1.3 Vector Functions

Sometimes, it is convenient to present a curve in the plane by describing its x- and y-components as functions of some other variable, say t. A curve of the type $x = x(t), y = y(t)$ is called a **parametric curve** and the variable t is called a **parameter**. For example, $x = t, y = t^2$ is a parametric curve with a parameter t (what's this curve? You can convert to $y = x^2$, so it is a parabola).

Vector Functions

For each value of the parameter t, we may view the point $(x(t), y(t))$ on a parametric curve as the endpoint of the vector

$$(1) \quad \mathbf{r}(t) = \langle x(t), y(t) \rangle = x(t)i + y(t)j$$

which begins at the origin and ends at the point $(x(t), y(t))$. A vector is called a position vector if this vector’s starting point is origin.

The following figure shows a position vector for the vector function $\mathbf{r}(t) = \langle 500t, 500\sqrt{3t} - 16t^2 \rangle$.

![Position Vector](image.png)

A function such as \mathbf{r} in (1), whose range is a set of vectors, is called a vector function (or vector-valued function) of t.

Example 1: Sketch the curve defined by the vector function $\mathbf{r}(t) = \langle t^2 - 2t, \ t + 1 \rangle$

Solution: The endpoint of the vector $\mathbf{r}(t)$ is (x, y) where $x = t^2 - 2t, \ y = t + 1$. Each value of t gives a point on the curve, as shown in the following table. In the following figure, we plot the points (x, y) determined by several values of the parameter and join them to produce a curve.
Any curve of the form \(y = f(x) \) can be put into parametric form by letting \(x = t \), and then \(y = f(t) \).

Vector Equation of a Line

A line is determined by a point and a direction. The direction of a line in the plane is determined by a specifying a slope or by specifying a vector that is parallel to the line.

Let \(P_0 \) be a point in \(L \) and \(\vec{v} \) be a vector parallel to the line \(L \).

Let \(P \) be any arbitrary point on \(L \), and let \(\vec{r}_0 \) and \(\vec{r} \) be the position vector of \(P_0 \) and \(P \), let \(\vec{a} = \vec{P_0P} \). Since \(\vec{a} = \vec{PP_0} \parallel \vec{v} \), we have \(\vec{a} = t \vec{v} \). By Triangle Law, we have \(\vec{r} = \vec{r}_0 + \vec{a} = \vec{r}_0 + t \vec{v} \).

Vector Equation of a Line:

\[
\vec{r} = \vec{r}_0 + t \vec{v}
\]

If \(\vec{r}_0 = < x_0, y_0 > \), \(\vec{v} = < a, b > \), then the vector equation of a line can be written parametrically as follows:

\[
< x, y > = < x_0 + at, y_0 + bt > \quad \text{or} \quad x = x_0 + at, \quad y = y_0 + bt
\]

Example 2: Find parametric equations of the line that passes through the points \((3, 1)\) and \((2, -2)\).

Solution: Let \(\vec{v} = < 2 - 3, -2 - 1 > = < -1, -3 > \), \(P_0 = < 3, 1 > \), then we have the parametric equation is

\[
x = 3 - t, \quad y = 1 - 3t
\]

Remark: You can choose \(\vec{v} = < 3 - 2, -1 - (-2) > = < 1, 3 > \), and \(P_0 = < 2, -2 > \).

Question: Example 2: Find parametric equations of the line \(l \) that passes through the point \((1,2)\) and parallel to \(x = 3 - 3t, \quad y = 1 - 4t \).

Answer: Since line \(x = 3 - 3t, \quad y = 1 - 4t \) parallel to \(\vec{v} = < -3, -4 > \), so line \(l \) parallel to \(\vec{v} = < -3, -4 > \). Thus, the line equation for line \(l \) is \(x = 1 - 3t, \quad y = 2 - 4t \).
Converting between Cartesian equations and parametrized equations.

Example 3: For parametric curve, \(x = 1 + \cos \theta, y = 2 + \sin \theta \) with parameter \(\theta \), eliminate the parameter to find the Cartesian equation of this curve, what’s this curve?

Solution:

\[
x = 1 + \cos \theta, \quad y = 2 + \sin \theta \implies x - 1 = \cos \theta, \quad y - 2 = \sin \theta \implies (x - 1)^2 + (y - 2)^2 = \cos^2 \theta + \sin^2 \theta = 1
\]

So, this curve is a circle with center (1, 2) and radius is 1.

Example 3: Identify the curve given in parametric form by

\[
x = \sin \theta, \quad y = \cos^2 \theta \quad 0 \leq \theta \leq 2\pi
\]

Solution:

\[
x^2 + y = \sin^2 \theta + \cos^2 \theta = 1 \Rightarrow y = 1 - x^2
\]

It’s parabola.

Example 4: Identify the Cartesian equation of the parametrized line given in Example 2.

Solution:

\[
x = 3 - t \implies t = 3 - x \quad y = 1 - 3t \implies y - 1 = -3(3 - x) \implies 3x - y - 8 = 0
\]