with a finite set of generators \mathcal{G}. Let $C(\mathcal{G}):=\left\{c \in \mathbb{C}: g^{\prime}(c)=0\right.$ for some $\left.g \in \mathcal{G}\right\}$.

${ }_{14}$ Logarithmic potentials

Let σ be a Borel probability measure on \mathbb{C} with compact support. Its logarithmic potential is the function $U^{\sigma}: \mathbb{C} \rightarrow(-\infty, \infty]$ defined by

$$
U^{\sigma}(z)=\int_{\mathbb{C}} \log \frac{1}{|z-t|} d \sigma(t)
$$

Key Proposition (L., 2020)

Let S be a finitely generated polynomial semigroup with a finite set of generators \mathcal{G}. Let $\boldsymbol{C}(\mathcal{G}):=\left\{c \in \mathbb{C}: g^{\prime}(c)=0\right.$ for some $\left.g \in \mathcal{G}\right\}$. Suppose S satisfies the property that if $\sharp \boldsymbol{C}(\mathcal{G})=1$ then $\boldsymbol{C}(\mathcal{G}) \cap \mathbf{J}(S) \cap \mathcal{E}(S)=\emptyset$. Then $U^{\mu_{\mathcal{G}}}$ is finite and continuous on \mathbb{C}.

- $\mathcal{E}(S):=\left\{z \in \widehat{\mathbb{C}}: \cup_{g \in S} g^{-1}\{z\}\right.$ is a finite set $\}$.

${ }_{14}$ Logarithmic potentials

Let σ be a Borel probability measure on \mathbb{C} with compact support. Its logarithmic potential is the function $U^{\sigma}: \mathbb{C} \rightarrow(-\infty, \infty]$ defined by

$$
U^{\sigma}(z)=\int_{\mathbb{C}} \log \frac{1}{|z-t|} d \sigma(t) .
$$

Key Proposition (L., 2020)

Let S be a finitely generated polynomial semigroup with a finite set of generators \mathcal{G}. Let $\boldsymbol{C}(\mathcal{G}):=\left\{c \in \mathbb{C}: g^{\prime}(c)=0\right.$ for some $\left.g \in \mathcal{G}\right\}$. Suppose S satisfies the property that if $\sharp \boldsymbol{C}(\mathcal{G})=1$ then $\boldsymbol{C}(\mathcal{G}) \cap \mathbf{J}(S) \cap \mathcal{E}(S)=\emptyset$. Then $U^{\mu_{\mathcal{G}}}$ is finite and continuous on \mathbb{C}.

- $\mathcal{E}(S):=\left\{z \in \widehat{\mathbb{C}}: \cup_{g \in S} g^{-1}\{z\}\right.$ is a finite set $\}$.
- (Arsove, 1960) U^{σ} is finite and continuous at z_{0} if σ satisfies

$$
\sigma(D(z, r)) \leq C r^{\alpha} \quad \forall r \in\left(0, r_{0}\right)
$$

where $\left|z-z_{0}\right|<\delta$ and C, α, r_{0}, δ are positive constants depending only on σ and z_{0}.

${ }_{15}$ External fields and our first theorem

Let Σ be a compact subset of \mathbb{C} and $Q: \Sigma \rightarrow(-\infty, \infty]$ be lower semi-continuous and $Q(z)<\infty$ on a set of positive capacity. The function Q is called an external field.

${ }_{15}$ External fields and our first theorem

Let Σ be a compact subset of \mathbb{C} and $Q: \Sigma \rightarrow(-\infty, \infty]$ be lower semi-continuous and $Q(z)<\infty$ on a set of positive capacity. The function Q is called an external field. We define the energy integral

$$
I_{Q}(\sigma):=\int_{\mathbb{C}} \int_{\mathbb{C}} \log \frac{1}{|z-t|} d \sigma(z) d \sigma(t)+2 \int_{\mathbb{C}} Q d \sigma .
$$

${ }_{15}$ External fields and our first theorem

Let Σ be a compact subset of \mathbb{C} and $Q: \Sigma \rightarrow(-\infty, \infty]$ be lower semi-continuous and $Q(z)<\infty$ on a set of positive capacity. The function Q is called an external field. We define the energy integral

$$
I_{Q}(\sigma):=\int_{\mathbb{C}} \int_{\mathbb{C}} \log \frac{1}{|z-t|} d \sigma(z) d \sigma(t)+2 \int_{\mathbb{C}} Q d \sigma .
$$

A measure σ^{\prime} is called an equilibrium measure associated with Q if

$$
I_{Q}\left(\sigma^{\prime}\right)=\inf \left\{I_{Q}(\sigma): \operatorname{supp}(\sigma) \subset \Sigma\right\}
$$

${ }_{15}$ External fields and our first theorem

Let Σ be a compact subset of \mathbb{C} and $Q: \Sigma \rightarrow(-\infty, \infty]$ be lower semi-continuous and $Q(z)<\infty$ on a set of positive capacity. The function Q is called an external field. We define the energy integral

$$
I_{Q}(\sigma):=\int_{\mathbb{C}} \int_{\mathbb{C}} \log \frac{1}{|z-t|} d \sigma(z) d \sigma(t)+2 \int_{\mathbb{C}} Q d \sigma .
$$

A measure σ^{\prime} is called an equilibrium measure associated with Q if

$$
I_{Q}\left(\sigma^{\prime}\right)=\inf \left\{I_{Q}(\sigma): \operatorname{supp}(\sigma) \subset \Sigma\right\}
$$

Theorem (L., 2020)

Let S be a finitely generated polynomial semigroup with a finite set of generators \mathcal{G}. Suppose S satisfies the property that if $\sharp \boldsymbol{C}(\mathcal{G})=1$ then $\boldsymbol{C}(\mathcal{G}) \cap \mathbf{J}(S) \cap \mathcal{E}(S)=\emptyset$.

${ }_{15}$ External fields and our first theorem

Let Σ be a compact subset of \mathbb{C} and $Q: \Sigma \rightarrow(-\infty, \infty]$ be lower semi-continuous and $Q(z)<\infty$ on a set of positive capacity. The function Q is called an external field. We define the energy integral

$$
I_{Q}(\sigma):=\int_{\mathbb{C}} \int_{\mathbb{C}} \log \frac{1}{|z-t|} d \sigma(z) d \sigma(t)+2 \int_{\mathbb{C}} Q d \sigma .
$$

A measure σ^{\prime} is called an equilibrium measure associated with Q if

$$
I_{Q}\left(\sigma^{\prime}\right)=\inf \left\{I_{Q}(\sigma): \operatorname{supp}(\sigma) \subset \Sigma\right\}
$$

Theorem (L., 2020)

Let S be a finitely generated polynomial semigroup with a finite set of generators \mathcal{G}. Suppose S satisfies the property that if $\sharp \boldsymbol{C}(\mathcal{G})=1$ then $\boldsymbol{C}(\mathcal{G}) \cap \mathbf{J}(S) \cap \mathcal{E}(S)=\emptyset$. Then the measure $\mu_{\mathcal{G}}$ is the equilibrium measure associated with the external field $\left.G_{\mathcal{G}}^{*}\right|_{\mathbf{J}(S)}$.

${ }_{15}$ External fields and our first theorem

Let Σ be a compact subset of \mathbb{C} and $Q: \Sigma \rightarrow(-\infty, \infty]$ be lower semi-continuous and $Q(z)<\infty$ on a set of positive capacity. The function Q is called an external field. We define the energy integral

$$
I_{Q}(\sigma):=\int_{\mathbb{C}} \int_{\mathbb{C}} \log \frac{1}{|z-t|} d \sigma(z) d \sigma(t)+2 \int_{\mathbb{C}} Q d \sigma .
$$

A measure σ^{\prime} is called an equilibrium measure associated with Q if

$$
I_{Q}\left(\sigma^{\prime}\right)=\inf \left\{I_{Q}(\sigma): \operatorname{supp}(\sigma) \subset \Sigma\right\}
$$

Theorem (L., 2020)

Let S be a finitely generated polynomial semigroup with a finite set of generators \mathcal{G}. Suppose S satisfies the property that if $\sharp \boldsymbol{C}(\mathcal{G})=1$ then $\boldsymbol{C}(\mathcal{G}) \cap \mathbf{J}(S) \cap \mathcal{E}(S)=\emptyset$. Then the measure $\mu_{\mathcal{G}}$ is the equilibrium measure associated with the external field $\left.G_{\mathcal{G}}^{*}\right|_{\mathbf{J}(S)}$.

Remark: Hypothesis can be made "generator independent"; no time to discuss it.

SKETCHES OF A FEW PROOFS...

${ }_{16} \mathrm{~A}$ counting lemma

Let g_{1}, \ldots, g_{N} (not nec. distinct) be in S s.t. $S=\left\langle g_{1}, \ldots, g_{N}\right\rangle$.

${ }_{16} A$ counting lemma

Let g_{1}, \ldots, g_{N} (not nec. distinct) be in S s.t. $S=\left\langle g_{1}, \ldots, g_{N}\right\rangle$. Let $\Gamma:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right)$ and $\left(F^{n}\right)^{\dagger}(y):=\pi_{1}\left(\pi_{2}^{-1}\{y\} \cap\left|\Gamma^{\circ n}\right|\right)$.

${ }_{16} A$ counting lemma

Let g_{1}, \ldots, g_{N} (not nec. distinct) be in S s.t. $S=\left\langle g_{1}, \ldots, g_{N}\right\rangle$. Let $\Gamma:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right)$ and $\left(F^{n}\right)^{\dagger}(y):=\pi_{1}\left(\pi_{2}^{-1}\{y\} \cap\left|\Gamma^{\circ n}\right|\right)$.

$$
\begin{gathered}
M:=\max \left\{\left|g_{i}^{\prime}(z)\right|: z \in \mathbf{J}(S), i \in\{1, \ldots, N\}\right\}, \\
R:=\frac{D}{N} \quad \text { and } \quad \lambda:=\frac{\log R}{\log M},
\end{gathered}
$$

where $D:=\sum_{i=1}^{N} \operatorname{deg}\left(g_{i}\right)$. Thus $M=R^{\frac{1}{\lambda}}$. Note, $R>1$ and $M>1$.

${ }_{16} \mathrm{~A}$ counting lemma

Let g_{1}, \ldots, g_{N} (not nec. distinct) be in S s.t. $S=\left\langle g_{1}, \ldots, g_{N}\right\rangle$. Let $\Gamma:=\sum_{1 \leq i \leq N} \operatorname{graph}\left(g_{i}\right)$ and $\left(F^{n}\right)^{\dagger}(y):=\pi_{1}\left(\pi_{2}^{-1}\{y\} \cap\left|\Gamma^{\circ n}\right|\right)$.

$$
\begin{gathered}
M:=\max \left\{\left|g_{i}^{\prime}(z)\right|: z \in \mathbf{J}(S), i \in\{1, \ldots, N\}\right\}, \\
R:=\frac{D}{N} \quad \text { and } \quad \lambda:=\frac{\log R}{\log M},
\end{gathered}
$$

where $D:=\sum_{i=1}^{N} \operatorname{deg}\left(g_{i}\right)$. Thus $M=R^{\frac{1}{\lambda}}$. Note, $R>1$ and $M>1$.
Assume $\sharp\left(\boldsymbol{C}\left(g_{1}, \ldots, g_{N}\right)\right)>1$. Then there exist $r_{0}>0$ and $\kappa \in \mathbb{Z}_{+}$such that for any $r \in\left(0, r_{0}\right]$ and $y \in \mathbf{J}(S)$, we have

$$
\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right)
$$

for all $n \in \mathbb{N}$ and $z \in \mathbb{C}$, where $\nu \in \mathbb{Z}_{+}$is the unique integer such that

$$
r \in I(\nu):=\left(r_{0} R^{\frac{-2 \nu}{\lambda}}, r_{0} R^{\frac{-2(\nu-1)}{\lambda}}\right] .
$$

${ }_{17} \mathrm{~A}$ counting lemma, continued: Main idea

Goal: $\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right) \quad \forall n \in \mathbb{N}, \forall z \in \mathbb{C}$.

Assume that $C\left(g_{1}, \ldots, g_{N}\right) \cap \mathbf{J}(S)=\emptyset$.

${ }_{17} \mathrm{~A}$ counting lemma, continued: Main idea

Goal: $\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right) \quad \forall n \in \mathbb{N}, \forall z \in \mathbb{C}$.

Assume that $\boldsymbol{C}\left(g_{1}, \ldots, g_{N}\right) \cap \mathbf{J}(S)=\emptyset$.

- Let $\delta_{2}>0$ be such that $g_{i}^{\prime}(z) \neq 0$ for every $z \in \mathbf{J}^{2 \delta_{2}} \backslash \mathbf{J}(S) \& \forall i$.

${ }_{17} \mathrm{~A}$ counting lemma, continued: Main idea

Goal: $\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right) \quad \forall n \in \mathbb{N}, \forall z \in \mathbb{C}$.

Assume that $\boldsymbol{C}\left(g_{1}, \ldots, g_{N}\right) \cap \mathbf{J}(S)=\emptyset$.

- Let $\delta_{2}>0$ be such that $g_{i}^{\prime}(z) \neq 0$ for every $z \in \mathbf{J}^{2 \delta_{2}} \backslash \mathbf{J}(S) \& \forall i$.
- Let $\delta_{3}>0$ be such that $\left|g_{i}^{\prime}(z)\right|<R^{\frac{2}{\lambda}}$ for every $z \in \mathbf{J}^{\delta_{3}} \& \forall i$.

${ }_{17} \mathrm{~A}$ counting lemma, continued: Main idea

Goal: $\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right) \quad \forall n \in \mathbb{N}, \forall z \in \mathbb{C}$.

Assume that $C\left(g_{1}, \ldots, g_{N}\right) \cap \mathbf{J}(S)=\emptyset$.

- Let $\delta_{2}>0$ be such that $g_{i}^{\prime}(z) \neq 0$ for every $z \in \mathbf{J}^{2 \delta_{2}} \backslash \mathbf{J}(S) \& \forall i$.
- Let $\delta_{3}>0$ be such that $\left|g_{i}^{\prime}(z)\right|<R^{\frac{2}{\lambda}}$ for every $z \in \mathbf{J}^{\delta_{3}} \& \forall i$.
- Let $\delta_{4}>0$ be the Lebesgue number of the following cover: $\left\{D(\xi, r(\xi)): \xi \in \overline{\mathbf{J}}^{\delta_{2}}\right\}$, where $r(\xi)>0$ is such that $\left.g_{i}\right|_{D(\xi, r(\xi))}$ is injective for $i=1,2, \ldots, N$.

${ }_{17} \mathrm{~A}$ counting lemma, continued: Main idea

Goal: $\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right) \quad \forall n \in \mathbb{N}, \forall z \in \mathbb{C}$.

Assume that $\boldsymbol{C}\left(g_{1}, \ldots, g_{N}\right) \cap \mathbf{J}(S)=\emptyset$.

- Let $\delta_{2}>0$ be such that $g_{i}^{\prime}(z) \neq 0$ for every $z \in \mathbf{J}^{2 \delta_{2}} \backslash \mathbf{J}(S) \& \forall i$.
- Let $\delta_{3}>0$ be such that $\left|g_{i}^{\prime}(z)\right|<R^{\frac{2}{\lambda}}$ for every $z \in \mathbf{J}^{\delta_{3}} \& \forall i$.
- Let $\delta_{4}>0$ be the Lebesgue number of the following cover: $\left\{D(\xi, r(\xi)): \xi \in \overline{\mathbf{J}}^{\delta_{2}}\right\}$, where $r(\xi)>0$ is such that $\left.g_{i}\right|_{D(\xi, r(\xi))}$ is injective for $i=1,2, \ldots, N$.

Write:

$$
r_{0}:=\frac{\min \left\{\delta_{2}, \delta_{3}, \delta_{4}\right\}}{4} \text { and } \kappa=1
$$

With this choice of r_{0} and κ, the inequality follows by induction on n.

${ }_{18} \mathrm{~A}$ counting lemma, continued: Main idea

Goal: $\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right) \quad \forall n \in \mathbb{N}, \forall z \in \mathbb{C}$.

What if $\boldsymbol{C}\left(g_{1}, \ldots, g_{N}\right) \cap \mathbf{J}(S) \neq \emptyset$?

${ }_{18} \mathrm{~A}$ counting lemma, continued: Main idea

Goal: $\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right) \quad \forall n \in \mathbb{N}, \forall z \in \mathbb{C}$.

What if $\boldsymbol{C}\left(g_{1}, \ldots, g_{N}\right) \cap \mathbf{J}(S) \neq \emptyset$? Let $\delta_{1}>0$ be so small that:

- $D\left(c_{j}, 2 \delta_{1}\right)$ are pairwise disjoint for $j=1,2, \ldots, q$,

${ }_{18} \mathrm{~A}$ counting lemma, continued: Main idea

Goal: $\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right) \quad \forall n \in \mathbb{N}, \forall z \in \mathbb{C}$.

What if $\boldsymbol{C}\left(g_{1}, \ldots, g_{N}\right) \cap \mathbf{J}(S) \neq \emptyset$? Let $\delta_{1}>0$ be so small that:

- $D\left(c_{j}, 2 \delta_{1}\right)$ are pairwise disjoint for $j=1,2, \ldots, q$,
- if, for $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, q\}, g_{i}^{\prime}\left(c_{j}\right)=0$, then $\left|g_{i}^{\prime}(z)\right| \leq 1$ $\forall z \in D\left(c_{j}, 2 \delta_{1}\right) \& g_{i}$ maps at most $\operatorname{ord}_{c_{j}}\left(g_{i}\right)$ points of $D\left(c_{j}, 2 \delta_{1}\right)$ to a single point,

${ }_{18} \mathrm{~A}$ counting lemma, continued: Main idea

Goal: $\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right) \quad \forall n \in \mathbb{N}, \forall z \in \mathbb{C}$.

What if $\boldsymbol{C}\left(g_{1}, \ldots, g_{N}\right) \cap \mathbf{J}(S) \neq \emptyset$? Let $\delta_{1}>0$ be so small that:

- $D\left(c_{j}, 2 \delta_{1}\right)$ are pairwise disjoint for $j=1,2, \ldots, q$,
- if, for $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, q\}, g_{i}^{\prime}\left(c_{j}\right)=0$, then $\left|g_{i}^{\prime}(z)\right| \leq 1$ $\forall z \in D\left(c_{j}, 2 \delta_{1}\right) \& g_{i}$ maps at most $\operatorname{ord}_{c_{j}}\left(g_{i}\right)$ points of $D\left(c_{j}, 2 \delta_{1}\right)$ to a single point,
- if, for $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, q\}, g_{i}^{\prime}\left(c_{j}\right) \neq 0$, then $\left|g_{i}^{\prime}(z)\right| \neq 0$ $\forall z \in D\left(c_{j}, 2 \delta_{1}\right)$.

${ }_{18} \mathrm{~A}$ counting lemma, continued: Main idea

Goal: $\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right) \quad \forall n \in \mathbb{N}, \forall z \in \mathbb{C}$.

What if $\boldsymbol{C}\left(g_{1}, \ldots, g_{N}\right) \cap \mathbf{J}(S) \neq \emptyset$? Let $\delta_{1}>0$ be so small that:

- $D\left(c_{j}, 2 \delta_{1}\right)$ are pairwise disjoint for $j=1,2, \ldots, q$,
- if, for $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, q\}, g_{i}^{\prime}\left(c_{j}\right)=0$, then $\left|g_{i}^{\prime}(z)\right| \leq 1$ $\forall z \in D\left(c_{j}, 2 \delta_{1}\right) \& g_{i}$ maps at most $\operatorname{ord}_{c_{j}}\left(g_{i}\right)$ points of $D\left(c_{j}, 2 \delta_{1}\right)$ to a single point,
- if, for $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, q\}, g_{i}^{\prime}\left(c_{j}\right) \neq 0$, then $\left|g_{i}^{\prime}(z)\right| \neq 0$ $\forall z \in D\left(c_{j}, 2 \delta_{1}\right)$.

This δ_{1} and a parameter δ_{3} (as in last slide) describe two partial open covers of $\overline{\mathbf{J}}^{\delta_{2}}$. These form an open cover serving the same purpose as in the last slide.

${ }_{18} \mathrm{~A}$ counting lemma, continued: Main idea

Goal: $\sharp\left(\left(F^{n}\right)^{\dagger}(y) \cap D(z, r)\right)^{\bullet} \leq \max \left(D^{n-\frac{\nu}{\kappa}+1} N^{\frac{\nu}{\kappa}-1},\left(D-\frac{1}{2}\right)^{n}\right) \quad \forall n \in \mathbb{N}, \forall z \in \mathbb{C}$.

What if $\boldsymbol{C}\left(g_{1}, \ldots, g_{N}\right) \cap \mathbf{J}(S) \neq \emptyset$? Let $\delta_{1}>0$ be so small that:

- $D\left(c_{j}, 2 \delta_{1}\right)$ are pairwise disjoint for $j=1,2, \ldots, q$,
- if, for $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, q\}, g_{i}^{\prime}\left(c_{j}\right)=0$, then $\left|g_{i}^{\prime}(z)\right| \leq 1$ $\forall z \in D\left(c_{j}, 2 \delta_{1}\right) \& g_{i}$ maps at most $\operatorname{ord}_{c_{j}}\left(g_{i}\right)$ points of $D\left(c_{j}, 2 \delta_{1}\right)$ to a single point,
- if, for $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, q\}, g_{i}^{\prime}\left(c_{j}\right) \neq 0$, then $\left|g_{i}^{\prime}(z)\right| \neq 0$ $\forall z \in D\left(c_{j}, 2 \delta_{1}\right)$.

This δ_{1} and a parameter δ_{3} (as in last slide) describe two partial open covers of $\overline{\mathbf{J}}^{\delta_{2}}$. These form an open cover serving the same purpose as in the last slide.

Value of κ : Let κ be such that

$$
\sum_{i: g_{i}^{\prime}(x) \neq 0}\left(\frac{D}{N}\right)^{1 / \kappa}+\sum_{i: g_{i}^{\prime}(x)=0} \operatorname{ord}_{x}\left(g_{i}\right) \leq D-\frac{1}{2} \quad \forall x \in \boldsymbol{C}\left(g_{1}, g_{2}, \ldots, g_{N}\right)
$$

${ }_{19}$ Sketch of the proof of the Key Proposition

The proof is divided between the following essential cases:

- Case 1: $\sharp(\boldsymbol{C}(\mathcal{G}))>1$.

${ }_{19}$ Sketch of the proof of the Key Proposition

The proof is divided between the following essential cases:

- Case $1: \sharp(\boldsymbol{C}(\mathcal{G}))>1$.
- Case 2: $\sharp(\boldsymbol{C}(\mathcal{G}))=1$ and $\boldsymbol{C}(\mathcal{G}) \cap \mathbf{J}(S) \neq \emptyset$.

We'll only address Case 1. For n sufficiently large:

$$
\mu_{n}(D(z, r))=\frac{1}{D^{n}} \sharp\left(\left(F^{n}\right)^{\dagger}(a) \cap D(z, r)\right)^{\bullet} \leq\left(\frac{D}{N}\right)^{1-\frac{\nu}{\kappa}} .
$$

${ }_{19}$ Sketch of the proof of the Key Proposition

The proof is divided between the following essential cases:

- Case $1: \sharp(\boldsymbol{C}(\mathcal{G}))>1$.
- Case 2: $\sharp(\boldsymbol{C}(\mathcal{G}))=1$ and $\boldsymbol{C}(\mathcal{G}) \cap \mathbf{J}(S) \neq \emptyset$.

We'll only address Case 1 . For n sufficiently large:

$$
\mu_{n}(D(z, r))=\frac{1}{D^{n}} \sharp\left(\left(F^{n}\right)^{\dagger}(a) \cap D(z, r)\right)^{\bullet} \leq\left(\frac{D}{N}\right)^{1-\frac{\nu}{\kappa}} .
$$

Since $r>r_{0} R^{-2 \nu / \lambda}$ and recalling that $R:=D / N$, we get

$$
\mu_{n}(D(z, r)) \leq\left(\frac{R}{r_{0}^{\lambda / 2 \kappa}}\right) r^{\frac{\lambda}{2 \kappa}}=C_{1} r^{\alpha} .
$$

Since $\mu_{n} \rightarrow \mu_{\mathcal{G}}$ in the weak* topology, $\mu_{\mathcal{G}}(D(z, r)) \leq C_{1} r^{\alpha}$.

${ }_{20}$ Sketch of the proof of our first theorem

${ }_{20}$ Sketch of the proof of our first theorem

In the statement of our theorem

$$
G_{\mathcal{G}}(z):=\limsup _{n \rightarrow \infty} \frac{1}{D^{n}} \log \left(\prod_{l(g)=n}|g(z)-a|\right)
$$

where a is arbitary element outside a certain polar set.

${ }_{20}$ Sketch of the proof of our first theorem

In the statement of our theorem

$$
G_{\mathcal{G}}(z):=\limsup _{n \rightarrow \infty} \frac{1}{D^{n}} \log \left(\prod_{l(g)=n}|g(z)-a|\right)
$$

where a is arbitary element outside a certain polar set.

- Since $\mu_{n} \rightarrow \mu_{\mathcal{G}}$ in the weak* topology, we get

$$
\begin{aligned}
& U^{\mu_{\mathcal{G}}}(z)+G_{\mathcal{G}}(z) \leq \frac{\log A}{D-N} \quad \text { for every } z \in \mathbb{C} \\
& U^{\mu_{\mathcal{G}}}(z)+G_{\mathcal{G}}(z)=\frac{\log A}{D-N} \quad \text { for q.e. } z \in \mathbb{C} \quad \text { [by Lower Envelope Theorem] }, \\
& \text { where } A=\left|\operatorname{lead}\left(g_{1}\right) \times \operatorname{lead}\left(g_{2}\right) \times \cdots \times \operatorname{lead}\left(g_{N}\right)\right| .
\end{aligned}
$$

${ }_{20}$ Sketch of the proof of our first theorem

In the statement of our theorem

$$
G_{\mathcal{G}}(z):=\limsup _{n \rightarrow \infty} \frac{1}{D^{n}} \log \left(\prod_{l(g)=n}|g(z)-a|\right)
$$

where a is arbitary element outside a certain polar set.

- Since $\mu_{n} \rightarrow \mu_{\mathcal{G}}$ in the weak* topology, we get

$$
U^{\mu_{\mathcal{G}}}(z)+G_{\mathcal{G}}(z) \leq \frac{\log A}{D-N} \quad \text { for every } z \in \mathbb{C}
$$

$$
U^{\mu_{\mathcal{G}}}(z)+G_{\mathcal{G}}(z)=\frac{\log A}{D-N} \quad \text { for q.e. } z \in \mathbb{C} \text { [by Lower Envelope Theorem] }
$$

$$
\text { where } A=\left|\operatorname{lead}\left(g_{1}\right) \times \operatorname{lead}\left(g_{2}\right) \times \cdots \times \operatorname{lead}\left(g_{N}\right)\right| \text {. }
$$

- As $U^{\mu_{\mathcal{G}}}$ is continuous, it follows that

$$
U^{\mu_{\mathcal{G}}}(z)+G_{\mathcal{G}}^{*}(z)=\frac{\log A}{D-N} \quad \forall z \in \mathbb{C}
$$

${ }_{21}$ Lower bound for capacity of the Julia set

Theorem (L., 2020)
Let (S, \mathcal{G}) be as in our main theorem and let $Q_{\mathcal{G}}$ denote the external field associated with (S, \mathcal{G}).

${ }_{21}$ Lower bound for capacity of the Julia set

Theorem (L., 2020)
Let (S, \mathcal{G}) be as in our main theorem and let $Q_{\mathcal{G}}$ denote the external field associated with (S, \mathcal{G}).
(1) Assume that, for some $z_{0} \in \mathbf{J}(S)$, the orbit of z_{0} is unbounded and is not dense in \mathbb{C}. Then $Q_{\mathcal{G}} \not \equiv 0$ for any finite generating set \mathcal{G}. Moreover, if each element of S is of degree at least 2 then

$$
\operatorname{cap}(\mathbf{J}(S))>A^{\frac{1}{N-D}} .
$$

${ }_{21}$ Lower bound for capacity of the Julia set

Theorem (L., 2020)
Let (S, \mathcal{G}) be as in our main theorem and let $Q_{\mathcal{G}}$ denote the external field associated with (S, \mathcal{G}).
(1) Assume that, for some $z_{0} \in \mathbf{J}(S)$, the orbit of z_{0} is unbounded and is not dense in \mathbb{C}. Then $Q_{\mathcal{G}} \not \equiv 0$ for any finite generating set \mathcal{G}. Moreover, if each element of S is of degree at least 2 then

$$
\operatorname{cap}(\mathbf{J}(S))>A^{\frac{1}{N-D}} .
$$

(2) If $Q_{\mathcal{G}} \equiv \equiv 0$ for some finite set of generators \mathcal{G} then there exists a point $z_{0} \in \mathbf{J}(S)$ such that the orbit of z_{0} is unbounded.

${ }_{21}$ Lower bound for capacity of the Julia set

Theorem (L., 2020)

Let (S, \mathcal{G}) be as in our main theorem and let $Q_{\mathcal{G}}$ denote the external field associated with (S, \mathcal{G}).
(1) Assume that, for some $z_{0} \in \mathbf{J}(S)$, the orbit of z_{0} is unbounded and is not dense in \mathbb{C}. Then $Q_{\mathcal{G}} \not \equiv 0$ for any finite generating set \mathcal{G}. Moreover, if each element of S is of degree at least 2 then

$$
\operatorname{cap}(\mathbf{J}(S))>A^{\frac{1}{N-D}} .
$$

(2) If $Q_{\mathcal{G}} \not \equiv 0$ for some finite set of generators \mathcal{G} then there exists a point $z_{0} \in \mathbf{J}(S)$ such that the orbit of z_{0} is unbounded.

THANK YOU!

