Appendix D: Review Trigonometry

Relationship of Radians and Degrees

Angles can be measured in degrees or in radians (abbreviated as rad). The angle given by a complete revolution contains 360°, which is the same as 2π rad. Thus,

$$1^\circ = \frac{\pi}{180} \text{ rad} \quad 1 \text{ rad} = \left(\frac{180}{\pi}\right)^\circ \quad 180^\circ = \pi$$

Example 1: Find the radian measure of 30°, and express $\frac{\pi}{4}$ rad in degrees.

Solution: $30^\circ = 30\left(\frac{\pi}{180}\right) = \frac{\pi}{6} \text{ rad} \quad \frac{\pi}{4} \text{ rad} = \frac{\pi}{4}\left(\frac{180}{\pi}\right) = 45^\circ$

In calculus, we use radians to measure angles except when otherwise indicated. The following table gives the correspondence between degree and radian measures of some common angles.

<table>
<thead>
<tr>
<th>Degrees</th>
<th>0°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
<th>135°</th>
<th>150°</th>
<th>180°</th>
<th>270°</th>
<th>360°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radians</td>
<td>0</td>
<td>$\frac{\pi}{6}$</td>
<td>$\frac{\pi}{4}$</td>
<td>$\frac{\pi}{3}$</td>
<td>$\frac{2\pi}{3}$</td>
<td>$\frac{3\pi}{4}$</td>
<td>$\frac{5\pi}{6}$</td>
<td>π</td>
<td>$\frac{3\pi}{2}$</td>
<td>2π</td>
<td></td>
</tr>
</tbody>
</table>

Arc length of a circle

$$a = r\theta \quad \theta = \frac{a}{r}$$

Example 2: (a) If the radius of a circle is 10 cm, what angle is subtended by an arc of 12 cm?
(b) If a circle has radius 6 cm, what is the length of an arc subtended by a central angle of $\frac{3\pi}{8}$ rad?

Solution: (a) $r = 10, \ a = 12, \ \theta = \frac{a}{r} = \frac{12}{10} = 1.2 \text{ rad}$

(b) $r = 6, \ \theta = \frac{3\pi}{8} \text{ rad, } a = r\theta = 6\left(\frac{3\pi}{8}\right) = \frac{9\pi}{4} \text{ cm}$

The **Standard position** of an angle occurs when we place its vertex at the origin of a coordinate system and its initial side on the positive $x-$ axis as in the following figure.

A **positive angle** is obtained by rotating the initial side counterclockwise until it coincides with the terminal side.

Negative angles are obtained by clockwise rotation as in the left figure.

Notice that different angles can have the same terminal side. For instance, $\theta, \theta + 2n\pi$ have same terminal side; $\frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}$ have same terminal side.

The following figures show angles in standard position.
The Trigonometric Functions

\[\sin \theta = \frac{\text{opp}}{\text{hyp}} \quad \csc \theta = \frac{\text{hyp}}{\text{opp}} \]
\[\cos \theta = \frac{\text{adj}}{\text{hyp}} \quad \csc \theta = \frac{\text{hyp}}{\text{adj}} \]
\[\tan \theta = \frac{\text{opp}}{\text{adj}} \quad \cot \theta = \frac{\text{adj}}{\text{opp}} \]

The above definition does not apply to obtuse or negative angles, so for a general angle \(\theta \) in standard position, we let \(P(x, y) \) be any point on the terminal side of \(\theta \), let \(r \) be the distance |OP| as in the following figure.

\[\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y} \]
\[\cos \theta = \frac{x}{r} \quad \csc \theta = \frac{r}{x} \]
\[\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y} \]

From the above definition, it is clear that \(\tan \theta, \sec \theta \) are not defined when \(x = 0 \), and \(\cot \theta, \csc \theta \) are not defined when \(y = 0 \). Notice that, the above two definitions of the trigonometric functions are consistent when \(\theta \) is an acute angle.

If \(\theta \) is a number, the convention is that \(\sin \theta \) means the sine of the angle whose radian measure is \(\theta \). For example,

\[\sin 3 \approx 0.14112, \quad \sin 3^0 \approx 0.05234 \]

For exact trigonometric ratios for certain angles can be read from the triangles in the following figures.

\[\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \quad \sin \frac{\pi}{6} = \frac{1}{2} \quad \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \]
\[\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \quad \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \quad \cos \frac{\pi}{3} = \frac{1}{2} \]
\[\tan \frac{\pi}{4} = 1 \quad \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} \quad \tan \frac{\pi}{3} = \sqrt{3} \]
The signs of the trigonometric functions for angles in each of the four quadrants can be determined from the above definition.

Example 3: Find the exact trigonometric ratios for \(\theta = \frac{2\pi}{3} \)

Solution: From the left figure we see that a point on the terminal line for \(\theta = \frac{2\pi}{3} \) is \(P(-1, \sqrt{3}) \).

Therefore, taking \(x = -1, \ y = \sqrt{3}, \ r = 2 \), we have

\[
\begin{align*}
\sin \frac{2\pi}{3} &= \frac{\sqrt{3}}{2}, \quad \cos \frac{2\pi}{3} = -\frac{1}{2}, \quad \tan \frac{2\pi}{3} = -\sqrt{3} \\
\csc \frac{2\pi}{3} &= \frac{2}{\sqrt{3}}, \quad \sec \frac{2\pi}{3} = -2, \quad \cot \frac{2\pi}{3} = -\frac{1}{\sqrt{3}}
\end{align*}
\]

The following table gives some values of \(\sin \theta \), \(\cos \theta \) by the method of the above example.

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\theta)</th>
<th>(\frac{\pi}{6})</th>
<th>(\frac{\pi}{4})</th>
<th>(\frac{\pi}{3})</th>
<th>(\frac{\pi}{2})</th>
<th>(\frac{2\pi}{3})</th>
<th>(\frac{3\pi}{4})</th>
<th>(\frac{5\pi}{6})</th>
<th>(\pi)</th>
<th>(\frac{3\pi}{2})</th>
<th>(2\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin \theta)</td>
<td>0</td>
<td>1</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>1</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
<tr>
<td>(\cos \theta)</td>
<td>1</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>0</td>
<td>(-\frac{1}{2})</td>
<td>(-\frac{\sqrt{2}}{2})</td>
<td>(-\frac{\sqrt{3}}{2})</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example 4. If \(\cos \theta = \frac{2}{5} \) and \(0 < \theta < \frac{\pi}{2} \), find the other five trigonometric functions of \(\theta \).

Solution: Since \(\cos \theta = \frac{2}{5} \), we can label the hypotenuse as having length 5 and the adjacent side as having length 2 in the left figure. If the opposite side has length \(x \), then the Pythagorean Theorem gives \(x^2 + 2^2 = 5^2 \Rightarrow x = \sqrt{21} \). Thus, we have

\[
\sin \theta = \frac{\sqrt{21}}{5}, \quad \tan \theta = \frac{\sqrt{21}}{2}, \quad \csc \theta = \frac{5}{\sqrt{21}}, \quad \sec \theta = \frac{5}{2}, \quad \cot \theta = \frac{2}{\sqrt{21}}
\]

Example 5 Use a calculator to approximate the value of \(x \) in the following figure.

Solution: From the diagram, we see that

\[
\tan 40^\circ = \frac{16}{x}
\]

\[
x = \frac{16}{\tan 40^\circ} \approx 19.07
\]

Trigonometric Identities

\[
csc \theta = \frac{1}{\sin \theta}, \quad \sec \theta = \frac{1}{\cos \theta}, \quad \cot \theta = \frac{1}{\tan \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta}
\]

\[
\sin^2 \theta + \cos^2 \theta = 1, \quad 1 + \tan^2 \theta = \sec^2 \theta, \quad 1 + \cot^2 \theta = \csc^2 \theta
\]

\[
\sin(-\theta) = -\sin \theta, \quad \cos(-\theta) = \cos \theta
\]

\[
\sin(\theta + 2\pi) = \sin \theta, \quad \cos(\theta + 2\pi) = \cos \theta
\]

\[
\tan(\theta + \pi) = \tan \theta, \quad \cot(\theta + \pi) = \cot \theta
\]

\[
\sin 2\theta = 2 \sin \theta \cos \theta
\]

\[
\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta
\]
\[
\sin(x - y) = \sin x \cos y - \cos x \sin y \\
\cos(x - y) = \cos x \cos y + \sin x \sin y \\
\sin(x + y) = \sin x \cos y + \cos x \sin y \\
\cos(x + y) = \cos x \cos y - \sin x \sin y
\]

\[
\sin x \cos y = \frac{1}{2} [\sin(x + y) + \sin(x - y)] \\
\cos x \cos y = \frac{1}{2} [\cos(x + y) + \cos(x - y)] \\
\sin x \sin y = -\frac{1}{2} [\cos(x + y) - \cos(x - y)]
\]

Example 6. Find all values of \(x\) in the interval \([0, 2\pi]\) such that \(\sin x = \sin 2x\)

Solution: \(\sin x = \sin 2x \Rightarrow \sin x = 2 \sin x \cos x \Rightarrow \sin x (1 - 2 \cos x) = 0\)

There are two possibilities for \(x\):

\[
\begin{align*}
\sin x &= 0 \\
1 - 2 \cos x &= 0 \\
\downarrow & \quad \downarrow \\
x &= 0, \pi, 2\pi \\
& \quad x = \frac{\pi}{3}, \frac{5\pi}{3}
\end{align*}
\]

Graphs of the Trigonometric Functions.