14.4 Green’s Theorem

Green’s Theorem gives the relationship between a line integral around a simple closed curve \(C \) and a double integral over the plane region \(D \) bounded by \(C \). The positive orientation of a simple closed curve \(C \) refers to a single counterclockwise traversal of \(C \), in other words, when you walk along the curve \(C \), the enclosed region is on your left side.

Green’s Theorem: Let \(C \) be a positively oriented, piecewise-smooth, simple closed curve in the plane and let \(D \) be the region bounded by \(C \). If \(P \) and \(Q \) have continuous partial derivatives on an open region that contains \(D \), then

\[
\int_C P\,dx + Q\,dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)\,dA
\]

Example 1: Evaluate \(\int_C x\,dx + xy\,dy \), where \(C \) is the triangular curve consisting of the line segment from \((0,0)\) to \((1,0)\), from \((1,0)\) to \((0,1)\), and from \((0,1)\) to \((0,0)\).

Solution: Let \(P(x, y) = x^4, Q(x, y) = xy \).

\[
\int_C x^4\,dx + xy\,dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)\,dA = \iint_D (y - 0)\,dA
\]

\[
= \int_0^1 \int_0^{1-x} y\,dy\,dx = \cdots = \frac{1}{6}
\]

Example 2: Evaluate \(\oint_C (3y - e^{\sin x})\,dx + (7x + \sqrt{y^7 + 1})\,dy \), where \(C \) is the circle \(x^2 + y^2 = 9 \).

Solution: Let \(P(x, y) = 3y - e^{\sin x}, Q(x, y) = 7x + \sqrt{y^7 + 1} \).
\[\oint_{C} (3y - e^{\sin x})dx + (7x + \sqrt{y^3} + 1)dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA = \iint_{D} (7-3) \, dA = \int_{0}^{2\pi} \int_{0}^{3} 4r \, dr \, d\theta = 36\pi \]

Question 1: Evaluate \(\oint_{C} y^2dx + 3xydy \), where \(C \) is the boundary of the semi-annular region \(D \) in the upper half-plane between the circles \(x^2 + y^2 = 1 \) and \(x^2 + y^2 = 4 \).

Solution: Let \(P(x, y) = y^2 \), \(Q(x, y) = 3xy \)

\[\oint_{C} y^2dx + 3xydy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA = \iint_{D} (3y - 2y) \, dA = \int_{0}^{2\pi} \int_{1}^{2} (r \sin \theta) \, r \, dr \, d\theta = \frac{14}{3} \]

Let \(D \) be the region bounded by closed curve \(C \), we have the following formulas:

Area of region \(D = \oint_{C} x \, dy = -\oint_{C} y \, dx = \frac{1}{2} \left(\oint_{C} x \, dy - y \, dx \right) \)

Remark: We can easily prove the above formulas by Green’s Theorem.

Example 3: Find the area enclosed by the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)

Solution: The ellipse has the parametric equation: \(x = a \cos \theta, \ y = b \sin \theta, \ 0 \leq \theta \leq 2\pi \).

Area = \(\frac{1}{2} \left(\oint_{C} x \, dy - y \, dx \right) = \frac{1}{2} \int_{0}^{2\pi} a \cos \theta (b \cos \theta \, d\theta) - b \sin \theta (-a \sin \theta \, d\theta) = \frac{1}{2} \int_{0}^{2\pi} abd \theta = \pi ab \)