1.3 Convergence Theorems of Fourier Series

In this section, we present the convergence of Fourier series.

An infinite sum is, by definition, a limit of partial sums, that is,

$$\sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx) = \lim_{N \to \infty} \sum_{k=1}^{N} a_k \cos(kx) + b_k \sin(kx)$$

provided that the limit exists. Therefore, we say that the Fourier series of f converges to f at the point x if

$$f(x) = \lim_{N \to \infty} S_N(x) = a_0 + \lim_{N \to \infty} \sum_{k=1}^{N} a_k \cos(kx) + b_k \sin(kx)$$

where $S_N(x) = a_0 + \sum_{k=1}^{N} a_k \cos(kx) + b_k \sin(kx)$

With this in mind, we state (without proof) the convergence of Fourier series.

Theorem 1. Suppose f is a continuous and 2π-periodic function. Then for each point x, where the derivative of f is defined, the Fourier series of f at x converges to $f(x)$, or $|S_N(x) - f(x)| \to 0$ as $N \to \infty$.

Now, we present some variations of the above Theorem. Note that the hypothesis of this theorem requires the function f to be continuous and periodic. However, there are many functions of interest that are neither continuous nor periodic. Before we state the theorem on convergence near a discontinuity, we need the following definition.

Definition 1: The left and right limits of f at a point x is defined as follows.

Left limit: $f(x-0) = \lim_{h \to 0^+} f(x-h)$

Right limit: $f(x+0) = \lim_{h \to 0^+} f(x+h)$

The function f is said to be left differentiable at x if the following limit exists:

$$f'(x-0) = \lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h}$$

The function f is said to be right differentiable at x if the following limit exists:

$$f'(x+0) = \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}$$
Intuitively, $f'(x-0)$ represents the slope of the tangent line to f at x considering only the part of the graph of $y = f(t)$ that lies to the left of $t = x$. The value of $f'(x+0)$ is the slope of the tangent line to f at x considering only the part of the graph of $y = f(t)$ that lies to the right of $t = x$.

Example 1: Let $f(x)$ be the periodic extension of $y = x, -\pi \leq x < \pi$. Then $f(x)$ is discontinuous at $x = \ldots, -\pi, \pi, \ldots$. The left, right limits, left and right derivatives of f at $x = \pi$ are

$$f(\pi - 0) = \pi \quad f(\pi + 0) = -\pi$$
$$f'(\pi - 0) = 1 \quad f'(\pi + 0) = 1$$

Example 2. Let $f(x) = \begin{cases} x, & x \in [0, \pi / 2] \\ \pi - x, & x \in [\pi / 2, \pi] \end{cases}$

The graph of f is the sawtooth wave. This function is continuous, but not differentiable at $x = \pi / 2$. The left and right derivatives at $x = \pi / 2$ are

$$f'(\pi / 2 - 0) = 1 \quad \text{and} \quad f'(\pi / 2 + 0) = -1$$

Now, we are ready to state the convergence theorem for Fourier series at a point where f is not necessarily continuous.

Theorem 2. Suppose $f(x)$ is periodic and piecewise continuous. Suppose x is a point where f is left and right differentiable (but not necessarily continuous). Then the Fourier series of f at x converges to
\[\frac{f(x+0) + f(x-0)}{2} \]

Remark: This theorem stated that at a point of discontinuity of \(f \), the Fourier series of \(f \) converges to the average of the left and right limits of \(f \). At a point of continuity, the left and right limits are the same, and so in this case, Theorem 2 reduces to Theorem 1.

Definition 2: A function is said to be **piecewise smooth** if it is continuous and its derivative is defined everywhere except possibly for a discrete set of points.

For example, the sawtooth function is piecewise smooth since the derivative of \(f \) exists at all points except at multiples of \(\pi/2 \) (which is a discrete set of points).

We say that the Fourier series of \(f(x) \) converges to \(f(x) \) on \([-a,a]\) uniformly if the sequence of partial sums

\[S_N(x) = a_0 + \sum_{k=1}^{N} a_k \cos(kx) + b_k \sin(kx) \]

converges to \(f(x) \) uniformly as \(N \to \infty \), or \(\max_{-a \leq x \leq a} |f(x) - S_N(x)| \to 0 \) as \(N \to \infty \).

Theorem 3: The Fourier series of a piecewise smooth, \(2\pi \) periodic function \(f(x) \) converges uniformly to \(f(x) \) on \([-\pi,\pi]\).

Theorem 4: Suppose \(f \) is an element of \(L^2([-\pi,\pi]) \). Let

\[S_N(x) = a_0 + \sum_{k=1}^{N} a_k \cos(kx) + b_k \sin(kx) \]

where \(a_n \) and \(b_n \) are the Fourier coefficients of \(f \). Then \(S_N \) converges to \(f \) in \(L^2([-\pi,\pi]) \); that is, \(\|f(x) - S_N(x)\|_{L^2} \to 0 \) as \(N \to \infty \). We also call this **mean** convergence.

Theorem 4 also holds for complex form of Fourier series.

Theorem 5: Suppose \(f \) is an element of \(L^2([-\pi,\pi]) \) with (complex) Fourier coefficients given by

\[\alpha_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt \quad \text{for} \quad n \in \mathbb{Z}. \]

Then the partial sum

\[S_N(t) = \sum_{k=-N}^{N} \alpha_k e^{int} \]

converges to \(f \) in \(L^2([-\pi,\pi]) \) norm as \(N \to \infty \). In other words, \(\lim_{N \to \infty} \|f - S_N\| \to 0 \).
Energy interpretation. Another way of looking at the theorem is in terms of energy. In signal processing, the integral
\[\int_{-\pi}^{\pi} |f(x)|^2 \, dx = \|f\|^2 \]
is interpreted as the energy of the "signal" \(f \). The theorem then states that the Fourier series for any "finite energy" function \(f \) converges in the mean to \(f \). The converse is true as well. If the Fourier series converges in the mean to a function, then that function has to have finite energy., i.e., it has to be in \(L^2 ([-\pi, \pi]) \).

Another physical term that is used in connection with Fourier series is frequency mode. In the complex case, this is just one of the terms \(\alpha_k e^{int} \). (The real case is similar.) The energy of a single mode (term) is
\[\int_{-\pi}^{\pi} |\alpha_k e^{int}|^2 \, dt = 2\pi |\alpha_k|^2 \]

There is a beautiful connection between the energy in a signal and the energy in its modes.

Parseval’s Theorem. Suppose \(f \) is an element of \(L^2 ([-\pi, \pi]) \) and its Fourier series is
\[f(t) = \sum_{k=-\infty}^{\infty} \alpha_k e^{int} \]
Then,
\[\|f\|^2 = \int_{-\pi}^{\pi} |f(t)|^2 \, dt = 2\pi \sum_{k=-\infty}^{\infty} |\alpha_k|^2 \]

Parseval’s Theorem amounts to saying that the energy in a “signal” \(f \) is the sum of the energies in its modes. The real version of the equation in Parseval’s Theorem is
\[\|f\|^2 = 2\pi |a_0|^2 + \pi \sum_{k=1}^{\infty} \left(|a_k|^2 + |b_k|^2 \right) \]

Remark: Parseval’s theorem can be used in a number of ways. One of them is to obtain sums of series.

Example. Prove \(\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \).

Solution. From example before, we have the Fourier series for the function \(f(x) = x \) on \([-\pi, \pi]\),
\[x = \sum_{n=1}^{\infty} 2(-1)^{n+1} \frac{\sin(nx)}{n} , \quad x \in [-\pi, \pi] \]. (Note that \(b_n = \frac{2(-1)^{n+1}}{n} \))

By Parseval’s theorem,
\[\|x\|^2 = \pi \sum_{n=1}^{\infty} \left(\frac{2(-1)^{n+1}}{n} \right)^2 = 4\pi \sum_{n=1}^{\infty} \frac{1}{n^2} \]
where \(\|x\|^2 = \int_{-\pi}^{\pi} x^2 \, dx = \frac{2}{3} \pi^3 \).
Thus, we have

\[\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \]

Question: Prove \[\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96} \].

Hint: Please consider: The Fourier series for \(f \) on the interval \(0 \leq x \leq \pi \) given by

\[f(t) = \begin{cases}
 x & \text{if } 0 \leq x \leq \pi/2 \\
 \pi - x & \text{if } \pi/2 \leq x \leq \pi
\end{cases} \]

and extends to the interval \(-\pi \leq x \leq 0 \) as an even function.